Abstract

A photonics-based wideband distributed coherent aperture radar (DCAR) system is proposed and experimentally demonstrated. In the proposed system, the central controlling system and several spatially dispersed remote transceivers are connected by the optical fiber-based time synchronization network. In the central controlling system, the optical-carried orthogonal/coherent linear frequency modulated waveforms (LFMWs) are generated by a reconfigurable multi-channel optical arbitrary waveform generator (RMOAWG), and the signal processing for the echo waves is also implemented there. While in the remote transceivers, only the optical/RF and RF/optical conversions are carried out. Benefitting from the use of photonics-based methods, bandwidths of the generated radar signals can be large, improving the detection resolution of the system. Due to the centralized signal generation and processing, the remote transceivers can be simplified, reducing the system complexity. Moreover, the fiber-based distribution ensures low loss, good transportability, and great flexibility. Experimentally, a two-unit DCAR system operating in X-band with a bandwidth of 3 GHz is presented. When full coherence is achieved, signal-to-noise ratio (SNR) gains of 8.3 dB and 8.33 dB are obtained over a single radar for radar 1 and radar 2, respectively. Results are in good agreement with theoretical prediction. Theoretically, with such SNR gain, the range detection precision can be improved to about 2.6 times that of a single radar.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-distributed ultra-wideband radar network based on wavelength reusing transceivers

Jianbin Fu, Fangzheng Zhang, Dan Zhu, and Shilong Pan
Opt. Express 26(14) 18457-18469 (2018)

Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information

Anle Wang, Jianghai Wo, Xiong Luo, Yalan Wang, Wenshan Cong, Pengfei Du, Junkai Zhang, Biao Zhao, Jin Zhang, Yong Zhu, Jiangqiao Lan, and Lan Yu
Opt. Express 26(16) 20708-20717 (2018)

