Abstract

Probes with spherical couplings are widely used to measure microstructures with a high aspect ratio. The measurement accuracy of spherical coupling fibre probes is limited by the low stability and signal-to-noise ratio of the output spot. This paper presents a specially designed probe with a polished spherical coupler and micro-axicon lensed output fibre. The effectiveness of the probe was verified experimentally. Compared to a common spherical coupling fibre probe, the proposed probe improves the signal-to-noise ratio of the output spot by 42.95%, the stability of the spot by 36%, and the resolution from 30 nm to 10 nm (by 66%).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Raman imaging through a single multimode fibre

Ivan Gusachenko, Mingzhou Chen, and Kishan Dholakia
Opt. Express 25(12) 13782-13798 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Dai, S. Bütefisch, F. Pohlenz, and H. U. Danzebrink, “A high precision micro/nano CMM using piezoresistive tactile probes,” Meas. Sci. Technol. 20(8), 084001 (2009).
    [Crossref]
  2. Q. Huang, C. Chen, K. Wu, L. Zhang, R. Li, and K. C. Fan, “A three-dimensional resonant triggering probe for micro-CMM,” Appl. Sci. (Basel) 7(4), 403 (2017).
    [Crossref]
  3. R. J. Li, M. Xiang, Y. X. He, K. C. Fan, Z. Y. Cheng, Q. X. Huang, and B. Zhou, “Development of a high-precision touch-trigger probe using a single sensor,” Appl. Sci. (Basel) 6(3), 86 (2016).
    [Crossref]
  4. M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
    [Crossref]
  5. M. B. Bauza, R. J. Hocken, S. T. Smith, and S. C. Woody, “Development of a virtual probe tip with an application to high aspect ratio microscale features,” Rev. Sci. Instrum. 76(9), 095112 (2005).
    [Crossref]
  6. S. Elfurjani, J. Ko, and M. B. G. Jun, “Micro-scale hole profile measurement using rotating wire probe and acoustic emission contact detection,” Measurement 89, 215–222 (2016).
    [Crossref]
  7. H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
    [Crossref]
  8. U. Neuschaefer-Rube, M. Neugebauer, W. Ehrig, M. Bartscher, and U. Hilpert, “Tactile and optical microsensors - test procedures and standards,” Key Eng. Mater. 381–382, 23–26 (2008).
    [Crossref]
  9. G. Dai, H. Wolff, F. Pohlenz, H.-U. Danzebrink, and G. Wilkening, “Atomic force probe for sidewall scanning of nano- and microstructures,” Appl. Phys. Lett. 88(17), 171908 (2006).
    [Crossref]
  10. G. Dai, H. Wolff, and H.-U. Danzebrink, “Atomic force microscope cantilever based microcoordinate measuring probe for true three-dimensional measurements of microstructures,” Appl. Phys. Lett. 91(12), 121912 (2007).
    [Crossref]
  11. S. Y. Xie and X. D. Zhang, “Research on three-dimensional output behavior of displacement sensor of two-circle coaxial optical fiber bundle,” J. Vib. Meas. Diagn. 37(1), 174–181 (2017).
  12. B. Guzowski, M. Cywinski, and M. Lakomski, “Proximity sensors based on ball-lensed optical fibers,” IOP Conf. Ser. Mater. Sci. Eng. 104, 012031 (2016).
  13. T. Eftimov and W. J. Bock, “An all-fibre optic multifunctional sensor based on large-core quartz-polymer microlens-ended fiber pairs,” in 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings (IEEE, 2005) pp. 1182–1184.
    [Crossref]
  14. J. Cui, L. Li, and J. Tan, “Optical fiber probe based on spherical coupling of light energy for inner-dimension measurement of microstructures with high aspect ratios,” Opt. Lett. 36(23), 4689–4691 (2011).
    [Crossref] [PubMed]
  15. H. Y. Choi, S. Y. Ryu, J. Y. Kim, G. H. Kim, S. J. Park, B. H. Lee, and K. S. Chang, “Microlensed dual-fiber probe for depth-resolved fluorescence measurements,” Opt. Express 19(15), 14172–14181 (2011).
    [Crossref] [PubMed]
  16. T. A. Eftimov and W. J. Bock, “A simple multifunctional fiber optic level/moisture/vapor sensor using large-core quartz polymer fiber pairs,” IEEE Trans. Instrum. Meas. 55(6), 2080–2087 (2006).
    [Crossref]
  17. J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25(7), 075902 (2014).
    [Crossref]
  18. Y. Chen, J. Cui, and J. Tan, “Analysis of the coupling efficiency of a dual-fiber spherical coupler and improvement of the coupling efficiency with a polished spherical coupler,” IEEE Photonics J. 10(4), 7203108 (2018).
    [Crossref]
  19. Y. Chen, J. Cui, and J. Tan, “Extension of light transmission distance of single-mode fiber using a microaxicon-lensed fiber end,” Appl. Opt. 54(21), 6471–6475 (2015).
    [Crossref] [PubMed]
  20. J. Cui, K. Feng, and J. B. Tan, “Further improvement of edge location accuracy of double fiber spherical coupling sensor using orthogonal Jacobi–Fourier moments,” Optik 125(1), 353–359 (2014).
    [Crossref]

