Abstract

An approach to microwave photonics frequency-to-time mapping (MWP FTM) is proposed based on a Fourier domain mode locked optoelectronic oscillator (FDML OEO). In this approach, a relationship between the frequency of the input microwave signal and the time difference of the output pulses is established with the help of the fast frequency scanning capability of the FDML OEO. The ability to measure the microwave spectral information in the time domain using the proposed system has the potential to enable new metrology and signal processing schemes with a superior performance in terms of real-time bandwidth and operation speed compare with traditional approaches. As an application example, single and multi-tone microwave frequency measurement are experimentally demonstrated based on the proposed MWP FTM system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiple-frequency measurement based on a Fourier domain mode-locked optoelectronic oscillator operating around oscillation threshold

Tengfei Hao, Jian Tang, Nuannuan Shi, Wei Li, Ninghua Zhu, and Ming Li
Opt. Lett. 44(12) 3062-3065 (2019)

Fourier domain mode locked optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering

Tengfei Hao, Jian Tang, Wei Li, Ninghua Zhu, and Ming Li
OSA Continuum 1(2) 408-415 (2018)

Dual-chirp Fourier domain mode-locked optoelectronic oscillator

Tengfei Hao, Jian Tang, Nuannuan Shi, Wei Li, Ninghua Zhu, and Ming Li
Opt. Lett. 44(8) 1912-1915 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  2. X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
    [Crossref]
  3. S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
    [Crossref]
  4. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  5. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  6. L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
    [Crossref]
  7. X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photonics Technol. Lett. 20(23), 1989–1991 (2008).
    [Crossref]
  8. X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
    [Crossref]
  9. M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photonics Technol. Lett. 21(4), 206–208 (2009).
    [Crossref]
  10. X. Zou, S. Pan, and J. Yao, “Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation,” J. Lightwave Technol. 27(23), 5314–5320 (2009).
    [Crossref]
  11. J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
    [Crossref]
  12. N. Shi, Y. Gu, J. Hu, Z. Kang, X. Han, and M. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun. 328, 87–90 (2014).
    [Crossref]
  13. Y. Li, L. Pei, J. Li, Y. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt. 63(7), 613–620 (2016).
    [Crossref]
  14. H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Tech. 62(10), 2462–2470 (2014).
    [Crossref]
  15. H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
    [Crossref]
  16. Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(1), 52–54 (2011).
    [Crossref]
  17. J. S. Fandiño and P. Muñoz, “Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter,” Opt. Lett. 38(21), 4316–4319 (2013).
    [Crossref] [PubMed]
  18. D. Feng, H. Xie, L. Qian, Q. Bai, and J. Sun, “Photonic approach for microwave frequency measurement with adjustable measurement range and resolution using birefringence effect in highly non-linear fiber,” Opt. Express 23(13), 17613–17621 (2015).
    [Crossref] [PubMed]
  19. L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
    [Crossref]
  20. M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).
    [Crossref]
  21. L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).
    [Crossref]
  22. T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic multiple frequency measurement using a frequency shifting recirculating delay line structure,” J. Lightwave Technol. 32(20), 3831–3838 (2014).
    [Crossref]
  23. T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett. 39(8), 2419–2422 (2014).
    [Crossref] [PubMed]
  24. T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
    [Crossref] [PubMed]
  25. T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Tunable Fourier domain mode locked optoelectronic oscillator using stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 30(21), 1842–1845 (2018).
  26. W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
    [Crossref]

2018 (2)

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Tunable Fourier domain mode locked optoelectronic oscillator using stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 30(21), 1842–1845 (2018).

2017 (1)

2016 (2)

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Y. Li, L. Pei, J. Li, Y. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt. 63(7), 613–620 (2016).
[Crossref]

2015 (3)

2014 (5)

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic multiple frequency measurement using a frequency shifting recirculating delay line structure,” J. Lightwave Technol. 32(20), 3831–3838 (2014).
[Crossref]

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett. 39(8), 2419–2422 (2014).
[Crossref] [PubMed]

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Tech. 62(10), 2462–2470 (2014).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

N. Shi, Y. Gu, J. Hu, Z. Kang, X. Han, and M. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun. 328, 87–90 (2014).
[Crossref]

2013 (1)

2012 (1)

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

2011 (1)

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

2009 (6)

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photonics Technol. Lett. 21(4), 206–208 (2009).
[Crossref]

X. Zou, S. Pan, and J. Yao, “Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation,” J. Lightwave Technol. 27(23), 5314–5320 (2009).
[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).
[Crossref]

2008 (2)

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photonics Technol. Lett. 20(23), 1989–1991 (2008).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

Aalto, T.