High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter

Shaowen Peng, Shangyuan Li, Xiaoxiao Xue, Xuedi Xiao, Dexin Wu, Xiaoping Zheng, and Bingkun Zhou
Opt. Express 26(2) 1978-1987 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Skolnik, Radar Handbook (McGraw-Hill, 2008).
  2. A. S. Fletcher and F. C. Robey, “Performance bounds for adaptive coherence of sparse array radar,” in Proceedings of Adaptive Sensor Array Processing Workshop (IEEE, 2003), pp. 1–6.
  3. S. Coutts, K. Cuomo, J. McHarg, F. Robey, and D. Weikle, “Distributed Coherent Aperture Measurements for Next Generation BMD Radar,” in Proceedings of Fourth IEEE Workshop on Sensor Array and Multichannel Processing, (IEEE, 2006), pp. 390–393.
    [Crossref]
  4. K. M. Cuomo, S. D. Coutts, J. C. McHarg, N. B. Pulsone, and F. C. Robey, “Wideband aperture coherence processing for next generation radar (NexGen),” Tech. Rep. ESC-TR-2004–087, MIT Lincoln Laboratory. (2004).
    [Crossref]
  5. T. Long, H. Zhang, T. Zeng, Q. Liu, X. Chen, and L. Zheng, “High accuracy unambiguous angle estimation using multi-scale combination in distributed coherent aperture radar,” IET Radar Sonar & Navigation 11(7), 1090–1098 (2017).
    [Crossref]
  6. H. Gao, Z. Cao, S. Wen, and Y. Lu, “Study on distributed aperture coherence-synthesizing radar with several experiment results,” in Proceedings of IET International Radar Conf. (IET, 2011), pp. 84–86.
  7. H. Gao, Z. Cao, Y. Lu, and P. Wang, “Development of Distributed Aperture Coherence - synthetic Radar Technology,” in Proceedings of IET International Radar Conf. (IET, 2013), pp. 1–6.
  8. P. Yin, T. Zeng, and Q. Liu, “Wideband distributed coherent aperture radar based on stepped frequency signal: theory and experimental results,” IET Radar Sonar & Navigation 10(4), 672–688 (2016).
    [Crossref]
  9. M. I. Skolnik, Introduction to Radar Systems (McGraw-Hall, 2001).
  10. J. Vankka and K. A. I. Halonen, “Direct Digital Synthesizers: Theory, Design and Applications,” Helsinki University of Technology. (2001).
  11. D. R. Bolton, D. A. Robertson, and G. M. Smith, “Phase noise of sources for multiplication to mm-wave frequencies,” in Proceedings of IEEE International Conference on Infrared and Millimeter Waves and, International Conference on Terahertz Electronics. (IEEE, 2005), pp. 74–75.
    [Crossref]
  12. D. A. Robertson, S. L. Cassidy, and D. R. Bolton, “Nonlinearity and phase noise effects in 340 GHz 3D imaging radar,” in SPIE Defense, Security, and Sensing. 8715, 1–10 (2013).
  13. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  14. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  15. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  16. X. Xiao, S. Li, B. Chen, and X. Yang, D, Wu, X, Xue, X. Zheng, and B. Zhou, “A Microwave Photonics-based Inverse Synthetic Aperture Radar System,” in Conference on Lasers and Electro-Optics (OSA, 2017), JW2A.144.
    [Crossref]
  17. R. Li, W. Li, M. Ding, Z. Wen, Y. Li, L. Zhou, S. Yu, T. Xing, B. Gao, Y. Luan, Y. Zhu, P. Guo, Y. Tian, and X. Liang, “Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing,” Opt. Express 25(13), 14334–14340 (2017).
    [Crossref] [PubMed]
  18. F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
    [Crossref] [PubMed]
  19. S. Peng, S. Li, X. Xue, X. Xiao, D. Wu, X. Zheng, and B. Zhou, “High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter,” Opt. Express 26(2), 1978–1987 (2018).
    [Crossref] [PubMed]
  20. A. Wang, J. Wo, X. Luo, Y. Wang, W. Cong, P. Du, J. Zhang, B. Zhao, J. Zhang, Y. Zhu, J. Lan, and L. Yu, “Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information,” Opt. Express 26(16), 20708–20717 (2018).
    [Crossref] [PubMed]
  21. F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express 26(13), 17529–17540 (2018).
    [Crossref] [PubMed]
  22. J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
    [Crossref] [PubMed]
  23. T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett. 40(8), 1631–1634 (2015).
    [Crossref] [PubMed]
  24. S. Futatsumori, K. Morioka, A. Kohmura, K. Okada, and N. Yonemoto, “Design and Field Feasibility Evaluation of Distributed-Type 96 GHz FMCW Millimeter-Wave Radar Based on Radio-Over-Fiber and Optical Frequency Multiplier,” J. Lightwave Technol. 34(20), 4835–4843 (2016).
    [Crossref]
  25. J. Fu, F. Zhang, D. Zhu, and S. Pan, “Fiber-distributed ultra-wideband radar network based on wavelength reusing transceivers,” Opt. Express 26(14), 18457–18469 (2018).
    [Crossref] [PubMed]
  26. J. Liao, B. Chen, S. Li, X. Yang, X. Zheng, H. Zhang, and B. Zhou, “Novel Photonic Radio-frequency Arbitrary Waveform Generation based on Photonic Digital-to-Analog Conversion with Pulse Carving,” in Conference on Lasers and Electro-Optics, (OSA, 2015), STh4F. 4.
    [Crossref]
  27. Z. Zong, J. Hu, and L. Zhu, “Orthogonal Phase Code Division Multi Linear Frequency Modulation Waveforms Design and Performance Analysis for Formation-Flying Satellite SAR System,” J. Comput. Theor. Nanosci. 5(2), 681–685 (2012).
  28. M. Kowatsch, F. J. Seifert, and J. Lafferl, “Comments on transmission-system using preudo-noise modulation of linear chirps,” IEEE Trans. Aerosp. Electron. Syst. 17(2), 300–303 (1981).
  29. M. Kowatsch and J. Lafferl, “A Spread-Spectrum Concept Combining Chirp Modulation and Pseudonoise Coding,” IEEE Trans. Commun. 31(10), 1133–1142 (1983).
    [Crossref]
  30. M. Nowak, M. Wicks, Z. Zhang, and Z. Wu, “Co-Designed Radar-Communication Using Linear Frequency Modulation Waveform,” IEEE Aerosp. Electron. Syst. Mag. 31(10), 28–35 (2016).
    [Crossref]
  31. Z. Zong, J. Hu, and L. Zhu, “OPCDM-LFM waveforms design for Formation-Flying Satellite radar system,” in Proceedings of IEEE International Radar Conf. (IEEE, 2011), pp. 592–595.
  32. D. Wu, X. Xue, S. Li, X. Zheng, X. Xiao, Y. Zha, and B. Zhou, “Photonic generation of multi-frequency phase-coded microwave signal based on a dual-output Mach-Zehnder modulator and balanced detection,” Opt. Express 25(13), 14516–14523 (2017).
    [Crossref] [PubMed]
  33. M. Calhoun, S. Huang, and R. L. Tjoelker, “Stable Photonic Links for Frequency and Time Transfer in the Deep-Space Network and Antenna Arrays,” Proc. IEEE 95(10), 1931–1946 (2007).
    [Crossref]
  34. A. Zhang, Y. Dai, F. Yin, T. Ren, K. Xu, J. Li, and G. Tang, “Phase stabilized downlink transmission for wideband radio frequency signal via optical fiber link,” Opt. Express 22(18), 21560–21566 (2014).
    [Crossref] [PubMed]
  35. A. Ben-Amram, Y. Stern, Y. London, Y. Antman, and A. Zadok, “Stable closed-loop fiber-optic delay of arbitrary radio-frequency waveforms,” Opt. Express 23(22), 28244–28257 (2015).
    [Crossref] [PubMed]
  36. N. A. Riza, M. A. Arain, and S. A. Khan, “Hybrid Analog–Digital Variable Fiber-Optic Delay Line,” J. Lightwave Technol. 22(2), 619–624 (2004).
    [Crossref]