2018 (1)

Y. Chen, J. Cui, and J. Tan, “Analysis of the coupling efficiency of a dual-fiber spherical coupler and improvement of the coupling efficiency with a polished spherical coupler,” IEEE Photonics J. 10(4), 7203108 (2018).
[Crossref]

2017 (2)

S. Y. Xie and X. D. Zhang, “Research on three-dimensional output behavior of displacement sensor of two-circle coaxial optical fiber bundle,” J. Vib. Meas. Diagn. 37(1), 174–181 (2017).

Q. Huang, C. Chen, K. Wu, L. Zhang, R. Li, and K. C. Fan, “A three-dimensional resonant triggering probe for micro-CMM,” Appl. Sci. (Basel) 7(4), 403 (2017).
[Crossref]

2016 (2)

R. J. Li, M. Xiang, Y. X. He, K. C. Fan, Z. Y. Cheng, Q. X. Huang, and B. Zhou, “Development of a high-precision touch-trigger probe using a single sensor,” Appl. Sci. (Basel) 6(3), 86 (2016).
[Crossref]

S. Elfurjani, J. Ko, and M. B. G. Jun, “Micro-scale hole profile measurement using rotating wire probe and acoustic emission contact detection,” Measurement 89, 215–222 (2016).
[Crossref]

2015 (1)

2014 (2)

J. Cui, K. Feng, and J. B. Tan, “Further improvement of edge location accuracy of double fiber spherical coupling sensor using orthogonal Jacobi–Fourier moments,” Optik 125(1), 353–359 (2014).
[Crossref]

J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25(7), 075902 (2014).
[Crossref]

2012 (1)

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

2011 (2)

2009 (1)

G. Dai, S. Bütefisch, F. Pohlenz, and H. U. Danzebrink, “A high precision micro/nano CMM using piezoresistive tactile probes,” Meas. Sci. Technol. 20(8), 084001 (2009).
[Crossref]

2008 (1)

U. Neuschaefer-Rube, M. Neugebauer, W. Ehrig, M. Bartscher, and U. Hilpert, “Tactile and optical microsensors - test procedures and standards,” Key Eng. Mater. 381–382, 23–26 (2008).
[Crossref]

2007 (1)

G. Dai, H. Wolff, and H.-U. Danzebrink, “Atomic force microscope cantilever based microcoordinate measuring probe for true three-dimensional measurements of microstructures,” Appl. Phys. Lett. 91(12), 121912 (2007).
[Crossref]

2006 (2)

T. A. Eftimov and W. J. Bock, “A simple multifunctional fiber optic level/moisture/vapor sensor using large-core quartz polymer fiber pairs,” IEEE Trans. Instrum. Meas. 55(6), 2080–2087 (2006).
[Crossref]

G. Dai, H. Wolff, F. Pohlenz, H.-U. Danzebrink, and G. Wilkening, “Atomic force probe for sidewall scanning of nano- and microstructures,” Appl. Phys. Lett. 88(17), 171908 (2006).
[Crossref]

2005 (1)

M. B. Bauza, R. J. Hocken, S. T. Smith, and S. C. Woody, “Development of a virtual probe tip with an application to high aspect ratio microscale features,” Rev. Sci. Instrum. 76(9), 095112 (2005).
[Crossref]

2002 (1)

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
[Crossref]

Andraes, M.

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

Bartscher, M.

