Abstract

The experimental THz-excitation spectroscopy technique for determining heterojunction band offsets is suggested. When photoexcited electrons gain sufficient energy to pass the potential barrier corresponding to a conduction band offset, an amplitude of THz-emission pulse sharply increases, which allows for direct measurements of the offset value. The technique is applied for determining GaAsBi-GaAs band offsets. The deduced conduction band offset of GaAsBi-GaAs heterojunction has about 45% of an energy gap difference at the Bi concentrations x < 0.12 investigated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, D. Fan, Yu. I. Mazur, V. G. Dorogan, P. C. Grant, S.-Q. Yu, and G. J. Salamo
Opt. Express 22(10) 11680-11689 (2014)

Annealing study of carrier concentration in gradient-doped GaAs/GaAlAs epilayers grown by molecular beam epitaxy

Yijun Zhang, Benkang Chang, Zhi Yang, Jun Niu, Yajuan Xiong, Feng Shi, Hui Guo, and Yiping Zeng
Appl. Opt. 48(9) 1715-1720 (2009)

Time-resolved THz spectroscopy of proton-bombarded InP

C. Messner, H. Kostner, R. A. Höpfel, and K. Unterrainer
J. Opt. Soc. Am. B 18(9) 1369-1371 (2001)

References

  • View by:
  • |
  • |
  • |

  1. E. T. Yu, J. O. McCaldin, and T. C. McGill, “Band offsets in semiconductor heterojunctions,” in Solid State Physics46, 1–146 (Academic Press, 1992).
    [Crossref]
  2. A. Franciosi and C. G. Van de Walle, “Heterojunction band offset engineering,” Surf. Sci. Reports 25, 1–140 (1996).
    [Crossref]
  3. H. Kroemer, “Quasielectric fields and band offsets: Teaching electrons new tricks,” Rev. Mod. Phys. 73, 783–793 (2001).
    [Crossref]
  4. W. Yi, A. J. Stollenwerk, and V. Narayanamurti, “Ballistic electron microscopy and spectroscopy of metal and semiconductor nanostructures,” Surf. Sci. Reports 64, 169–190 (2009).
    [Crossref]
  5. J. Robertson, “Band offsets, Schottky barrier heights, and their effects on electronic devices,” J. Vac. Sci. Technol. A 31, 050821 (2013).
    [Crossref]
  6. T. Thomas, A. Mellor, N. P. Hylton, M. Führer, D. Alonso-Àlvarez, A. Braun, N. J. Ekins-Daukes, J. P. R. David, and S. J. Sweeney, “Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell,” Semicond. Sci. Technol. 33, 094010 (2015).
    [Crossref]
  7. Y. Tominaga, K. Oe, and M. Yoshimoto, “Low temperature dependence of oscillation wavelength in GaAs1−x Bix laser by photo-pumping,” Appl. Phys. Express 3, 062201 (2010).
    [Crossref]
  8. V. L. Malevich, P. A. Ziaziulia, R. Adomavičius, A. Krotkus, and Y. V. Malevich, “Terahertz emission from cubic semiconductor induced by a transient anisotropic photocurrent,” J. Appl. Phys.  112, 073115 (2012).
    [Crossref]
  9. A. Arlauskas and A. Krotkus, “THz excitation spectra of AIIIBV semiconductors,” Semicond. Sci. Technol.  27, 115015 (2012).
    [Crossref]
  10. B. P. Zakharchenya, D. N. Mirlin, V. I. Perel’, and I. I. Reshina, “Optical alignment of hot carriers in semiconductors,” Sov. Phys. Uspekhi 25, 143–157 (1982).
    [Crossref]
  11. G. Feng, M. Yoshimoto, K. Oe, A. Chayahara, and Y. Horino, “New III-V semiconductor InGaAsBi alloy grown by molecular beam epitaxy,” Jpn. J. Appl. Phys. 44, L1181 (2005).
    [Crossref]
  12. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
    [Crossref]
  13. K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBix As1−x,” Appl. Phys. Lett. 91, 051909 (2007).
    [Crossref]
  14. C. A. Broderick, M. Usman, S. J. Sweeney, and E. P. O’Reilly, “Band engineering in dilute nitride and bismide semiconductor lasers,” Semicond. Sci. Technol.  27, 094011 (2012).
    [Crossref]
  15. K. Collar, J. Li, W. Jiao, Y. Guan, M. Losurdo, J. Humlicek, and A. S. Brown, “Determination of the impact of Bi content on the valence band energy of GaAsBi using x-ray photoelectron spectroscopy,” AIP Adv.  7, 075016 (2017).
    [Crossref]
  16. R. Kudrawiec, J. Kopaczek, M. P. Ploak, P. Sharoch, M. Gladysiewicz, J. Misiewicz, R. D. Richards, F. Bastiman, and J. P. R. David, “Experimental and theoretical studies of band gap alignment in GaAs1−x Bix /GaAs quantum wells,” J. Appl. Phys.  116, 233508 (2014).
    [Crossref]
  17. P. Patil, T. Tatabe, Y. Nabara, K. Higaki, N. Nishii, S. Tanaka, F. Ishikawa, and S. Shimomura, “Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy,” J. Surf. Sci. Nanotechnol. 13, 469–473 (2015).
    [Crossref]
  18. C. J. Hunter, F. Bastiman, A. R. Mohmad, R. Richards, J. S. Ng, S. J. Sweeney, and J. P. R. David, “Absorption characteristics of GaAs1−x Bix /GaAs diodes in the near-infrared,” IEEE Photonics Technol. Lett. 24, 2191–2194 (2012).
    [Crossref]
  19. V. Pačebutas, S. Stanionytė, A. Arlauskas, R. Norkus, R. Butkutė, A. Geižutis, B. Čechavičius, and A. Krotkus, “Terahertz excitation spectra of GaAsBi alloys,” J. Phys. D: Appl. Phys. 51, 474001 (2018).
    [Crossref]
  20. G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors(Wiley, 1974).
  21. G. Pettinari, A. Patanè, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Bi-induced p-type conductivity in nominally undoped Ga(AsBi),” J. Appl. Phys.  100, 092109 (2012).
  22. M. Yoshimoto, M. Itoh, Y. Tominaga, and K. Oe, “Quantitative estimation of density of Bi-induced localized states in GaAs1−x Bix grown by molecular beam epitaxy,” J. Cryst. Growth 378, 73–76 (2013).
    [Crossref]