2018 (4)

2017 (4)

2016 (3)

S. Futatsumori, K. Morioka, A. Kohmura, K. Okada, and N. Yonemoto, “Design and Field Feasibility Evaluation of Distributed-Type 96 GHz FMCW Millimeter-Wave Radar Based on Radio-Over-Fiber and Optical Frequency Multiplier,” J. Lightwave Technol. 34(20), 4835–4843 (2016).
[Crossref]

P. Yin, T. Zeng, and Q. Liu, “Wideband distributed coherent aperture radar based on stepped frequency signal: theory and experimental results,” IET Radar Sonar & Navigation 10(4), 672–688 (2016).
[Crossref]

M. Nowak, M. Wicks, Z. Zhang, and Z. Wu, “Co-Designed Radar-Communication Using Linear Frequency Modulation Waveform,” IEEE Aerosp. Electron. Syst. Mag. 31(10), 28–35 (2016).
[Crossref]

2015 (2)

2014 (3)

2012 (1)

Z. Zong, J. Hu, and L. Zhu, “Orthogonal Phase Code Division Multi Linear Frequency Modulation Waveforms Design and Performance Analysis for Formation-Flying Satellite SAR System,” J. Comput. Theor. Nanosci. 5(2), 681–685 (2012).

2009 (1)

2007 (2)

M. Calhoun, S. Huang, and R. L. Tjoelker, “Stable Photonic Links for Frequency and Time Transfer in the Deep-Space Network and Antenna Arrays,” Proc. IEEE 95(10), 1931–1946 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2004 (1)

1983 (1)

M. Kowatsch and J. Lafferl, “A Spread-Spectrum Concept Combining Chirp Modulation and Pseudonoise Coding,” IEEE Trans. Commun. 31(10), 1133–1142 (1983).
[Crossref]

1981 (1)

M. Kowatsch, F. J. Seifert, and J. Lafferl, “Comments on transmission-system using preudo-noise modulation of linear chirps,” IEEE Trans. Aerosp. Electron. Syst. 17(2), 300–303 (1981).

Antman, Y.

Arain, M. A.

Ben, D.

Ben-Amram, A.

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bolton, D. R.

D. R. Bolton, D. A. Robertson, and G. M. Smith, “Phase noise of sources for multiplication to mm-wave frequencies,” in Proceedings of IEEE International Conference on Infrared and Millimeter Waves and, International Conference on Terahertz Electronics. (IEEE, 2005), pp. 74–75.
[Crossref]

Calhoun, M.

M. Calhoun, S. Huang, and R. L. Tjoelker, “Stable Photonic Links for Frequency and Time Transfer in the Deep-Space Network and Antenna Arrays,” Proc. IEEE 95(10), 1931–1946 (2007).
[Crossref]

Cao, Z.

H. Gao, Z. Cao, S. Wen, and Y. Lu, “Study on distributed aperture coherence-synthesizing radar with several experiment results,” in Proceedings of IET International Radar Conf. (IET, 2011), pp. 84–86.

H. Gao, Z. Cao, Y. Lu, and P. Wang, “Development of Distributed Aperture Coherence - synthetic Radar Technology,” in Proceedings of IET International Radar Conf. (IET, 2013), pp. 1–6.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chen, X.

T. Long, H. Zhang, T. Zeng, Q. Liu, X. Chen, and L. Zheng, “High accuracy unambiguous angle estimation using multi-scale combination in distributed coherent aperture radar,” IET Radar Sonar & Navigation 11(7), 1090–1098 (2017).
[Crossref]

Cong, W.

Coutts, S.

S. Coutts, K. Cuomo, J. McHarg, F. Robey, and D. Weikle, “Distributed Coherent Aperture Measurements for Next Generation BMD Radar,” in Proceedings of Fourth IEEE Workshop on Sensor Array and Multichannel Processing, (IEEE, 2006), pp. 390–393.
[Crossref]

Cuomo, K.