U. Neuschaefer-Rube, M. Neugebauer, W. Ehrig, M. Bartscher, and U. Hilpert, “Tactile and optical microsensors - test procedures and standards,” Key Eng. Mater. 381–382, 23–26 (2008).
[Crossref]

Bauza, M. B.

M. B. Bauza, R. J. Hocken, S. T. Smith, and S. C. Woody, “Development of a virtual probe tip with an application to high aspect ratio microscale features,” Rev. Sci. Instrum. 76(9), 095112 (2005).
[Crossref]

Bock, W. J.

T. A. Eftimov and W. J. Bock, “A simple multifunctional fiber optic level/moisture/vapor sensor using large-core quartz polymer fiber pairs,” IEEE Trans. Instrum. Meas. 55(6), 2080–2087 (2006).
[Crossref]

T. Eftimov and W. J. Bock, “An all-fibre optic multifunctional sensor based on large-core quartz-polymer microlens-ended fiber pairs,” in 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings (IEEE, 2005) pp. 1182–1184.
[Crossref]

Bütefisch, S.

G. Dai, S. Bütefisch, F. Pohlenz, and H. U. Danzebrink, “A high precision micro/nano CMM using piezoresistive tactile probes,” Meas. Sci. Technol. 20(8), 084001 (2009).
[Crossref]

Chang, K. S.

Chen, C.

Q. Huang, C. Chen, K. Wu, L. Zhang, R. Li, and K. C. Fan, “A three-dimensional resonant triggering probe for micro-CMM,” Appl. Sci. (Basel) 7(4), 403 (2017).
[Crossref]

Chen, Y.

Y. Chen, J. Cui, and J. Tan, “Analysis of the coupling efficiency of a dual-fiber spherical coupler and improvement of the coupling efficiency with a polished spherical coupler,” IEEE Photonics J. 10(4), 7203108 (2018).
[Crossref]

Y. Chen, J. Cui, and J. Tan, “Extension of light transmission distance of single-mode fiber using a microaxicon-lensed fiber end,” Appl. Opt. 54(21), 6471–6475 (2015).
[Crossref] [PubMed]

J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25(7), 075902 (2014).
[Crossref]

Cheng, Z. Y.

R. J. Li, M. Xiang, Y. X. He, K. C. Fan, Z. Y. Cheng, Q. X. Huang, and B. Zhou, “Development of a high-precision touch-trigger probe using a single sensor,” Appl. Sci. (Basel) 6(3), 86 (2016).
[Crossref]

Choi, H. Y.

Christoph, R.

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

Cui, J.

Y. Chen, J. Cui, and J. Tan, “Analysis of the coupling efficiency of a dual-fiber spherical coupler and improvement of the coupling efficiency with a polished spherical coupler,” IEEE Photonics J. 10(4), 7203108 (2018).
[Crossref]

Y. Chen, J. Cui, and J. Tan, “Extension of light transmission distance of single-mode fiber using a microaxicon-lensed fiber end,” Appl. Opt. 54(21), 6471–6475 (2015).
[Crossref] [PubMed]

J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25(7), 075902 (2014).
[Crossref]

J. Cui, K. Feng, and J. B. Tan, “Further improvement of edge location accuracy of double fiber spherical coupling sensor using orthogonal Jacobi–Fourier moments,” Optik 125(1), 353–359 (2014).
[Crossref]

J. Cui, L. Li, and J. Tan, “Optical fiber probe based on spherical coupling of light energy for inner-dimension measurement of microstructures with high aspect ratios,” Opt. Lett. 36(23), 4689–4691 (2011).
[Crossref] [PubMed]

Dai, G.

G. Dai, S. Bütefisch, F. Pohlenz, and H. U. Danzebrink, “A high precision micro/nano CMM using piezoresistive tactile probes,” Meas. Sci. Technol. 20(8), 084001 (2009).
[Crossref]

G. Dai, H. Wolff, and H.-U. Danzebrink, “Atomic force microscope cantilever based microcoordinate measuring probe for true three-dimensional measurements of microstructures,” Appl. Phys. Lett. 91(12), 121912 (2007).
[Crossref]

G. Dai, H. Wolff, F. Pohlenz, H.-U. Danzebrink, and G. Wilkening, “Atomic force probe for sidewall scanning of nano- and microstructures,” Appl. Phys. Lett. 88(17), 171908 (2006).
[Crossref]

Danzebrink, H. U.

