Abstract

A modified reflective metasurface, which is constructed by replacing the metal ground of the reflective coding metasurface with a bandpass frequency-selective surface, is proposed. The metasurface has transmission and reduction of radar cross-section characteristics. This allows the metasurface to overcome the drawbacks of conventional realizations, which use lossy materials. The modified metasurface provides high-efficiency transmission in the passband of a frequency-selective surface and broadband reduction of the radar cross section in the rejection band of the frequency-selective surface. Transmission of −0.24 dB was achieved at 4.6 GHz, as well as a −15 dB reduction of radar cross section from 8.5 to 13.5 GHz. This work provides advancements in metasurface applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband backscattering reduction realized by array of lossy scatterers

Fei-fei Li, Qun Lou, Ping Chen, Yin Poo, and Rui-Xin Wu
Opt. Express 26(26) 34711-34718 (2018)

Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures

Feng Lan, Ziqiang Yang, Limei Qi, Xi Gao, and Zongjun Shi
Opt. Lett. 39(7) 1709-1712 (2014)

Quasi-optical frequency selective surface with phase compensation structure correcting the beam distortion

Xiayuan Yao, Bingyuan Liang, and Ming Bai
Opt. Express 25(19) 23014-23023 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
    [Crossref]
  2. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  3. K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
    [Crossref]
  4. R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
    [Crossref]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  6. F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu, Y. Poo, J. H. Jiang, and S. John, “Topological light-trapping on a dislocation,” Nat. Commun. 9(1), 2462 (2018).
    [Crossref] [PubMed]
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  8. F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
    [Crossref]
  9. K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
    [Crossref] [PubMed]
  10. J. Zhao, B. Sima, N. Jia, C. Wang, B. Zhu, T. Jiang, and Y. Feng, “Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements,” Opt. Express 24(24), 27849–27857 (2016).
    [Crossref] [PubMed]
  11. K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express 25(5), 5571–5579 (2017).
    [Crossref] [PubMed]
  12. J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
    [Crossref]
  13. P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
    [Crossref] [PubMed]
  14. W. S. Arceneaux, R. D. Akins, and W. B. May, “Absorptive/Transmissive Radome,” U.S. Patent 5,400,043, (1995).
  15. H. Zhou, L. W. Yang, S. B. Qu, K. Wang, J. F. Wang, H. Ma, and Z. Xu, “Experimental demonstration of an absorptive/transmissive fss with magnetic material,” IEEE Antennas Wirel. Propag. Lett. 13, 114–117 (2014).
    [Crossref]
  16. Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
    [Crossref]
  17. G. I. Kiani, A. R. Weily, and K. P. Esselle, “A novel absorb/transmit fss for secure indoor wireless networks with reduced multipath fading,” IEEE Microw. Wirel. Compon. Lett. 16(6), 378–380 (2006).
    [Crossref]
  18. H. Huang and Z. Shen, “Absorptive frequency-selective transmission structure with square-loop hybrid resonator,” IEEE Antennas Wirel. Propag. Lett. 16, 3212–3215 (2017).
    [Crossref]
  19. P. Mei, X. Q. Lin, J. W. Yu, P. C. Zhang, and A. Boukarkar, “A low radar cross section and low profile antenna co-designed with absorbent frequency selective radome,” IEEE Trans. Antenn. Propag. 66(1), 409–413 (2018).
    [Crossref]
  20. X. Chen, Y. Li, Y. Fu, and N. Yuan, “Design and analysis of lumped resistor loaded metamaterial absorber with transmission band,” Opt. Express 20(27), 28347–28352 (2012).
    [Crossref] [PubMed]
  21. F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag. 60(6), 2740–2747 (2012).
    [Crossref]
  22. L. Liu and H. Cha, “Analysis and design of the invisible radome by llumar glass,” J. Appl. Phys. 47(7), 075105 (2014).
  23. Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-selective rasorber based on square-loop and cross-dipole arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
    [Crossref]
  24. Y. Zhang, B. Li, L. Zhu, Y. Tang, Y. Chang, and Y. Bo, “Frequency Selective Rasorber With Low Insertion Loss and Dual-Band Absorptions Using Planar Slotline Structures,” IEEE Antennas Wirel. Propag. Lett. 17, 1 (2018).
    [Crossref]
  25. Z. Shen, J. Wang, and B. Li, “3-D Frequency Selective Rasorber: Concept, Analysis, and Design,” IEEE Trans. Microw. Theory Tech. 64(10), 3087–3096 (2016).
    [Crossref]
  26. Y. Yu, Z. Shen, T. Deng, and G. Luo, “3-D Frequency-Selective Rasorber with Wide Upper Absorption Band,” IEEE Trans. Antenn. Propag. 65(8), 4363–4367 (2017).
    [Crossref]
  27. C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
    [Crossref]
  28. C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
    [Crossref]
  29. C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining fss and ebg surfaces for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
    [Crossref]
  30. M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
    [Crossref]
  31. S. Heydari, P. Jahangiri, A. S. Arezoomand, and F. B. Zarrabi, “Circular polarization fractal slot by jerusalem cross slot for wireless applications,” Prog. Electromag. Res. Lett. 63, 79–84 (2016).
    [Crossref]