S. Coutts, K. Cuomo, J. McHarg, F. Robey, and D. Weikle, “Distributed Coherent Aperture Measurements for Next Generation BMD Radar,” in Proceedings of Fourth IEEE Workshop on Sensor Array and Multichannel Processing, (IEEE, 2006), pp. 390–393.
[Crossref]

Dai, Y.

Ding, M.

Du, P.

Fletcher, A. S.

A. S. Fletcher and F. C. Robey, “Performance bounds for adaptive coherence of sparse array radar,” in Proceedings of Adaptive Sensor Array Processing Workshop (IEEE, 2003), pp. 1–6.

Fu, J.

Futatsumori, S.

Gao, B.

Gao, H.

H. Gao, Z. Cao, Y. Lu, and P. Wang, “Development of Distributed Aperture Coherence - synthetic Radar Technology,” in Proceedings of IET International Radar Conf. (IET, 2013), pp. 1–6.

H. Gao, Z. Cao, S. Wen, and Y. Lu, “Study on distributed aperture coherence-synthesizing radar with several experiment results,” in Proceedings of IET International Radar Conf. (IET, 2011), pp. 84–86.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Guo, P.

Guo, Q.

Hu, J.

Z. Zong, J. Hu, and L. Zhu, “Orthogonal Phase Code Division Multi Linear Frequency Modulation Waveforms Design and Performance Analysis for Formation-Flying Satellite SAR System,” J. Comput. Theor. Nanosci. 5(2), 681–685 (2012).

Z. Zong, J. Hu, and L. Zhu, “OPCDM-LFM waveforms design for Formation-Flying Satellite radar system,” in Proceedings of IEEE International Radar Conf. (IEEE, 2011), pp. 592–595.

Huang, S.

M. Calhoun, S. Huang, and R. L. Tjoelker, “Stable Photonic Links for Frequency and Time Transfer in the Deep-Space Network and Antenna Arrays,” Proc. IEEE 95(10), 1931–1946 (2007).
[Crossref]

Khan, S. A.

Kohmura, A.

Kowatsch, M.

M. Kowatsch and J. Lafferl, “A Spread-Spectrum Concept Combining Chirp Modulation and Pseudonoise Coding,” IEEE Trans. Commun. 31(10), 1133–1142 (1983).
[Crossref]

M. Kowatsch, F. J. Seifert, and J. Lafferl, “Comments on transmission-system using preudo-noise modulation of linear chirps,” IEEE Trans. Aerosp. Electron. Syst. 17(2), 300–303 (1981).

Lafferl, J.

M. Kowatsch and J. Lafferl, “A Spread-Spectrum Concept Combining Chirp Modulation and Pseudonoise Coding,” IEEE Trans. Commun. 31(10), 1133–1142 (1983).
[Crossref]

M. Kowatsch, F. J. Seifert, and J. Lafferl, “Comments on transmission-system using preudo-noise modulation of linear chirps,” IEEE Trans. Aerosp. Electron. Syst. 17(2), 300–303 (1981).

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lan, J.

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Li, J.

Li, R.

Li, S.

Li, W.

Li, Y.

Liang, X.

Liu, J.

Liu, Q.

T. Long, H. Zhang, T. Zeng, Q. Liu, X. Chen, and L. Zheng, “High accuracy unambiguous angle estimation using multi-scale combination in distributed coherent aperture radar,” IET Radar Sonar & Navigation 11(7), 1090–1098 (2017).
[Crossref]

P. Yin, T. Zeng, and Q. Liu, “Wideband distributed coherent aperture radar based on stepped frequency signal: theory and experimental results,” IET Radar Sonar & Navigation 10(4), 672–688 (2016).
[Crossref]

London, Y.

Long, T.

T. Long, H. Zhang, T. Zeng, Q. Liu, X. Chen, and L. Zheng, “High accuracy unambiguous angle estimation using multi-scale combination in distributed coherent aperture radar,” IET Radar Sonar & Navigation 11(7), 1090–1098 (2017).
[Crossref]

Lu, Y.

H. Gao, Z. Cao, Y. Lu, and P. Wang, “Development of Distributed Aperture Coherence - synthetic Radar Technology,” in Proceedings of IET International Radar Conf. (IET, 2013), pp. 1–6.

H. Gao, Z. Cao, S. Wen, and Y. Lu, “Study on distributed aperture coherence-synthesizing radar with several experiment results,” in Proceedings of IET International Radar Conf. (IET, 2011), pp. 84–86.

Luan, Y.

Luo, X.

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

McHarg, J.