G. Dai, S. Bütefisch, F. Pohlenz, and H. U. Danzebrink, “A high precision micro/nano CMM using piezoresistive tactile probes,” Meas. Sci. Technol. 20(8), 084001 (2009).
[Crossref]

Danzebrink, H.-U.

G. Dai, H. Wolff, and H.-U. Danzebrink, “Atomic force microscope cantilever based microcoordinate measuring probe for true three-dimensional measurements of microstructures,” Appl. Phys. Lett. 91(12), 121912 (2007).
[Crossref]

G. Dai, H. Wolff, F. Pohlenz, H.-U. Danzebrink, and G. Wilkening, “Atomic force probe for sidewall scanning of nano- and microstructures,” Appl. Phys. Lett. 88(17), 171908 (2006).
[Crossref]

Eftimov, T.

T. Eftimov and W. J. Bock, “An all-fibre optic multifunctional sensor based on large-core quartz-polymer microlens-ended fiber pairs,” in 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings (IEEE, 2005) pp. 1182–1184.
[Crossref]

Eftimov, T. A.

T. A. Eftimov and W. J. Bock, “A simple multifunctional fiber optic level/moisture/vapor sensor using large-core quartz polymer fiber pairs,” IEEE Trans. Instrum. Meas. 55(6), 2080–2087 (2006).
[Crossref]

Ehrig, W.

U. Neuschaefer-Rube, M. Neugebauer, W. Ehrig, M. Bartscher, and U. Hilpert, “Tactile and optical microsensors - test procedures and standards,” Key Eng. Mater. 381–382, 23–26 (2008).
[Crossref]

Elfurjani, S.

S. Elfurjani, J. Ko, and M. B. G. Jun, “Micro-scale hole profile measurement using rotating wire probe and acoustic emission contact detection,” Measurement 89, 215–222 (2016).
[Crossref]

Fan, K. C.

Q. Huang, C. Chen, K. Wu, L. Zhang, R. Li, and K. C. Fan, “A three-dimensional resonant triggering probe for micro-CMM,” Appl. Sci. (Basel) 7(4), 403 (2017).
[Crossref]

R. J. Li, M. Xiang, Y. X. He, K. C. Fan, Z. Y. Cheng, Q. X. Huang, and B. Zhou, “Development of a high-precision touch-trigger probe using a single sensor,” Appl. Sci. (Basel) 6(3), 86 (2016).
[Crossref]

Feng, K.

J. Cui, K. Feng, and J. B. Tan, “Further improvement of edge location accuracy of double fiber spherical coupling sensor using orthogonal Jacobi–Fourier moments,” Optik 125(1), 353–359 (2014).
[Crossref]

He, Y. X.

R. J. Li, M. Xiang, Y. X. He, K. C. Fan, Z. Y. Cheng, Q. X. Huang, and B. Zhou, “Development of a high-precision touch-trigger probe using a single sensor,” Appl. Sci. (Basel) 6(3), 86 (2016).
[Crossref]

Hilpert, U.

U. Neuschaefer-Rube, M. Neugebauer, W. Ehrig, M. Bartscher, and U. Hilpert, “Tactile and optical microsensors - test procedures and standards,” Key Eng. Mater. 381–382, 23–26 (2008).
[Crossref]

Hocken, R. J.

M. B. Bauza, R. J. Hocken, S. T. Smith, and S. C. Woody, “Development of a virtual probe tip with an application to high aspect ratio microscale features,” Rev. Sci. Instrum. 76(9), 095112 (2005).
[Crossref]

Hopp, B.

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

Huang, Q.

Q. Huang, C. Chen, K. Wu, L. Zhang, R. Li, and K. C. Fan, “A three-dimensional resonant triggering probe for micro-CMM,” Appl. Sci. (Basel) 7(4), 403 (2017).
[Crossref]

Huang, Q. X.

R. J. Li, M. Xiang, Y. X. He, K. C. Fan, Z. Y. Cheng, Q. X. Huang, and B. Zhou, “Development of a high-precision touch-trigger probe using a single sensor,” Appl. Sci. (Basel) 6(3), 86 (2016).
[Crossref]

Jun, M. B. G.

S. Elfurjani, J. Ko, and M. B. G. Jun, “Micro-scale hole profile measurement using rotating wire probe and acoustic emission contact detection,” Measurement 89, 215–222 (2016).
[Crossref]

Kim, G. H.