2018 (1)

V. Pačebutas, S. Stanionytė, A. Arlauskas, R. Norkus, R. Butkutė, A. Geižutis, B. Čechavičius, and A. Krotkus, “Terahertz excitation spectra of GaAsBi alloys,” J. Phys. D: Appl. Phys. 51, 474001 (2018).
[Crossref]

2017 (1)

K. Collar, J. Li, W. Jiao, Y. Guan, M. Losurdo, J. Humlicek, and A. S. Brown, “Determination of the impact of Bi content on the valence band energy of GaAsBi using x-ray photoelectron spectroscopy,” AIP Adv.  7, 075016 (2017).
[Crossref]

2015 (2)

P. Patil, T. Tatabe, Y. Nabara, K. Higaki, N. Nishii, S. Tanaka, F. Ishikawa, and S. Shimomura, “Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy,” J. Surf. Sci. Nanotechnol. 13, 469–473 (2015).
[Crossref]

T. Thomas, A. Mellor, N. P. Hylton, M. Führer, D. Alonso-Àlvarez, A. Braun, N. J. Ekins-Daukes, J. P. R. David, and S. J. Sweeney, “Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell,” Semicond. Sci. Technol. 33, 094010 (2015).
[Crossref]

2014 (1)

R. Kudrawiec, J. Kopaczek, M. P. Ploak, P. Sharoch, M. Gladysiewicz, J. Misiewicz, R. D. Richards, F. Bastiman, and J. P. R. David, “Experimental and theoretical studies of band gap alignment in GaAs1−x Bix /GaAs quantum wells,” J. Appl. Phys.  116, 233508 (2014).
[Crossref]

2013 (2)

J. Robertson, “Band offsets, Schottky barrier heights, and their effects on electronic devices,” J. Vac. Sci. Technol. A 31, 050821 (2013).
[Crossref]

M. Yoshimoto, M. Itoh, Y. Tominaga, and K. Oe, “Quantitative estimation of density of Bi-induced localized states in GaAs1−x Bix grown by molecular beam epitaxy,” J. Cryst. Growth 378, 73–76 (2013).
[Crossref]

2012 (5)

G. Pettinari, A. Patanè, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Bi-induced p-type conductivity in nominally undoped Ga(AsBi),” J. Appl. Phys.  100, 092109 (2012).

V. L. Malevich, P. A. Ziaziulia, R. Adomavičius, A. Krotkus, and Y. V. Malevich, “Terahertz emission from cubic semiconductor induced by a transient anisotropic photocurrent,” J. Appl. Phys.  112, 073115 (2012).
[Crossref]

A. Arlauskas and A. Krotkus, “THz excitation spectra of AIIIBV semiconductors,” Semicond. Sci. Technol.  27, 115015 (2012).
[Crossref]

C. J. Hunter, F. Bastiman, A. R. Mohmad, R. Richards, J. S. Ng, S. J. Sweeney, and J. P. R. David, “Absorption characteristics of GaAs1−x Bix /GaAs diodes in the near-infrared,” IEEE Photonics Technol. Lett. 24, 2191–2194 (2012).
[Crossref]

C. A. Broderick, M. Usman, S. J. Sweeney, and E. P. O’Reilly, “Band engineering in dilute nitride and bismide semiconductor lasers,” Semicond. Sci. Technol.  27, 094011 (2012).
[Crossref]

2010 (1)

Y. Tominaga, K. Oe, and M. Yoshimoto, “Low temperature dependence of oscillation wavelength in GaAs1−x Bix laser by photo-pumping,” Appl. Phys. Express 3, 062201 (2010).
[Crossref]

2009 (1)

W. Yi, A. J. Stollenwerk, and V. Narayanamurti, “Ballistic electron microscopy and spectroscopy of metal and semiconductor nanostructures,” Surf. Sci. Reports 64, 169–190 (2009).
[Crossref]

2007 (1)

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBix As1−x,” Appl. Phys. Lett. 91, 051909 (2007).
[Crossref]

2005 (1)

G. Feng, M. Yoshimoto, K. Oe, A. Chayahara, and Y. Horino, “New III-V semiconductor InGaAsBi alloy grown by molecular beam epitaxy,” Jpn. J. Appl. Phys. 44, L1181 (2005).
[Crossref]

2001 (2)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

H. Kroemer, “Quasielectric fields and band offsets: Teaching electrons new tricks,” Rev. Mod. Phys. 73, 783–793 (2001).
[Crossref]

1996 (1)

A. Franciosi and C. G. Van de Walle, “Heterojunction band offset engineering,” Surf. Sci. Reports 25, 1–140 (1996).
[Crossref]

1982 (1)

B. P. Zakharchenya, D. N. Mirlin, V. I. Perel’, and I. I. Reshina, “Optical alignment of hot carriers in semiconductors,” Sov. Phys. Uspekhi 25, 143–157 (1982).
[Crossref]

Adomavicius, R.

V. L. Malevich, P. A. Ziaziulia, R. Adomavičius, A. Krotkus, and Y. V. Malevich, “Terahertz emission from cubic semiconductor induced by a transient anisotropic photocurrent,” J. Appl. Phys.  112, 073115 (2012).
[Crossref]

Alberi, K.

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBix As1−x,” Appl. Phys. Lett. 91, 051909 (2007).
[Crossref]

Alonso-Àlvarez, D.

T. Thomas, A. Mellor, N. P. Hylton, M. Führer, D. Alonso-Àlvarez, A. Braun, N. J. Ekins-Daukes, J. P. R. David, and S. J. Sweeney, “Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell,” Semicond. Sci. Technol. 33, 094010 (2015).
[Crossref]

Arlauskas, A.