S. Coutts, K. Cuomo, J. McHarg, F. Robey, and D. Weikle, “Distributed Coherent Aperture Measurements for Next Generation BMD Radar,” in Proceedings of Fourth IEEE Workshop on Sensor Array and Multichannel Processing, (IEEE, 2006), pp. 390–393.
[Crossref]

Morioka, K.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nowak, M.

M. Nowak, M. Wicks, Z. Zhang, and Z. Wu, “Co-Designed Radar-Communication Using Linear Frequency Modulation Waveform,” IEEE Aerosp. Electron. Syst. Mag. 31(10), 28–35 (2016).
[Crossref]

Okada, K.

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pan, S.

Peng, S.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Ren, T.

Riza, N. A.

Robertson, D. A.

D. R. Bolton, D. A. Robertson, and G. M. Smith, “Phase noise of sources for multiplication to mm-wave frequencies,” in Proceedings of IEEE International Conference on Infrared and Millimeter Waves and, International Conference on Terahertz Electronics. (IEEE, 2005), pp. 74–75.
[Crossref]

Robey, F.

S. Coutts, K. Cuomo, J. McHarg, F. Robey, and D. Weikle, “Distributed Coherent Aperture Measurements for Next Generation BMD Radar,” in Proceedings of Fourth IEEE Workshop on Sensor Array and Multichannel Processing, (IEEE, 2006), pp. 390–393.
[Crossref]

Robey, F. C.

A. S. Fletcher and F. C. Robey, “Performance bounds for adaptive coherence of sparse array radar,” in Proceedings of Adaptive Sensor Array Processing Workshop (IEEE, 2003), pp. 1–6.

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Seifert, F. J.

M. Kowatsch, F. J. Seifert, and J. Lafferl, “Comments on transmission-system using preudo-noise modulation of linear chirps,” IEEE Trans. Aerosp. Electron. Syst. 17(2), 300–303 (1981).

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Smith, G. M.

D. R. Bolton, D. A. Robertson, and G. M. Smith, “Phase noise of sources for multiplication to mm-wave frequencies,” in Proceedings of IEEE International Conference on Infrared and Millimeter Waves and, International Conference on Terahertz Electronics. (IEEE, 2005), pp. 74–75.
[Crossref]

Stern, Y.

Sun, J.

Tang, G.

Tian, Y.

Tjoelker, R. L.

M. Calhoun, S. Huang, and R. L. Tjoelker, “Stable Photonic Links for Frequency and Time Transfer in the Deep-Space Network and Antenna Arrays,” Proc. IEEE 95(10), 1931–1946 (2007).
[Crossref]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Wang, A.

Wang, H.

Wang, L.

Wang, P.

H. Gao, Z. Cao, Y. Lu, and P. Wang, “Development of Distributed Aperture Coherence - synthetic Radar Technology,” in Proceedings of IET International Radar Conf. (IET, 2013), pp. 1–6.

Wang, Y.

Wang, Z.

Wei, L.

Weikle, D.

S. Coutts, K. Cuomo, J. McHarg, F. Robey, and D. Weikle, “Distributed Coherent Aperture Measurements for Next Generation BMD Radar,” in Proceedings of Fourth IEEE Workshop on Sensor Array and Multichannel Processing, (IEEE, 2006), pp. 390–393.
[Crossref]

Wen, S.

H. Gao, Z. Cao, S. Wen, and Y. Lu, “Study on distributed aperture coherence-synthesizing radar with several experiment results,” in Proceedings of IET International Radar Conf. (IET, 2011), pp. 84–86.

Wen, Z.

Wicks, M.

M. Nowak, M. Wicks, Z. Zhang, and Z. Wu, “Co-Designed Radar-Communication Using Linear Frequency Modulation Waveform,” IEEE Aerosp. Electron. Syst. Mag. 31(10), 28–35 (2016).
[Crossref]

Wo, J.

Wu, D.

Wu, Z.

M. Nowak, M. Wicks, Z. Zhang, and Z. Wu, “Co-Designed Radar-Communication Using Linear Frequency Modulation Waveform,” IEEE Aerosp. Electron. Syst. Mag. 31(10), 28–35 (2016).
[Crossref]

Xiao, X.

Xing, T.

Xu, K.

Xue, X.

Yao, J.

Yao, T.

Yin, F.

Yin, P.

P. Yin, T. Zeng, and Q. Liu, “Wideband distributed coherent aperture radar based on stepped frequency signal: theory and experimental results,” IET Radar Sonar & Navigation 10(4), 672–688 (2016).
[Crossref]

Yonemoto, N.

Yu, L.

Yu, S.

Zadok, A.

Zeng, T.