Kim, J. Y.

Ko, J.

S. Elfurjani, J. Ko, and M. B. G. Jun, “Micro-scale hole profile measurement using rotating wire probe and acoustic emission contact detection,” Measurement 89, 215–222 (2016).
[Crossref]

Kunzmann, H.

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
[Crossref]

Lee, B. H.

Li, L.

Li, R.

Q. Huang, C. Chen, K. Wu, L. Zhang, R. Li, and K. C. Fan, “A three-dimensional resonant triggering probe for micro-CMM,” Appl. Sci. (Basel) 7(4), 403 (2017).
[Crossref]

Li, R. J.

R. J. Li, M. Xiang, Y. X. He, K. C. Fan, Z. Y. Cheng, Q. X. Huang, and B. Zhou, “Development of a high-precision touch-trigger probe using a single sensor,” Appl. Sci. (Basel) 6(3), 86 (2016).
[Crossref]

Neugebauer, M.

U. Neuschaefer-Rube, M. Neugebauer, W. Ehrig, M. Bartscher, and U. Hilpert, “Tactile and optical microsensors - test procedures and standards,” Key Eng. Mater. 381–382, 23–26 (2008).
[Crossref]

Neuschaefer-Rube, U.

U. Neuschaefer-Rube, M. Neugebauer, W. Ehrig, M. Bartscher, and U. Hilpert, “Tactile and optical microsensors - test procedures and standards,” Key Eng. Mater. 381–382, 23–26 (2008).
[Crossref]

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
[Crossref]

Park, S. J.

Petz, M.

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

Pfeifer, T.

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
[Crossref]

Pohlenz, F.

G. Dai, S. Bütefisch, F. Pohlenz, and H. U. Danzebrink, “A high precision micro/nano CMM using piezoresistive tactile probes,” Meas. Sci. Technol. 20(8), 084001 (2009).
[Crossref]

G. Dai, H. Wolff, F. Pohlenz, H.-U. Danzebrink, and G. Wilkening, “Atomic force probe for sidewall scanning of nano- and microstructures,” Appl. Phys. Lett. 88(17), 171908 (2006).
[Crossref]

Ryu, S. Y.

Schwenke, H.

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
[Crossref]

Smith, S. T.

M. B. Bauza, R. J. Hocken, S. T. Smith, and S. C. Woody, “Development of a virtual probe tip with an application to high aspect ratio microscale features,” Rev. Sci. Instrum. 76(9), 095112 (2005).
[Crossref]

Tan, J.

Y. Chen, J. Cui, and J. Tan, “Analysis of the coupling efficiency of a dual-fiber spherical coupler and improvement of the coupling efficiency with a polished spherical coupler,” IEEE Photonics J. 10(4), 7203108 (2018).
[Crossref]

Y. Chen, J. Cui, and J. Tan, “Extension of light transmission distance of single-mode fiber using a microaxicon-lensed fiber end,” Appl. Opt. 54(21), 6471–6475 (2015).
[Crossref] [PubMed]

J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25(7), 075902 (2014).
[Crossref]

J. Cui, L. Li, and J. Tan, “Optical fiber probe based on spherical coupling of light energy for inner-dimension measurement of microstructures with high aspect ratios,” Opt. Lett. 36(23), 4689–4691 (2011).
[Crossref] [PubMed]

Tan, J. B.

J. Cui, K. Feng, and J. B. Tan, “Further improvement of edge location accuracy of double fiber spherical coupling sensor using orthogonal Jacobi–Fourier moments,” Optik 125(1), 353–359 (2014).
[Crossref]

Tutsch, R.

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

Wilkening, G.

G. Dai, H. Wolff, F. Pohlenz, H.-U. Danzebrink, and G. Wilkening, “Atomic force probe for sidewall scanning of nano- and microstructures,” Appl. Phys. Lett. 88(17), 171908 (2006).
[Crossref]

Wolff, H.

G. Dai, H. Wolff, and H.-U. Danzebrink, “Atomic force microscope cantilever based microcoordinate measuring probe for true three-dimensional measurements of microstructures,” Appl. Phys. Lett. 91(12), 121912 (2007).
[Crossref]

G. Dai, H. Wolff, F. Pohlenz, H.-U. Danzebrink, and G. Wilkening, “Atomic force probe for sidewall scanning of nano- and microstructures,” Appl. Phys. Lett. 88(17), 171908 (2006).
[Crossref]

Woody, S. C.