2018 (5)

F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu, Y. Poo, J. H. Jiang, and S. John, “Topological light-trapping on a dislocation,” Nat. Commun. 9(1), 2462 (2018).
[Crossref] [PubMed]

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

P. Mei, X. Q. Lin, J. W. Yu, P. C. Zhang, and A. Boukarkar, “A low radar cross section and low profile antenna co-designed with absorbent frequency selective radome,” IEEE Trans. Antenn. Propag. 66(1), 409–413 (2018).
[Crossref]

Y. Zhang, B. Li, L. Zhu, Y. Tang, Y. Chang, and Y. Bo, “Frequency Selective Rasorber With Low Insertion Loss and Dual-Band Absorptions Using Planar Slotline Structures,” IEEE Antennas Wirel. Propag. Lett. 17, 1 (2018).
[Crossref]

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining fss and ebg surfaces for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

2017 (6)

Y. Yu, Z. Shen, T. Deng, and G. Luo, “3-D Frequency-Selective Rasorber with Wide Upper Absorption Band,” IEEE Trans. Antenn. Propag. 65(8), 4363–4367 (2017).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express 25(5), 5571–5579 (2017).
[Crossref] [PubMed]

H. Huang and Z. Shen, “Absorptive frequency-selective transmission structure with square-loop hybrid resonator,” IEEE Antennas Wirel. Propag. Lett. 16, 3212–3215 (2017).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

2016 (5)

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

J. Zhao, B. Sima, N. Jia, C. Wang, B. Zhu, T. Jiang, and Y. Feng, “Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements,” Opt. Express 24(24), 27849–27857 (2016).
[Crossref] [PubMed]

S. Heydari, P. Jahangiri, A. S. Arezoomand, and F. B. Zarrabi, “Circular polarization fractal slot by jerusalem cross slot for wireless applications,” Prog. Electromag. Res. Lett. 63, 79–84 (2016).
[Crossref]

Z. Shen, J. Wang, and B. Li, “3-D Frequency Selective Rasorber: Concept, Analysis, and Design,” IEEE Trans. Microw. Theory Tech. 64(10), 3087–3096 (2016).
[Crossref]

2015 (1)

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

2014 (3)

H. Zhou, L. W. Yang, S. B. Qu, K. Wang, J. F. Wang, H. Ma, and Z. Xu, “Experimental demonstration of an absorptive/transmissive fss with magnetic material,” IEEE Antennas Wirel. Propag. Lett. 13, 114–117 (2014).
[Crossref]

L. Liu and H. Cha, “Analysis and design of the invisible radome by llumar glass,” J. Appl. Phys. 47(7), 075105 (2014).

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-selective rasorber based on square-loop and cross-dipole arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

2012 (2)

X. Chen, Y. Li, Y. Fu, and N. Yuan, “Design and analysis of lumped resistor loaded metamaterial absorber with transmission band,” Opt. Express 20(27), 28347–28352 (2012).
[Crossref] [PubMed]

F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag. 60(6), 2740–2747 (2012).
[Crossref]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (1)

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2006 (1)

G. I. Kiani, A. R. Weily, and K. P. Esselle, “A novel absorb/transmit fss for secure indoor wireless networks with reduced multipath fading,” IEEE Microw. Wirel. Compon. Lett. 16(6), 378–380 (2006).
[Crossref]

2002 (1)

M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (1)

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

1988 (1)

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Arezoomand, A. S.

S. Heydari, P. Jahangiri, A. S. Arezoomand, and F. B. Zarrabi, “Circular polarization fractal slot by jerusalem cross slot for wireless applications,” Prog. Electromag. Res. Lett. 63, 79–84 (2016).
[Crossref]

Belov, P. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Bo, Y.

Y. Zhang, B. Li, L. Zhu, Y. Tang, Y. Chang, and Y. Bo, “Frequency Selective Rasorber With Low Insertion Loss and Dual-Band Absorptions Using Planar Slotline Structures,” IEEE Antennas Wirel. Propag. Lett. 17, 1 (2018).
[Crossref]

Boukarkar, A.

P. Mei, X. Q. Lin, J. W. Yu, P. C. Zhang, and A. Boukarkar, “A low radar cross section and low profile antenna co-designed with absorbent frequency selective radome,” IEEE Trans. Antenn. Propag. 66(1), 409–413 (2018).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cha, H.