T. Long, H. Zhang, T. Zeng, Q. Liu, X. Chen, and L. Zheng, “High accuracy unambiguous angle estimation using multi-scale combination in distributed coherent aperture radar,” IET Radar Sonar & Navigation 11(7), 1090–1098 (2017).
[Crossref]

P. Yin, T. Zeng, and Q. Liu, “Wideband distributed coherent aperture radar based on stepped frequency signal: theory and experimental results,” IET Radar Sonar & Navigation 10(4), 672–688 (2016).
[Crossref]

Zha, Y.

Zhang, A.

Zhang, F.

Zhang, G.

Zhang, H.

T. Long, H. Zhang, T. Zeng, Q. Liu, X. Chen, and L. Zheng, “High accuracy unambiguous angle estimation using multi-scale combination in distributed coherent aperture radar,” IET Radar Sonar & Navigation 11(7), 1090–1098 (2017).
[Crossref]

Zhang, J.

Zhang, Z.

M. Nowak, M. Wicks, Z. Zhang, and Z. Wu, “Co-Designed Radar-Communication Using Linear Frequency Modulation Waveform,” IEEE Aerosp. Electron. Syst. Mag. 31(10), 28–35 (2016).
[Crossref]

Zhao, B.

Zheng, J.

Zheng, L.

T. Long, H. Zhang, T. Zeng, Q. Liu, X. Chen, and L. Zheng, “High accuracy unambiguous angle estimation using multi-scale combination in distributed coherent aperture radar,” IET Radar Sonar & Navigation 11(7), 1090–1098 (2017).
[Crossref]

Zheng, X.

Zhou, B.

Zhou, L.

Zhou, P.

Zhu, D.

Zhu, L.

Z. Zong, J. Hu, and L. Zhu, “Orthogonal Phase Code Division Multi Linear Frequency Modulation Waveforms Design and Performance Analysis for Formation-Flying Satellite SAR System,” J. Comput. Theor. Nanosci. 5(2), 681–685 (2012).

Z. Zong, J. Hu, and L. Zhu, “OPCDM-LFM waveforms design for Formation-Flying Satellite radar system,” in Proceedings of IEEE International Radar Conf. (IEEE, 2011), pp. 592–595.

Zhu, N.

Zhu, Y.

Zong, Z.

Z. Zong, J. Hu, and L. Zhu, “Orthogonal Phase Code Division Multi Linear Frequency Modulation Waveforms Design and Performance Analysis for Formation-Flying Satellite SAR System,” J. Comput. Theor. Nanosci. 5(2), 681–685 (2012).

Z. Zong, J. Hu, and L. Zhu, “OPCDM-LFM waveforms design for Formation-Flying Satellite radar system,” in Proceedings of IEEE International Radar Conf. (IEEE, 2011), pp. 592–595.

IEEE Aerosp. Electron. Syst. Mag. (1)

M. Nowak, M. Wicks, Z. Zhang, and Z. Wu, “Co-Designed Radar-Communication Using Linear Frequency Modulation Waveform,” IEEE Aerosp. Electron. Syst. Mag. 31(10), 28–35 (2016).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (1)

M. Kowatsch, F. J. Seifert, and J. Lafferl, “Comments on transmission-system using preudo-noise modulation of linear chirps,” IEEE Trans. Aerosp. Electron. Syst. 17(2), 300–303 (1981).

IEEE Trans. Commun. (1)

M. Kowatsch and J. Lafferl, “A Spread-Spectrum Concept Combining Chirp Modulation and Pseudonoise Coding,” IEEE Trans. Commun. 31(10), 1133–1142 (1983).
[Crossref]

IET Radar Sonar & Navigation (2)

P. Yin, T. Zeng, and Q. Liu, “Wideband distributed coherent aperture radar based on stepped frequency signal: theory and experimental results,” IET Radar Sonar & Navigation 10(4), 672–688 (2016).
[Crossref]

T. Long, H. Zhang, T. Zeng, Q. Liu, X. Chen, and L. Zheng, “High accuracy unambiguous angle estimation using multi-scale combination in distributed coherent aperture radar,” IET Radar Sonar & Navigation 11(7), 1090–1098 (2017).
[Crossref]

J. Comput. Theor. Nanosci. (1)

Z. Zong, J. Hu, and L. Zhu, “Orthogonal Phase Code Division Multi Linear Frequency Modulation Waveforms Design and Performance Analysis for Formation-Flying Satellite SAR System,” J. Comput. Theor. Nanosci. 5(2), 681–685 (2012).