Aditya, S.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Ashourian, M.

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Tech. 62(10), 2462–2470 (2014).
[Crossref]

Attygalle, M.

M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photonics Technol. Lett. 21(4), 206–208 (2009).
[Crossref]

Bai, Q.

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Casas-Bedoya, A.

Cen, Q.

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

Chan, E. H. W.

Chi, H.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

Dai, Y.

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

Dong, J.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Eggleton, B. J.

Emami, H.

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Tech. 62(10), 2462–2470 (2014).
[Crossref]

Fandiño, J. S.

Feng, D.

Fu, S.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Gao, D.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Gu, Y.

N. Shi, Y. Gu, J. Hu, Z. Kang, X. Han, and M. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun. 328, 87–90 (2014).
[Crossref]

Han, X.

N. Shi, Y. Gu, J. Hu, Z. Kang, X. Han, and M. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun. 328, 87–90 (2014).
[Crossref]

Hao, T.

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Tunable Fourier domain mode locked optoelectronic oscillator using stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 30(21), 1842–1845 (2018).

Harjanne, M.

He, M.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Hu, J.

N. Shi, Y. Gu, J. Hu, Z. Kang, X. Han, and M. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun. 328, 87–90 (2014).
[Crossref]

Hunter, D. B.

M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photonics Technol. Lett. 21(4), 206–208 (2009).
[Crossref]

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

Jiang, F.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Jin, X.

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

Kang, Z.

N. Shi, Y. Gu, J. Hu, Z. Kang, X. Han, and M. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun. 328, 87–90 (2014).
[Crossref]

Kapulainen, M.

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Li, J.

Y. Li, L. Pei, J. Li, Y. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt. 63(7), 613–620 (2016).
[Crossref]

Li, M.

T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Tunable Fourier domain mode locked optoelectronic oscillator using stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 30(21), 1842–1845 (2018).

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

Li, W.

T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Tunable Fourier domain mode locked optoelectronic oscillator using stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 30(21), 1842–1845 (2018).

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

Li, Y.

Y. Li, L. Pei, J. Li, Y. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt. 63(7), 613–620 (2016).
[Crossref]

Li, Z.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

Lin, C.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Liu, L.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Lu, B.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Marpaung, D.

Min, S.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Minasian, R. A.

Morrison, B.

Muñoz, P.

Nguyen, L. V.

L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).
[Crossref]

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

Nguyen, T. A.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pagani, M.

Pan, S.

Pan, W.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Pei, L.

Y. Li, L. Pei, J. Li, Y. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt. 63(7), 613–620 (2016).
[Crossref]

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Qian, L.

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Shi, N.

N. Shi, Y. Gu, J. Hu, Z. Kang, X. Han, and M. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun. 328, 87–90 (2014).
[Crossref]

Shum, P. P.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Stöhr, A.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Sun, J.

Tang, J.

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Tunable Fourier domain mode locked optoelectronic oscillator using stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 30(21), 1842–1845 (2018).

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Wang, C.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

Wang, Y.

Y. Li, L. Pei, J. Li, Y. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt. 63(7), 613–620 (2016).
[Crossref]

Xie, H.

Yan, L.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Yan, S.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Yao, J.

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
[Crossref]

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

X. Zou, S. Pan, and J. Yao, “Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation,” J. Lightwave Technol. 27(23), 5314–5320 (2009).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photonics Technol. Lett. 20(23), 1989–1991 (2008).
[Crossref]

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

Yuan, J.

Y. Li, L. Pei, J. Li, Y. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt. 63(7), 613–620 (2016).
[Crossref]

Zhang, X.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

Zhang, Y.