V. Pačebutas, S. Stanionytė, A. Arlauskas, R. Norkus, R. Butkutė, A. Geižutis, B. Čechavičius, and A. Krotkus, “Terahertz excitation spectra of GaAsBi alloys,” J. Phys. D: Appl. Phys. 51, 474001 (2018).
[Crossref]

A. Arlauskas and A. Krotkus, “THz excitation spectra of AIIIBV semiconductors,” Semicond. Sci. Technol.  27, 115015 (2012).
[Crossref]

Bastiman, F.

R. Kudrawiec, J. Kopaczek, M. P. Ploak, P. Sharoch, M. Gladysiewicz, J. Misiewicz, R. D. Richards, F. Bastiman, and J. P. R. David, “Experimental and theoretical studies of band gap alignment in GaAs1−x Bix /GaAs quantum wells,” J. Appl. Phys.  116, 233508 (2014).
[Crossref]

C. J. Hunter, F. Bastiman, A. R. Mohmad, R. Richards, J. S. Ng, S. J. Sweeney, and J. P. R. David, “Absorption characteristics of GaAs1−x Bix /GaAs diodes in the near-infrared,” IEEE Photonics Technol. Lett. 24, 2191–2194 (2012).
[Crossref]

Bertulis, K.

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBix As1−x,” Appl. Phys. Lett. 91, 051909 (2007).
[Crossref]

Bir, G. L.

G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors(Wiley, 1974).

Braun, A.

T. Thomas, A. Mellor, N. P. Hylton, M. Führer, D. Alonso-Àlvarez, A. Braun, N. J. Ekins-Daukes, J. P. R. David, and S. J. Sweeney, “Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell,” Semicond. Sci. Technol. 33, 094010 (2015).
[Crossref]

Broderick, C. A.

C. A. Broderick, M. Usman, S. J. Sweeney, and E. P. O’Reilly, “Band engineering in dilute nitride and bismide semiconductor lasers,” Semicond. Sci. Technol.  27, 094011 (2012).
[Crossref]

Brown, A. S.

K. Collar, J. Li, W. Jiao, Y. Guan, M. Losurdo, J. Humlicek, and A. S. Brown, “Determination of the impact of Bi content on the valence band energy of GaAsBi using x-ray photoelectron spectroscopy,” AIP Adv.  7, 075016 (2017).
[Crossref]

Butkute, R.

V. Pačebutas, S. Stanionytė, A. Arlauskas, R. Norkus, R. Butkutė, A. Geižutis, B. Čechavičius, and A. Krotkus, “Terahertz excitation spectra of GaAsBi alloys,” J. Phys. D: Appl. Phys. 51, 474001 (2018).
[Crossref]

Capizzi, M.

G. Pettinari, A. Patanè, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Bi-induced p-type conductivity in nominally undoped Ga(AsBi),” J. Appl. Phys.  100, 092109 (2012).

Cechavicius, B.

V. Pačebutas, S. Stanionytė, A. Arlauskas, R. Norkus, R. Butkutė, A. Geižutis, B. Čechavičius, and A. Krotkus, “Terahertz excitation spectra of GaAsBi alloys,” J. Phys. D: Appl. Phys. 51, 474001 (2018).
[Crossref]

Chayahara, A.

G. Feng, M. Yoshimoto, K. Oe, A. Chayahara, and Y. Horino, “New III-V semiconductor InGaAsBi alloy grown by molecular beam epitaxy,” Jpn. J. Appl. Phys. 44, L1181 (2005).
[Crossref]

Collar, K.

K. Collar, J. Li, W. Jiao, Y. Guan, M. Losurdo, J. Humlicek, and A. S. Brown, “Determination of the impact of Bi content on the valence band energy of GaAsBi using x-ray photoelectron spectroscopy,” AIP Adv.  7, 075016 (2017).
[Crossref]

David, J. P. R.

T. Thomas, A. Mellor, N. P. Hylton, M. Führer, D. Alonso-Àlvarez, A. Braun, N. J. Ekins-Daukes, J. P. R. David, and S. J. Sweeney, “Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell,” Semicond. Sci. Technol. 33, 094010 (2015).
[Crossref]

R. Kudrawiec, J. Kopaczek, M. P. Ploak, P. Sharoch, M. Gladysiewicz, J. Misiewicz, R. D. Richards, F. Bastiman, and J. P. R. David, “Experimental and theoretical studies of band gap alignment in GaAs1−x Bix /GaAs quantum wells,” J. Appl. Phys.  116, 233508 (2014).
[Crossref]

C. J. Hunter, F. Bastiman, A. R. Mohmad, R. Richards, J. S. Ng, S. J. Sweeney, and J. P. R. David, “Absorption characteristics of GaAs1−x Bix /GaAs diodes in the near-infrared,” IEEE Photonics Technol. Lett. 24, 2191–2194 (2012).
[Crossref]

Dubon, O. D.

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBix As1−x,” Appl. Phys. Lett. 91, 051909 (2007).
[Crossref]

Ekins-Daukes, N. J.

T. Thomas, A. Mellor, N. P. Hylton, M. Führer, D. Alonso-Àlvarez, A. Braun, N. J. Ekins-Daukes, J. P. R. David, and S. J. Sweeney, “Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell,” Semicond. Sci. Technol. 33, 094010 (2015).
[Crossref]

Feng, G.

G. Feng, M. Yoshimoto, K. Oe, A. Chayahara, and Y. Horino, “New III-V semiconductor InGaAsBi alloy grown by molecular beam epitaxy,” Jpn. J. Appl. Phys. 44, L1181 (2005).
[Crossref]

Franciosi, A.

A. Franciosi and C. G. Van de Walle, “Heterojunction band offset engineering,” Surf. Sci. Reports 25, 1–140 (1996).
[Crossref]

Führer, M.

T. Thomas, A. Mellor, N. P. Hylton, M. Führer, D. Alonso-Àlvarez, A. Braun, N. J. Ekins-Daukes, J. P. R. David, and S. J. Sweeney, “Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell,” Semicond. Sci. Technol. 33, 094010 (2015).
[Crossref]

Geižutis, A.

V. Pačebutas, S. Stanionytė, A. Arlauskas, R. Norkus, R. Butkutė, A. Geižutis, B. Čechavičius, and A. Krotkus, “Terahertz excitation spectra of GaAsBi alloys,” J. Phys. D: Appl. Phys. 51, 474001 (2018).
[Crossref]

Gladysiewicz, M.