J. Lightwave Technol. (3)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Express (10)

R. Li, W. Li, M. Ding, Z. Wen, Y. Li, L. Zhou, S. Yu, T. Xing, B. Gao, Y. Luan, Y. Zhu, P. Guo, Y. Tian, and X. Liang, “Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing,” Opt. Express 25(13), 14334–14340 (2017).
[Crossref] [PubMed]

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
[Crossref] [PubMed]

S. Peng, S. Li, X. Xue, X. Xiao, D. Wu, X. Zheng, and B. Zhou, “High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter,” Opt. Express 26(2), 1978–1987 (2018).
[Crossref] [PubMed]

A. Wang, J. Wo, X. Luo, Y. Wang, W. Cong, P. Du, J. Zhang, B. Zhao, J. Zhang, Y. Zhu, J. Lan, and L. Yu, “Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information,” Opt. Express 26(16), 20708–20717 (2018).
[Crossref] [PubMed]

F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express 26(13), 17529–17540 (2018).
[Crossref] [PubMed]

J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
[Crossref] [PubMed]

J. Fu, F. Zhang, D. Zhu, and S. Pan, “Fiber-distributed ultra-wideband radar network based on wavelength reusing transceivers,” Opt. Express 26(14), 18457–18469 (2018).
[Crossref] [PubMed]

D. Wu, X. Xue, S. Li, X. Zheng, X. Xiao, Y. Zha, and B. Zhou, “Photonic generation of multi-frequency phase-coded microwave signal based on a dual-output Mach-Zehnder modulator and balanced detection,” Opt. Express 25(13), 14516–14523 (2017).
[Crossref] [PubMed]

A. Zhang, Y. Dai, F. Yin, T. Ren, K. Xu, J. Li, and G. Tang, “Phase stabilized downlink transmission for wideband radio frequency signal via optical fiber link,” Opt. Express 22(18), 21560–21566 (2014).
[Crossref] [PubMed]

A. Ben-Amram, Y. Stern, Y. London, Y. Antman, and A. Zadok, “Stable closed-loop fiber-optic delay of arbitrary radio-frequency waveforms,” Opt. Express 23(22), 28244–28257 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. IEEE (1)

M. Calhoun, S. Huang, and R. L. Tjoelker, “Stable Photonic Links for Frequency and Time Transfer in the Deep-Space Network and Antenna Arrays,” Proc. IEEE 95(10), 1931–1946 (2007).
[Crossref]

Other (13)

J. Liao, B. Chen, S. Li, X. Yang, X. Zheng, H. Zhang, and B. Zhou, “Novel Photonic Radio-frequency Arbitrary Waveform Generation based on Photonic Digital-to-Analog Conversion with Pulse Carving,” in Conference on Lasers and Electro-Optics, (OSA, 2015), STh4F. 4.
[Crossref]

Z. Zong, J. Hu, and L. Zhu, “OPCDM-LFM waveforms design for Formation-Flying Satellite radar system,” in Proceedings of IEEE International Radar Conf. (IEEE, 2011), pp. 592–595.

X. Xiao, S. Li, B. Chen, and X. Yang, D, Wu, X, Xue, X. Zheng, and B. Zhou, “A Microwave Photonics-based Inverse Synthetic Aperture Radar System,” in Conference on Lasers and Electro-Optics (OSA, 2017), JW2A.144.
[Crossref]

H. Gao, Z. Cao, S. Wen, and Y. Lu, “Study on distributed aperture coherence-synthesizing radar with several experiment results,” in Proceedings of IET International Radar Conf. (IET, 2011), pp. 84–86.

H. Gao, Z. Cao, Y. Lu, and P. Wang, “Development of Distributed Aperture Coherence - synthetic Radar Technology,” in Proceedings of IET International Radar Conf. (IET, 2013), pp. 1–6.

M. I. Skolnik, Introduction to Radar Systems (McGraw-Hall, 2001).

J. Vankka and K. A. I. Halonen, “Direct Digital Synthesizers: Theory, Design and Applications,” Helsinki University of Technology. (2001).

D. R. Bolton, D. A. Robertson, and G. M. Smith, “Phase noise of sources for multiplication to mm-wave frequencies,” in Proceedings of IEEE International Conference on Infrared and Millimeter Waves and, International Conference on Terahertz Electronics. (IEEE, 2005), pp. 74–75.
[Crossref]

D. A. Robertson, S. L. Cassidy, and D. R. Bolton, “Nonlinearity and phase noise effects in 340 GHz 3D imaging radar,” in SPIE Defense, Security, and Sensing. 8715, 1–10 (2013).

M. I. Skolnik, Radar Handbook (McGraw-Hill, 2008).

A. S. Fletcher and F. C. Robey, “Performance bounds for adaptive coherence of sparse array radar,” in Proceedings of Adaptive Sensor Array Processing Workshop (IEEE, 2003), pp. 1–6.