L. Liu and H. Cha, “Analysis and design of the invisible radome by llumar glass,” J. Appl. Phys. 47(7), 075105 (2014).

Chan, C. H.

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

Chang, Y.

Y. Zhang, B. Li, L. Zhu, Y. Tang, Y. Chang, and Y. Bo, “Frequency Selective Rasorber With Low Insertion Loss and Dual-Band Absorptions Using Planar Slotline Structures,” IEEE Antennas Wirel. Propag. Lett. 17, 1 (2018).
[Crossref]

Chen, K.

Chen, P.

F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu, Y. Poo, J. H. Jiang, and S. John, “Topological light-trapping on a dislocation,” Nat. Commun. 9(1), 2462 (2018).
[Crossref] [PubMed]

Chen, X.

Cheng, Q.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

Clerc, M.

M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

Costa, F.

F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag. 60(6), 2740–2747 (2012).
[Crossref]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

Cui, L.

Cui, T. J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

Cwik, T.

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

Dai, J. Y.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Deng, T.

Y. Yu, Z. Shen, T. Deng, and G. Luo, “3-D Frequency-Selective Rasorber with Wide Upper Absorption Band,” IEEE Trans. Antenn. Propag. 65(8), 4363–4367 (2017).
[Crossref]

Dong, D. S.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

Esselle, K. P.

G. I. Kiani, A. R. Weily, and K. P. Esselle, “A novel absorb/transmit fss for secure indoor wireless networks with reduced multipath fading,” IEEE Microw. Wirel. Compon. Lett. 16(6), 378–380 (2006).
[Crossref]

Feng, Y.

Fu, Y.

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Glybovski, S. B.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Guo, T. C.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Heydari, S.

S. Heydari, P. Jahangiri, A. S. Arezoomand, and F. B. Zarrabi, “Circular polarization fractal slot by jerusalem cross slot for wireless applications,” Prog. Electromag. Res. Lett. 63, 79–84 (2016).
[Crossref]

Huang, C.

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining fss and ebg surfaces for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

Huang, H.

H. Huang and Z. Shen, “Absorptive frequency-selective transmission structure with square-loop hybrid resonator,” IEEE Antennas Wirel. Propag. Lett. 16, 3212–3215 (2017).
[Crossref]

Jahangiri, P.

S. Heydari, P. Jahangiri, A. S. Arezoomand, and F. B. Zarrabi, “Circular polarization fractal slot by jerusalem cross slot for wireless applications,” Prog. Electromag. Res. Lett. 63, 79–84 (2016).
[Crossref]

Ji, C.

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining fss and ebg surfaces for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

Jia, N.

Jia, S.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Jiang, J. H.

F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu, Y. Poo, J. H. Jiang, and S. John, “Topological light-trapping on a dislocation,” Nat. Commun. 9(1), 2462 (2018).
[Crossref] [PubMed]

Jiang, T.

John, S.

F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu, Y. Poo, J. H. Jiang, and S. John, “Topological light-trapping on a dislocation,” Nat. Commun. 9(1), 2462 (2018).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kennedy, J.

M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

Kiani, G. I.

G. I. Kiani, A. R. Weily, and K. P. Esselle, “A novel absorb/transmit fss for secure indoor wireless networks with reduced multipath fading,” IEEE Microw. Wirel. Compon. Lett. 16(6), 378–380 (2006).
[Crossref]

Kivshar, Y. S.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Li, B.

Y. Zhang, B. Li, L. Zhu, Y. Tang, Y. Chang, and Y. Bo, “Frequency Selective Rasorber With Low Insertion Loss and Dual-Band Absorptions Using Planar Slotline Structures,” IEEE Antennas Wirel. Propag. Lett. 17, 1 (2018).
[Crossref]

Z. Shen, J. Wang, and B. Li, “3-D Frequency Selective Rasorber: Concept, Analysis, and Design,” IEEE Trans. Microw. Theory Tech. 64(10), 3087–3096 (2016).
[Crossref]

Li, F. F.

F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu, Y. Poo, J. H. Jiang, and S. John, “Topological light-trapping on a dislocation,” Nat. Commun. 9(1), 2462 (2018).
[Crossref] [PubMed]

Li, Y.

Li, Y. F.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Liang, J.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Lin, X. Q.

P. Mei, X. Q. Lin, J. W. Yu, P. C. Zhang, and A. Boukarkar, “A low radar cross section and low profile antenna co-designed with absorbent frequency selective radome,” IEEE Trans. Antenn. Propag. 66(1), 409–413 (2018).
[Crossref]

Liu, L.

L. Liu and H. Cha, “Analysis and design of the invisible radome by llumar glass,” J. Appl. Phys. 47(7), 075105 (2014).

Lou, Q.