R. Kudrawiec, J. Kopaczek, M. P. Ploak, P. Sharoch, M. Gladysiewicz, J. Misiewicz, R. D. Richards, F. Bastiman, and J. P. R. David, “Experimental and theoretical studies of band gap alignment in GaAs1−x Bix /GaAs quantum wells,” J. Appl. Phys.  116, 233508 (2014).
[Crossref]

Guan, Y.

K. Collar, J. Li, W. Jiao, Y. Guan, M. Losurdo, J. Humlicek, and A. S. Brown, “Determination of the impact of Bi content on the valence band energy of GaAsBi using x-ray photoelectron spectroscopy,” AIP Adv.  7, 075016 (2017).
[Crossref]

Higaki, K.

P. Patil, T. Tatabe, Y. Nabara, K. Higaki, N. Nishii, S. Tanaka, F. Ishikawa, and S. Shimomura, “Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy,” J. Surf. Sci. Nanotechnol. 13, 469–473 (2015).
[Crossref]

Horino, Y.

G. Feng, M. Yoshimoto, K. Oe, A. Chayahara, and Y. Horino, “New III-V semiconductor InGaAsBi alloy grown by molecular beam epitaxy,” Jpn. J. Appl. Phys. 44, L1181 (2005).
[Crossref]

Humlicek, J.

K. Collar, J. Li, W. Jiao, Y. Guan, M. Losurdo, J. Humlicek, and A. S. Brown, “Determination of the impact of Bi content on the valence band energy of GaAsBi using x-ray photoelectron spectroscopy,” AIP Adv.  7, 075016 (2017).
[Crossref]

Hunter, C. J.

C. J. Hunter, F. Bastiman, A. R. Mohmad, R. Richards, J. S. Ng, S. J. Sweeney, and J. P. R. David, “Absorption characteristics of GaAs1−x Bix /GaAs diodes in the near-infrared,” IEEE Photonics Technol. Lett. 24, 2191–2194 (2012).
[Crossref]

Hylton, N. P.

T. Thomas, A. Mellor, N. P. Hylton, M. Führer, D. Alonso-Àlvarez, A. Braun, N. J. Ekins-Daukes, J. P. R. David, and S. J. Sweeney, “Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell,” Semicond. Sci. Technol. 33, 094010 (2015).
[Crossref]

Ishikawa, F.

P. Patil, T. Tatabe, Y. Nabara, K. Higaki, N. Nishii, S. Tanaka, F. Ishikawa, and S. Shimomura, “Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy,” J. Surf. Sci. Nanotechnol. 13, 469–473 (2015).
[Crossref]

Itoh, M.

M. Yoshimoto, M. Itoh, Y. Tominaga, and K. Oe, “Quantitative estimation of density of Bi-induced localized states in GaAs1−x Bix grown by molecular beam epitaxy,” J. Cryst. Growth 378, 73–76 (2013).
[Crossref]

Jiao, W.

K. Collar, J. Li, W. Jiao, Y. Guan, M. Losurdo, J. Humlicek, and A. S. Brown, “Determination of the impact of Bi content on the valence band energy of GaAsBi using x-ray photoelectron spectroscopy,” AIP Adv.  7, 075016 (2017).
[Crossref]

Kopaczek, J.

R. Kudrawiec, J. Kopaczek, M. P. Ploak, P. Sharoch, M. Gladysiewicz, J. Misiewicz, R. D. Richards, F. Bastiman, and J. P. R. David, “Experimental and theoretical studies of band gap alignment in GaAs1−x Bix /GaAs quantum wells,” J. Appl. Phys.  116, 233508 (2014).
[Crossref]

Kroemer, H.

H. Kroemer, “Quasielectric fields and band offsets: Teaching electrons new tricks,” Rev. Mod. Phys. 73, 783–793 (2001).
[Crossref]

Krotkus, A.

V. Pačebutas, S. Stanionytė, A. Arlauskas, R. Norkus, R. Butkutė, A. Geižutis, B. Čechavičius, and A. Krotkus, “Terahertz excitation spectra of GaAsBi alloys,” J. Phys. D: Appl. Phys. 51, 474001 (2018).
[Crossref]

A. Arlauskas and A. Krotkus, “THz excitation spectra of AIIIBV semiconductors,” Semicond. Sci. Technol.  27, 115015 (2012).
[Crossref]

V. L. Malevich, P. A. Ziaziulia, R. Adomavičius, A. Krotkus, and Y. V. Malevich, “Terahertz emission from cubic semiconductor induced by a transient anisotropic photocurrent,” J. Appl. Phys.  112, 073115 (2012).
[Crossref]

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBix As1−x,” Appl. Phys. Lett. 91, 051909 (2007).
[Crossref]

Kudrawiec, R.

R. Kudrawiec, J. Kopaczek, M. P. Ploak, P. Sharoch, M. Gladysiewicz, J. Misiewicz, R. D. Richards, F. Bastiman, and J. P. R. David, “Experimental and theoretical studies of band gap alignment in GaAs1−x Bix /GaAs quantum wells,” J. Appl. Phys.  116, 233508 (2014).
[Crossref]

Li, J.

K. Collar, J. Li, W. Jiao, Y. Guan, M. Losurdo, J. Humlicek, and A. S. Brown, “Determination of the impact of Bi content on the valence band energy of GaAsBi using x-ray photoelectron spectroscopy,” AIP Adv.  7, 075016 (2017).
[Crossref]

Losurdo, M.

K. Collar, J. Li, W. Jiao, Y. Guan, M. Losurdo, J. Humlicek, and A. S. Brown, “Determination of the impact of Bi content on the valence band energy of GaAsBi using x-ray photoelectron spectroscopy,” AIP Adv.  7, 075016 (2017).
[Crossref]

Lu, X.

G. Pettinari, A. Patanè, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Bi-induced p-type conductivity in nominally undoped Ga(AsBi),” J. Appl. Phys.  100, 092109 (2012).

Malevich, V. L.