M. B. Bauza, R. J. Hocken, S. T. Smith, and S. C. Woody, “Development of a virtual probe tip with an application to high aspect ratio microscale features,” Rev. Sci. Instrum. 76(9), 095112 (2005).
[Crossref]

Wu, K.

Q. Huang, C. Chen, K. Wu, L. Zhang, R. Li, and K. C. Fan, “A three-dimensional resonant triggering probe for micro-CMM,” Appl. Sci. (Basel) 7(4), 403 (2017).
[Crossref]

Xiang, M.

R. J. Li, M. Xiang, Y. X. He, K. C. Fan, Z. Y. Cheng, Q. X. Huang, and B. Zhou, “Development of a high-precision touch-trigger probe using a single sensor,” Appl. Sci. (Basel) 6(3), 86 (2016).
[Crossref]

Xie, S. Y.

S. Y. Xie and X. D. Zhang, “Research on three-dimensional output behavior of displacement sensor of two-circle coaxial optical fiber bundle,” J. Vib. Meas. Diagn. 37(1), 174–181 (2017).

Zhang, L.

Q. Huang, C. Chen, K. Wu, L. Zhang, R. Li, and K. C. Fan, “A three-dimensional resonant triggering probe for micro-CMM,” Appl. Sci. (Basel) 7(4), 403 (2017).
[Crossref]

Zhang, X. D.

S. Y. Xie and X. D. Zhang, “Research on three-dimensional output behavior of displacement sensor of two-circle coaxial optical fiber bundle,” J. Vib. Meas. Diagn. 37(1), 174–181 (2017).

Zhou, B.

R. J. Li, M. Xiang, Y. X. He, K. C. Fan, Z. Y. Cheng, Q. X. Huang, and B. Zhou, “Development of a high-precision touch-trigger probe using a single sensor,” Appl. Sci. (Basel) 6(3), 86 (2016).
[Crossref]

Ann. CIRP (1)

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. Dai, H. Wolff, F. Pohlenz, H.-U. Danzebrink, and G. Wilkening, “Atomic force probe for sidewall scanning of nano- and microstructures,” Appl. Phys. Lett. 88(17), 171908 (2006).
[Crossref]

G. Dai, H. Wolff, and H.-U. Danzebrink, “Atomic force microscope cantilever based microcoordinate measuring probe for true three-dimensional measurements of microstructures,” Appl. Phys. Lett. 91(12), 121912 (2007).
[Crossref]

Appl. Sci. (Basel) (2)

Q. Huang, C. Chen, K. Wu, L. Zhang, R. Li, and K. C. Fan, “A three-dimensional resonant triggering probe for micro-CMM,” Appl. Sci. (Basel) 7(4), 403 (2017).
[Crossref]

R. J. Li, M. Xiang, Y. X. He, K. C. Fan, Z. Y. Cheng, Q. X. Huang, and B. Zhou, “Development of a high-precision touch-trigger probe using a single sensor,” Appl. Sci. (Basel) 6(3), 86 (2016).
[Crossref]

IEEE Photonics J. (1)

Y. Chen, J. Cui, and J. Tan, “Analysis of the coupling efficiency of a dual-fiber spherical coupler and improvement of the coupling efficiency with a polished spherical coupler,” IEEE Photonics J. 10(4), 7203108 (2018).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

T. A. Eftimov and W. J. Bock, “A simple multifunctional fiber optic level/moisture/vapor sensor using large-core quartz polymer fiber pairs,” IEEE Trans. Instrum. Meas. 55(6), 2080–2087 (2006).
[Crossref]

J. Vib. Meas. Diagn. (1)

S. Y. Xie and X. D. Zhang, “Research on three-dimensional output behavior of displacement sensor of two-circle coaxial optical fiber bundle,” J. Vib. Meas. Diagn. 37(1), 174–181 (2017).