S. Coutts, K. Cuomo, J. McHarg, F. Robey, and D. Weikle, “Distributed Coherent Aperture Measurements for Next Generation BMD Radar,” in Proceedings of Fourth IEEE Workshop on Sensor Array and Multichannel Processing, (IEEE, 2006), pp. 390–393.
[Crossref]

K. M. Cuomo, S. D. Coutts, J. C. McHarg, N. B. Pulsone, and F. C. Robey, “Wideband aperture coherence processing for next generation radar (NexGen),” Tech. Rep. ESC-TR-2004–087, MIT Lincoln Laboratory. (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of the proposed photonic-based wideband DCAR system; RMOAWG: reconfigurable multi-channel optical arbitrary waveform generator; PDAC: photonic digital-to-analog converter; OC: optical coupler; VODL: variable optical delay line; O/R: optical/RF; R/O: RF/optical; A/D: analog-to-digital converter; DSP: digital signal processor.
Fig. 2
Fig. 2 Configuration of the phase coding module. DOMZM: dual-output Mach-Zehnder modulator; BPD: balanced photodetector.
Fig. 3
Fig. 3 Experimental setup of the proposed DCAR system. PDAC: photonic digital-to-analog converter; EDFA: erbium-doped fiber amplifier; OC: optical coupler; DOMZM: dual-output Mach-Zehnder modulator; PPG: pulse pattern generator; PS: phase shifter; VODL: variable optical delay line; BPD: balanced photodetector; PD: photodetector; BPF: band-pass filter; EA: electrical amplifier; LNA: low noise amplifier; DSO: digital signal oscilloscope.
Fig. 4
Fig. 4 (a) Waveform; (b) zoom-in view waveform; (c) the extracted phase shift; and (d) spectrum of the PCLFMW generated at transceiver 1. (e) waveform; (f) zoom-in view waveform; (g) the extracted phase shift; and (h) spectrum of the LFMW generated at transceiver 2.
Fig. 5
Fig. 5 (a) blue line: auto-correlation of the PCLFMW; orange line: cross-correlation of the PCLFMW and LFMW, and (b) the zoom-in view around the correlation peak in (a). (c) blue line: auto-correlation of the LFMW; orange line: cross-correlation of the PCLFMW and the LFMW, and (d) the zoom-in view around the correlation peak in (c).
Fig. 6
Fig. 6 Monostatic and bistatic matched-filtering results of (a) radar 1 receiving echo wave; (b) radar 2 receiving echo wave.
Fig. 7
Fig. 7 Monostatic and bistatic matched-filtering results of (a) radar 1 receiving echo wave; (b) radar 2 receiving echo wave.
Fig. 8
Fig. 8 (a) Waveform; (b) zoom-in view waveform; (c) the extracted phase shift; and (d) spectrum of the LFMW generated at transceiver 1.
Fig. 9
Fig. 9 (a) matched-filtering results of radar 1, and (b) the zoom-in view around the main lobe; (c) matched-filtering results of radar 2, and (d) the zoom-in view around the main lobe. Blue/red line: coherence-on transmit/monostatic mode.
Fig. 10
Fig. 10 (a) matched-filtering results of radar 1, and (b) the zoom-in view around the main lobe; (c) matched-filtering results of radar 2, and (d) the zoom-in view around the main lobe. Blue/red line: full coherence/monostatic mode.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S i (t)= cos(2π f 0 t+kπ t 2 + φ i (t)) 0t T p ,i=1,2,...,N
E in (t)= E 0 e j2π f c t cos[ mcos(2π f 0 t+kπ t 2 )+π/4 ]
{ E 1 (t)= E in (t)[ e j πV(t)/ 2 V π +j π V b / V π + e j πV(t)/ 2 V π ] E 2 (t)= E in (t)[ e j πV(t)/ 2 V π +j π V b / V π e j πV(t)/ 2 V π ]
I(t) | E 1 (t) | 2 | E 2 (t) | 2 =2 | E in (t) | 2 cos[ π V π V(t)+ π V b V π ] = E 0 2 [ 1-sin( 2mcos(2π f 0 t+kπ t 2 ) ) ]cos[ π V π V(t)+ π V b V π ]
I(t)-2 J 1 (2m) E 0 2 cos(2π f 0 t+kπ t 2 )cos( π V π V 0 ϕ(t)+ π V b V π )
I(t){ 2 J 1 (2m) E 0 2 sin( π V π V 0 )cos(2π f 0 t+kπ t 2 ) ϕ(t)=+1 2 J 1 (2m) E 0 2 sin( π V π V 0 )cos(2π f 0 t+kπ t 2 +π) ϕ(t)=1
I(t)2 J 1 (2m) E 0 2 cos(2π f 0 t+kπ t 2 ) 0t T p

Metrics