V. L. Malevich, P. A. Ziaziulia, R. Adomavičius, A. Krotkus, and Y. V. Malevich, “Terahertz emission from cubic semiconductor induced by a transient anisotropic photocurrent,” J. Appl. Phys.  112, 073115 (2012).
[Crossref]

Malevich, Y. V.

V. L. Malevich, P. A. Ziaziulia, R. Adomavičius, A. Krotkus, and Y. V. Malevich, “Terahertz emission from cubic semiconductor induced by a transient anisotropic photocurrent,” J. Appl. Phys.  112, 073115 (2012).
[Crossref]

McCaldin, J. O.

E. T. Yu, J. O. McCaldin, and T. C. McGill, “Band offsets in semiconductor heterojunctions,” in Solid State Physics46, 1–146 (Academic Press, 1992).
[Crossref]

McGill, T. C.

E. T. Yu, J. O. McCaldin, and T. C. McGill, “Band offsets in semiconductor heterojunctions,” in Solid State Physics46, 1–146 (Academic Press, 1992).
[Crossref]

Mellor, A.

T. Thomas, A. Mellor, N. P. Hylton, M. Führer, D. Alonso-Àlvarez, A. Braun, N. J. Ekins-Daukes, J. P. R. David, and S. J. Sweeney, “Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell,” Semicond. Sci. Technol. 33, 094010 (2015).
[Crossref]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Mirlin, D. N.

B. P. Zakharchenya, D. N. Mirlin, V. I. Perel’, and I. I. Reshina, “Optical alignment of hot carriers in semiconductors,” Sov. Phys. Uspekhi 25, 143–157 (1982).
[Crossref]

Misiewicz, J.

R. Kudrawiec, J. Kopaczek, M. P. Ploak, P. Sharoch, M. Gladysiewicz, J. Misiewicz, R. D. Richards, F. Bastiman, and J. P. R. David, “Experimental and theoretical studies of band gap alignment in GaAs1−x Bix /GaAs quantum wells,” J. Appl. Phys.  116, 233508 (2014).
[Crossref]

Mohmad, A. R.

C. J. Hunter, F. Bastiman, A. R. Mohmad, R. Richards, J. S. Ng, S. J. Sweeney, and J. P. R. David, “Absorption characteristics of GaAs1−x Bix /GaAs diodes in the near-infrared,” IEEE Photonics Technol. Lett. 24, 2191–2194 (2012).
[Crossref]

Nabara, Y.

P. Patil, T. Tatabe, Y. Nabara, K. Higaki, N. Nishii, S. Tanaka, F. Ishikawa, and S. Shimomura, “Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy,” J. Surf. Sci. Nanotechnol. 13, 469–473 (2015).
[Crossref]

Narayanamurti, V.

W. Yi, A. J. Stollenwerk, and V. Narayanamurti, “Ballistic electron microscopy and spectroscopy of metal and semiconductor nanostructures,” Surf. Sci. Reports 64, 169–190 (2009).
[Crossref]

Ng, J. S.

C. J. Hunter, F. Bastiman, A. R. Mohmad, R. Richards, J. S. Ng, S. J. Sweeney, and J. P. R. David, “Absorption characteristics of GaAs1−x Bix /GaAs diodes in the near-infrared,” IEEE Photonics Technol. Lett. 24, 2191–2194 (2012).
[Crossref]

Nishii, N.

P. Patil, T. Tatabe, Y. Nabara, K. Higaki, N. Nishii, S. Tanaka, F. Ishikawa, and S. Shimomura, “Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy,” J. Surf. Sci. Nanotechnol. 13, 469–473 (2015).
[Crossref]

Norkus, R.

V. Pačebutas, S. Stanionytė, A. Arlauskas, R. Norkus, R. Butkutė, A. Geižutis, B. Čechavičius, and A. Krotkus, “Terahertz excitation spectra of GaAsBi alloys,” J. Phys. D: Appl. Phys. 51, 474001 (2018).
[Crossref]

O’Reilly, E. P.

C. A. Broderick, M. Usman, S. J. Sweeney, and E. P. O’Reilly, “Band engineering in dilute nitride and bismide semiconductor lasers,” Semicond. Sci. Technol.  27, 094011 (2012).
[Crossref]

Oe, K.

M. Yoshimoto, M. Itoh, Y. Tominaga, and K. Oe, “Quantitative estimation of density of Bi-induced localized states in GaAs1−x Bix grown by molecular beam epitaxy,” J. Cryst. Growth 378, 73–76 (2013).
[Crossref]

Y. Tominaga, K. Oe, and M. Yoshimoto, “Low temperature dependence of oscillation wavelength in GaAs1−x Bix laser by photo-pumping,” Appl. Phys. Express 3, 062201 (2010).
[Crossref]

G. Feng, M. Yoshimoto, K. Oe, A. Chayahara, and Y. Horino, “New III-V semiconductor InGaAsBi alloy grown by molecular beam epitaxy,” Jpn. J. Appl. Phys. 44, L1181 (2005).
[Crossref]

Pacebutas, V.

V. Pačebutas, S. Stanionytė, A. Arlauskas, R. Norkus, R. Butkutė, A. Geižutis, B. Čechavičius, and A. Krotkus, “Terahertz excitation spectra of GaAsBi alloys,” J. Phys. D: Appl. Phys. 51, 474001 (2018).
[Crossref]

Patanè, A.

G. Pettinari, A. Patanè, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Bi-induced p-type conductivity in nominally undoped Ga(AsBi),” J. Appl. Phys.  100, 092109 (2012).

Patil, P.

P. Patil, T. Tatabe, Y. Nabara, K. Higaki, N. Nishii, S. Tanaka, F. Ishikawa, and S. Shimomura, “Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy,” J. Surf. Sci. Nanotechnol. 13, 469–473 (2015).
[Crossref]

Perel’, V. I.

B. P. Zakharchenya, D. N. Mirlin, V. I. Perel’, and I. I. Reshina, “Optical alignment of hot carriers in semiconductors,” Sov. Phys. Uspekhi 25, 143–157 (1982).
[Crossref]

Pettinari, G.

G. Pettinari, A. Patanè, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Bi-induced p-type conductivity in nominally undoped Ga(AsBi),” J. Appl. Phys.  100, 092109 (2012).