Zhao, M.

N. Shi, Y. Gu, J. Hu, Z. Kang, X. Han, and M. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun. 328, 87–90 (2014).
[Crossref]

Zheng, S.

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

Zhou, J.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Zhu, N.

T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Tunable Fourier domain mode locked optoelectronic oscillator using stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 30(21), 1842–1845 (2018).

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

Zou, X.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

X. Zou, S. Pan, and J. Yao, “Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation,” J. Lightwave Technol. 27(23), 5314–5320 (2009).
[Crossref]

X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photonics Technol. Lett. 20(23), 1989–1991 (2008).
[Crossref]

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (2)

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (7)

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photonics Technol. Lett. 21(4), 206–208 (2009).
[Crossref]

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photonics Technol. Lett. 20(23), 1989–1991 (2008).
[Crossref]

L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).
[Crossref]

T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Tunable Fourier domain mode locked optoelectronic oscillator using stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 30(21), 1842–1845 (2018).

IEEE Trans. Microw. Theory Tech. (2)

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Tech. 62(10), 2462–2470 (2014).
[Crossref]

J. Lightwave Technol. (4)

J. Mod. Opt. (1)

Y. Li, L. Pei, J. Li, Y. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt. 63(7), 613–620 (2016).
[Crossref]

Laser Photonics Rev. (1)

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Nat. Commun. (1)

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Commun. (2)

N. Shi, Y. Gu, J. Hu, Z. Kang, X. Han, and M. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun. 328, 87–90 (2014).
[Crossref]

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optica (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic and operation principle of the proposed microwave photonics frequency-to-time mapping (MWP FTM) system. (a) Schematic diagram. The input microwave signals are injected into a bidirectional frequency scanning Fourier domain mode locked optoelectronic oscillator (FDML OEO), an electrical filter with a fixed passband is used to select a portion of the beat-note or sum-note between the input signal and the frequency scanning signal. Two pairs of pluses can be observed at the output for two simultaneous signals. (b) Operation principle when a portion of the beat-note is selected. Only the beat-notes between the input signals f i and the frequency scanning components f filter + f i are matched with the passband of the electrical filter.
Fig. 2
Fig. 2 Experimental setup. The key is a frequency scanning FDML OEO. The input microwave signals are injected into the FDML OEO cavity through a power combiner, an external electrical filter is used to select a portion of the beat or sum frequency at the ouput of the PD.
Fig. 3
Fig. 3 (a) Measured bidirectional frequency scanning property of the FDML OEO with a scanning range f scan from about 5.5 GHz to 9.5 GHz. (b) Corresponding MWP FTM relationship between the frequency of the input microwave signal f i and the time difference ∆T.
Fig. 4
Fig. 4 Measured pulse envelopes on the oscilloscope after the electrical filter for a single frequency microwave signal with different frequencies is injected into the FDML OEO cavity.
Fig. 5
Fig. 5 Frequency measurement results and errors for different frequency microwave signals. The measurement range is 15 GHz and the measurement errors are no more than 60 MHz.
Fig. 6
Fig. 6 Measured pulse envelopes on the oscilloscope after the electrical filter when two microwave signals are applied to the PM.
Fig. 7
Fig. 7 Simulated output pulse envelopes of the proposed system. The frequency difference of the two input microwave signals is 60 MHz. (a)-(d) are the simulated results for different 3-dB bandwidth of the electrical filter and different chirp-rate of the frequency scanning signal. The power in the saddle between the two output signals is only related to the 3-dB bandwidth of the electrical filter.

Tables (1)

Tables Icon

Table 1 Reconfiguration of the MWP FTM-based microwave frequency measurement system.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T round trip = n × T filter drive
f beat = f scan f i
f beat | t = t 1 = f beat | t = t 2 = f filter
Δ T = t 2 t 1
f i = f f filter Δ T
H out ( f ) = H beat ( f ) H filter ( f )
H beat ( f ) 2 π T B exp [ j ( 2 π f ) 2 T B ]
H out ( f ) 2 π T B exp [ j ( 2 π f ) 2 T B ] j Γ / 2 f f filter j Γ / 2

Metrics