Key Eng. Mater. (1)

U. Neuschaefer-Rube, M. Neugebauer, W. Ehrig, M. Bartscher, and U. Hilpert, “Tactile and optical microsensors - test procedures and standards,” Key Eng. Mater. 381–382, 23–26 (2008).
[Crossref]

Meas. Sci. Technol. (2)

G. Dai, S. Bütefisch, F. Pohlenz, and H. U. Danzebrink, “A high precision micro/nano CMM using piezoresistive tactile probes,” Meas. Sci. Technol. 20(8), 084001 (2009).
[Crossref]

J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25(7), 075902 (2014).
[Crossref]

Measurement (2)

S. Elfurjani, J. Ko, and M. B. G. Jun, “Micro-scale hole profile measurement using rotating wire probe and acoustic emission contact detection,” Measurement 89, 215–222 (2016).
[Crossref]

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optik (1)

J. Cui, K. Feng, and J. B. Tan, “Further improvement of edge location accuracy of double fiber spherical coupling sensor using orthogonal Jacobi–Fourier moments,” Optik 125(1), 353–359 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

M. B. Bauza, R. J. Hocken, S. T. Smith, and S. C. Woody, “Development of a virtual probe tip with an application to high aspect ratio microscale features,” Rev. Sci. Instrum. 76(9), 095112 (2005).
[Crossref]

Other (2)

B. Guzowski, M. Cywinski, and M. Lakomski, “Proximity sensors based on ball-lensed optical fibers,” IOP Conf. Ser. Mater. Sci. Eng. 104, 012031 (2016).

T. Eftimov and W. J. Bock, “An all-fibre optic multifunctional sensor based on large-core quartz-polymer microlens-ended fiber pairs,” in 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings (IEEE, 2005) pp. 1182–1184.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Models of (a) the proposed APSCP and (b) a common SCP.
Fig. 2
Fig. 2 Principle of the APSCP: (a) the non-diffraction beam generated by the micro-axicon fabricated at the output fibre end of the APSCP; (b) the total internal reflection caused by the polished spherical coupler.
Fig. 3
Fig. 3 Light distribution on the section plane
Fig. 4
Fig. 4 Comparison of the APSCP and SCP: profiles of the output spots of the (a) SCP and (b) APSCP; (c) SNRSEs of the SCP and APSCP at different propagation distances.
Fig. 5
Fig. 5 Fibre polishing equipment designed in this study: (a) polishing procedure and (b) fibre polishing system.
Fig. 6
Fig. 6 (a) Relations between v, R, and Vc; (b) microscopy images of the polished spherical coupler and micro-axicon at the output fibre end.
Fig. 7
Fig. 7 SNRSE experiment for the APSCP and SCP: (a) arrangement of sampling points; (b) relation between the grey value of the spot edge and the propagation distance.
Fig. 8
Fig. 8 Experimental setup for the output spot stability.
Fig. 9
Fig. 9 Comparison between STSs of the APSCP and SCP: distributions of δi for the (a) APSCP and (b) SCP; (c) standard deviations of the SCP and APSCP. The rectangles in (a) and (b) indicate the standard deviations of the x and y coordinates.
Fig. 10
Fig. 10 (a) Schematic and (b) image of the experimental setup for the resolution of the SCP with the micro-axicon lensed output fibre.
Fig. 11
Fig. 11 Experimental results for the APSCP and SCP at different resolutions: (a) APSCP with 10 nm steps; (b) SCP with 10 nm steps; (c) APSCP with 30 nm steps; and (d) SCP with 30 nm steps.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

n s sin θ s = n 0 sin θ 0
R= 1 2 [ sin 2 ( θ s θ 0 ) sin 2 ( θ s + θ 0 ) + tan 2 ( θ s θ 0 ) tan 2 ( θ s + θ 0 ) ]
E 1 =exp[ ( h 1 w o ) 2 ]
E 2 =exp[ ( h 2 w 0 ) 2 ]
h 1 = ztanβ+xrtanαtanβ 1tanαtanβ
h 2 = ztanβxrtanαtanβ 1tanαtanβ
β=arcsin(nsinα)α
γ=π2α
s=n( d 1 d 2 )+( l 1 l 2 )
l 1 = h 1 x sinβ
l 2 = h 2 +x sinβ
d 1 =(r h 1 )tanα
d 2 =(r h 2 )tanα
I(z,x)= E 1 2 + E 2 2 +2 E 1 E 2 cos( 2πs λ )
V p = 2 3 π R 3 tanα
T= 2π R 3 tanα 3 V C
v= Rtanα T
ρ= ΔSNRSE Δz
u ^ = 1 n i=1 n C i
s 2 = 1 n1 i=1 n δ i 2
δ i = C i u ^

Metrics