Pikus, G. E.

G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors(Wiley, 1974).

Ploak, M. P.

R. Kudrawiec, J. Kopaczek, M. P. Ploak, P. Sharoch, M. Gladysiewicz, J. Misiewicz, R. D. Richards, F. Bastiman, and J. P. R. David, “Experimental and theoretical studies of band gap alignment in GaAs1−x Bix /GaAs quantum wells,” J. Appl. Phys.  116, 233508 (2014).
[Crossref]

Polimeni, A.

G. Pettinari, A. Patanè, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Bi-induced p-type conductivity in nominally undoped Ga(AsBi),” J. Appl. Phys.  100, 092109 (2012).

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Reshina, I. I.

B. P. Zakharchenya, D. N. Mirlin, V. I. Perel’, and I. I. Reshina, “Optical alignment of hot carriers in semiconductors,” Sov. Phys. Uspekhi 25, 143–157 (1982).
[Crossref]

Richards, R.

C. J. Hunter, F. Bastiman, A. R. Mohmad, R. Richards, J. S. Ng, S. J. Sweeney, and J. P. R. David, “Absorption characteristics of GaAs1−x Bix /GaAs diodes in the near-infrared,” IEEE Photonics Technol. Lett. 24, 2191–2194 (2012).
[Crossref]

Richards, R. D.

R. Kudrawiec, J. Kopaczek, M. P. Ploak, P. Sharoch, M. Gladysiewicz, J. Misiewicz, R. D. Richards, F. Bastiman, and J. P. R. David, “Experimental and theoretical studies of band gap alignment in GaAs1−x Bix /GaAs quantum wells,” J. Appl. Phys.  116, 233508 (2014).
[Crossref]

Robertson, J.

J. Robertson, “Band offsets, Schottky barrier heights, and their effects on electronic devices,” J. Vac. Sci. Technol. A 31, 050821 (2013).
[Crossref]

Sharoch, P.

R. Kudrawiec, J. Kopaczek, M. P. Ploak, P. Sharoch, M. Gladysiewicz, J. Misiewicz, R. D. Richards, F. Bastiman, and J. P. R. David, “Experimental and theoretical studies of band gap alignment in GaAs1−x Bix /GaAs quantum wells,” J. Appl. Phys.  116, 233508 (2014).
[Crossref]

Shimomura, S.

P. Patil, T. Tatabe, Y. Nabara, K. Higaki, N. Nishii, S. Tanaka, F. Ishikawa, and S. Shimomura, “Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy,” J. Surf. Sci. Nanotechnol. 13, 469–473 (2015).
[Crossref]

Stanionyte, S.

V. Pačebutas, S. Stanionytė, A. Arlauskas, R. Norkus, R. Butkutė, A. Geižutis, B. Čechavičius, and A. Krotkus, “Terahertz excitation spectra of GaAsBi alloys,” J. Phys. D: Appl. Phys. 51, 474001 (2018).
[Crossref]

Stollenwerk, A. J.

W. Yi, A. J. Stollenwerk, and V. Narayanamurti, “Ballistic electron microscopy and spectroscopy of metal and semiconductor nanostructures,” Surf. Sci. Reports 64, 169–190 (2009).
[Crossref]

Sweeney, S. J.

T. Thomas, A. Mellor, N. P. Hylton, M. Führer, D. Alonso-Àlvarez, A. Braun, N. J. Ekins-Daukes, J. P. R. David, and S. J. Sweeney, “Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell,” Semicond. Sci. Technol. 33, 094010 (2015).
[Crossref]

C. A. Broderick, M. Usman, S. J. Sweeney, and E. P. O’Reilly, “Band engineering in dilute nitride and bismide semiconductor lasers,” Semicond. Sci. Technol.  27, 094011 (2012).
[Crossref]

C. J. Hunter, F. Bastiman, A. R. Mohmad, R. Richards, J. S. Ng, S. J. Sweeney, and J. P. R. David, “Absorption characteristics of GaAs1−x Bix /GaAs diodes in the near-infrared,” IEEE Photonics Technol. Lett. 24, 2191–2194 (2012).
[Crossref]

Tanaka, S.

P. Patil, T. Tatabe, Y. Nabara, K. Higaki, N. Nishii, S. Tanaka, F. Ishikawa, and S. Shimomura, “Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy,” J. Surf. Sci. Nanotechnol. 13, 469–473 (2015).
[Crossref]

Tatabe, T.

P. Patil, T. Tatabe, Y. Nabara, K. Higaki, N. Nishii, S. Tanaka, F. Ishikawa, and S. Shimomura, “Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy,” J. Surf. Sci. Nanotechnol. 13, 469–473 (2015).
[Crossref]

Thomas, T.

T. Thomas, A. Mellor, N. P. Hylton, M. Führer, D. Alonso-Àlvarez, A. Braun, N. J. Ekins-Daukes, J. P. R. David, and S. J. Sweeney, “Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell,” Semicond. Sci. Technol. 33, 094010 (2015).
[Crossref]

Tiedje, T.

G. Pettinari, A. Patanè, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Bi-induced p-type conductivity in nominally undoped Ga(AsBi),” J. Appl. Phys.  100, 092109 (2012).

Tominaga, Y.

M. Yoshimoto, M. Itoh, Y. Tominaga, and K. Oe, “Quantitative estimation of density of Bi-induced localized states in GaAs1−x Bix grown by molecular beam epitaxy,” J. Cryst. Growth 378, 73–76 (2013).
[Crossref]

Y. Tominaga, K. Oe, and M. Yoshimoto, “Low temperature dependence of oscillation wavelength in GaAs1−x Bix laser by photo-pumping,” Appl. Phys. Express 3, 062201 (2010).
[Crossref]

Usman, M.

C. A. Broderick, M. Usman, S. J. Sweeney, and E. P. O’Reilly, “Band engineering in dilute nitride and bismide semiconductor lasers,” Semicond. Sci. Technol.  27, 094011 (2012).
[Crossref]

Van de Walle, C. G.

A. Franciosi and C. G. Van de Walle, “Heterojunction band offset engineering,” Surf. Sci. Reports 25, 1–140 (1996).
[Crossref]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Walukiewicz, W.

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBix As1−x,” Appl. Phys. Lett. 91, 051909 (2007).
[Crossref]

Yi, W.

W. Yi, A. J. Stollenwerk, and V. Narayanamurti, “Ballistic electron microscopy and spectroscopy of metal and semiconductor nanostructures,” Surf. Sci. Reports 64, 169–190 (2009).
[Crossref]

Yoshimoto, M.

M. Yoshimoto, M. Itoh, Y. Tominaga, and K. Oe, “Quantitative estimation of density of Bi-induced localized states in GaAs1−x Bix grown by molecular beam epitaxy,” J. Cryst. Growth 378, 73–76 (2013).
[Crossref]

Y. Tominaga, K. Oe, and M. Yoshimoto, “Low temperature dependence of oscillation wavelength in GaAs1−x Bix laser by photo-pumping,” Appl. Phys. Express 3, 062201 (2010).
[Crossref]

G. Feng, M. Yoshimoto, K. Oe, A. Chayahara, and Y. Horino, “New III-V semiconductor InGaAsBi alloy grown by molecular beam epitaxy,” Jpn. J. Appl. Phys. 44, L1181 (2005).
[Crossref]

Yu, E. T.

E. T. Yu, J. O. McCaldin, and T. C. McGill, “Band offsets in semiconductor heterojunctions,” in Solid State Physics46, 1–146 (Academic Press, 1992).
[Crossref]

Yu, K. M.

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBix As1−x,” Appl. Phys. Lett. 91, 051909 (2007).
[Crossref]

Zakharchenya, B. P.

B. P. Zakharchenya, D. N. Mirlin, V. I. Perel’, and I. I. Reshina, “Optical alignment of hot carriers in semiconductors,” Sov. Phys. Uspekhi 25, 143–157 (1982).
[Crossref]

Ziaziulia, P. A.

V. L. Malevich, P. A. Ziaziulia, R. Adomavičius, A. Krotkus, and Y. V. Malevich, “Terahertz emission from cubic semiconductor induced by a transient anisotropic photocurrent,” J. Appl. Phys.  112, 073115 (2012).
[Crossref]

AIP Adv (1)

K. Collar, J. Li, W. Jiao, Y. Guan, M. Losurdo, J. Humlicek, and A. S. Brown, “Determination of the impact of Bi content on the valence band energy of GaAsBi using x-ray photoelectron spectroscopy,” AIP Adv.  7, 075016 (2017).
[Crossref]

Appl. Phys. Express (1)

Y. Tominaga, K. Oe, and M. Yoshimoto, “Low temperature dependence of oscillation wavelength in GaAs1−x Bix laser by photo-pumping,” Appl. Phys. Express 3, 062201 (2010).
[Crossref]

Appl. Phys. Lett. (1)

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBix As1−x,” Appl. Phys. Lett. 91, 051909 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. J. Hunter, F. Bastiman, A. R. Mohmad, R. Richards, J. S. Ng, S. J. Sweeney, and J. P. R. David, “Absorption characteristics of GaAs1−x Bix /GaAs diodes in the near-infrared,” IEEE Photonics Technol. Lett. 24, 2191–2194 (2012).
[Crossref]

J. Appl. Phys (3)

G. Pettinari, A. Patanè, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Bi-induced p-type conductivity in nominally undoped Ga(AsBi),” J. Appl. Phys.  100, 092109 (2012).

R. Kudrawiec, J. Kopaczek, M. P. Ploak, P. Sharoch, M. Gladysiewicz, J. Misiewicz, R. D. Richards, F. Bastiman, and J. P. R. David, “Experimental and theoretical studies of band gap alignment in GaAs1−x Bix /GaAs quantum wells,” J. Appl. Phys.  116, 233508 (2014).
[Crossref]

V. L. Malevich, P. A. Ziaziulia, R. Adomavičius, A. Krotkus, and Y. V. Malevich, “Terahertz emission from cubic semiconductor induced by a transient anisotropic photocurrent,” J. Appl. Phys.  112, 073115 (2012).
[Crossref]

J. Appl. Phys. (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

J. Cryst. Growth (1)

M. Yoshimoto, M. Itoh, Y. Tominaga, and K. Oe, “Quantitative estimation of density of Bi-induced localized states in GaAs1−x Bix grown by molecular beam epitaxy,” J. Cryst. Growth 378, 73–76 (2013).
[Crossref]

J. Phys. D: Appl. Phys. (1)

V. Pačebutas, S. Stanionytė, A. Arlauskas, R. Norkus, R. Butkutė, A. Geižutis, B. Čechavičius, and A. Krotkus, “Terahertz excitation spectra of GaAsBi alloys,” J. Phys. D: Appl. Phys. 51, 474001 (2018).
[Crossref]

J. Surf. Sci. Nanotechnol. (1)

P. Patil, T. Tatabe, Y. Nabara, K. Higaki, N. Nishii, S. Tanaka, F. Ishikawa, and S. Shimomura, “Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy,” J. Surf. Sci. Nanotechnol. 13, 469–473 (2015).
[Crossref]

J. Vac. Sci. Technol. A (1)

J. Robertson, “Band offsets, Schottky barrier heights, and their effects on electronic devices,” J. Vac. Sci. Technol. A 31, 050821 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

G. Feng, M. Yoshimoto, K. Oe, A. Chayahara, and Y. Horino, “New III-V semiconductor InGaAsBi alloy grown by molecular beam epitaxy,” Jpn. J. Appl. Phys. 44, L1181 (2005).
[Crossref]

Rev. Mod. Phys. (1)

H. Kroemer, “Quasielectric fields and band offsets: Teaching electrons new tricks,” Rev. Mod. Phys. 73, 783–793 (2001).
[Crossref]

Semicond. Sci. Technol (2)

A. Arlauskas and A. Krotkus, “THz excitation spectra of AIIIBV semiconductors,” Semicond. Sci. Technol.  27, 115015 (2012).
[Crossref]

C. A. Broderick, M. Usman, S. J. Sweeney, and E. P. O’Reilly, “Band engineering in dilute nitride and bismide semiconductor lasers,” Semicond. Sci. Technol.  27, 094011 (2012).
[Crossref]

Semicond. Sci. Technol. (1)

T. Thomas, A. Mellor, N. P. Hylton, M. Führer, D. Alonso-Àlvarez, A. Braun, N. J. Ekins-Daukes, J. P. R. David, and S. J. Sweeney, “Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell,” Semicond. Sci. Technol. 33, 094010 (2015).
[Crossref]

Sov. Phys. Uspekhi (1)

B. P. Zakharchenya, D. N. Mirlin, V. I. Perel’, and I. I. Reshina, “Optical alignment of hot carriers in semiconductors,” Sov. Phys. Uspekhi 25, 143–157 (1982).
[Crossref]

Surf. Sci. Reports (2)

W. Yi, A. J. Stollenwerk, and V. Narayanamurti, “Ballistic electron microscopy and spectroscopy of metal and semiconductor nanostructures,” Surf. Sci. Reports 64, 169–190 (2009).
[Crossref]

A. Franciosi and C. G. Van de Walle, “Heterojunction band offset engineering,” Surf. Sci. Reports 25, 1–140 (1996).
[Crossref]

Other (2)

E. T. Yu, J. O. McCaldin, and T. C. McGill, “Band offsets in semiconductor heterojunctions,” in Solid State Physics46, 1–146 (Academic Press, 1992).
[Crossref]

G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors(Wiley, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Scheme of optical transitions corresponding to the threshold photon energy E1 for THz-emission. The THz pulse is emitted when an electron excess energy is sufficient to overcome the ΔEc potential barrier.
Fig. 2
Fig. 2 The theoretical spectral shape of THz-emission onset: The A(ε0) function for an electron photoexcitation from the hh band (α0 = −1) at ϑE = 80°. The inset presents the transmission coefficient of potential barrier.
Fig. 3
Fig. 3 Experimental setup for THz excitation spectroscopy measurements.
Fig. 4
Fig. 4 THz pulses emitted by GaAs0.941Bi0.059As-GaAs photoexcited by OPA beams with photon energies in the 1.19–1.89 eV range (a) and the Fourier spectrum of the pulse obtained for ħω = 1.89 eV (b).
Fig. 5
Fig. 5 (a) XRD rocking curves of the (004) diffraction peak of several GaAsBi-GaAs samples, x = 0.068, 0.086, and 0.117. (b) Reciprocal space map of the (115) diffraction peak of GaAsBi-GaAs sample with the highest Bi content, x = 0.117.
Fig. 6
Fig. 6 Dependence of the GaAs1−x Bix bandgap on the atomic composition x. Full curve presents the theoretical estimate of strained-layer Eg(x) dependence (11). Dashed curve corresponds to the bandgap dependence of unstrained, bulk GaAsBi [13].
Fig. 7
Fig. 7 THz-pulse excitation spectra (dots) of investigated GaAsBi-GaAs heterostructures. Red curves present photoluminescence spectra of the samples. Blue ones correspond to theoretical spectral shapes A(ε0) of THz-emission onset [Eq. (5)].
Fig. 8
Fig. 8 Energy spectra of several investigated strained GaAsBi layers (thick curves). Dashed curves present spectra of unstrained GaAsBi.
Fig. 9
Fig. 9 Positions of the strained-GaAsBi conduction and valence bands (dots) with respect to those of GaAs (dashed lines). Large open and small full dots are obtained disregarding and taking into account an influence of strains on energy-band dispersions.
Fig. 10
Fig. 10 Presumable energy diagram of the GaAs0.883Bi0.117-GaAs heterostructure.

Tables (1)

Tables Icon

Table 1 Physical parameters of GaAs1−xBix layers (their atomic compositions x and bandgaps Eg), measured onsets of THz-emission E1 and determined conduction band offsets ∆Ec of investigated GaAsBi-GaAs heterostructures.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E 1 = E g + Δ E c ( 1 + m m h ) .
j z = 2 ( 2 π ) 3 ( v z > 0 ) d 3 k v z T ( ε ) f k .
T ( ε ) = 4 1 U ε ( 1 U ε + 1 ) 2 ,
f k = C G ( ε ) F ( n k ) , G ( ε ) = 1 2 π s exp [ ( ε ε 0 ) 2 2 s 2 ] , F ( n k ) = 1 + α 0 P 2 ( cos χ ) .
j z = j 0 A ( ε 0 ) , j 0 = n U 2 2 m ε 0 , A ( ε 0 ) = 2 U 0 d ε ε G ( ε ) 0 π / 2 d ϑ sin ϑ cos ϑ T ( ε ) F ¯ .
F ¯ = 1 2 π 0 2 π d φ F ( n k ) = 1 + α 0 4 ( 1 3 cos 2 ϑ E ) ( 1 3 cos 2 ϑ ) ,
A ( ε 0 ) = [ 1 α 0 2 ( 1 3 cos 2 ϑ E ) ] ε 0 U U ω E 1 .
A ( ε 0 ) ( ε 0 U ) p ( ω E 1 ) p
a GaAsBi = ( 1 x ) a GaAs + x a GaBi ,
ϵ x x = Δ a a , ϵ z z = 2 C 12 C 11 Δ a a
E g ( x ) = E g , 0 ( x ) + ( a c + a v ) ( 2 ϵ x x + ϵ z z ) + | b ( ϵ z z ϵ x x ) | .
ε 1 , 2 ( k ) = E v , 0 a v ( 2 ϵ x x + ϵ z z ) 2 2 m 0 γ 1 k 2 k + ϵ k + ϵ ,
k = ( 2 2 m 0 ) 2 [ ( 2 γ 2 k 2 ) 2 + 12 ( γ 3 2 γ 2 2 ) ( k x 2 k y 2 + k y 2 k z 2 + k z 2 k x 2 ) ] ,
ϵ k = 2 2 m 0 2 γ 2 b ( k 2 2 k z 2 ) ( ϵ z z ϵ x x ) , ϵ = b 2 ( ϵ z z ϵ x x ) 2 ,
ε ( k ) = E c + ( 1 2 E g ) 2 + P 2 k 2 1 2 E g .

Metrics