F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu, Y. Poo, J. H. Jiang, and S. John, “Topological light-trapping on a dislocation,” Nat. Commun. 9(1), 2462 (2018).
[Crossref] [PubMed]

Luo, G.

Y. Yu, Z. Shen, T. Deng, and G. Luo, “3-D Frequency-Selective Rasorber with Wide Upper Absorption Band,” IEEE Trans. Antenn. Propag. 65(8), 4363–4367 (2017).
[Crossref]

Luo, X.

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining fss and ebg surfaces for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

Ma, H.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

H. Zhou, L. W. Yang, S. B. Qu, K. Wang, J. F. Wang, H. Ma, and Z. Xu, “Experimental demonstration of an absorptive/transmissive fss with magnetic material,” IEEE Antennas Wirel. Propag. Lett. 13, 114–117 (2014).
[Crossref]

Manara, G.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

Mei, P.

P. Mei, X. Q. Lin, J. W. Yu, P. C. Zhang, and A. Boukarkar, “A low radar cross section and low profile antenna co-designed with absorbent frequency selective radome,” IEEE Trans. Antenn. Propag. 66(1), 409–413 (2018).
[Crossref]

Mittra, R.

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Monorchio, A.

F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag. 60(6), 2740–2747 (2012).
[Crossref]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pang, Y. Q.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Poo, Y.

F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu, Y. Poo, J. H. Jiang, and S. John, “Topological light-trapping on a dislocation,” Nat. Commun. 9(1), 2462 (2018).
[Crossref] [PubMed]

Qu, S. B.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

H. Zhou, L. W. Yang, S. B. Qu, K. Wang, J. F. Wang, H. Ma, and Z. Xu, “Experimental demonstration of an absorptive/transmissive fss with magnetic material,” IEEE Antennas Wirel. Propag. Lett. 13, 114–117 (2014).
[Crossref]

Rozanov, K. N.

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shang, Y. P.

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-selective rasorber based on square-loop and cross-dipole arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, Y.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Shen, Z.

H. Huang and Z. Shen, “Absorptive frequency-selective transmission structure with square-loop hybrid resonator,” IEEE Antennas Wirel. Propag. Lett. 16, 3212–3215 (2017).
[Crossref]

Y. Yu, Z. Shen, T. Deng, and G. Luo, “3-D Frequency-Selective Rasorber with Wide Upper Absorption Band,” IEEE Trans. Antenn. Propag. 65(8), 4363–4367 (2017).
[Crossref]

Z. Shen, J. Wang, and B. Li, “3-D Frequency Selective Rasorber: Concept, Analysis, and Design,” IEEE Trans. Microw. Theory Tech. 64(10), 3087–3096 (2016).
[Crossref]

Shen, Z. X.

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-selective rasorber based on square-loop and cross-dipole arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

Shi, W.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Sima, B.

Simovski, C. R.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Song, J.

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining fss and ebg surfaces for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

Su, P.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Tang, Y.

Y. Zhang, B. Li, L. Zhu, Y. Tang, Y. Chang, and Y. Bo, “Frequency Selective Rasorber With Low Insertion Loss and Dual-Band Absorptions Using Planar Slotline Structures,” IEEE Antennas Wirel. Propag. Lett. 17, 1 (2018).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tretyakov, S. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Wang, C.

Wang, H.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Wang, H. X.

F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu, Y. Poo, J. H. Jiang, and S. John, “Topological light-trapping on a dislocation,” Nat. Commun. 9(1), 2462 (2018).
[Crossref] [PubMed]

Wang, J.

Z. Shen, J. Wang, and B. Li, “3-D Frequency Selective Rasorber: Concept, Analysis, and Design,” IEEE Trans. Microw. Theory Tech. 64(10), 3087–3096 (2016).
[Crossref]

Wang, J. F.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

H. Zhou, L. W. Yang, S. B. Qu, K. Wang, J. F. Wang, H. Ma, and Z. Xu, “Experimental demonstration of an absorptive/transmissive fss with magnetic material,” IEEE Antennas Wirel. Propag. Lett. 13, 114–117 (2014).
[Crossref]

Wang, K.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

H. Zhou, L. W. Yang, S. B. Qu, K. Wang, J. F. Wang, H. Ma, and Z. Xu, “Experimental demonstration of an absorptive/transmissive fss with magnetic material,” IEEE Antennas Wirel. Propag. Lett. 13, 114–117 (2014).
[Crossref]

Weily, A. R.

G. I. Kiani, A. R. Weily, and K. P. Esselle, “A novel absorb/transmit fss for secure indoor wireless networks with reduced multipath fading,” IEEE Microw. Wirel. Compon. Lett. 16(6), 378–380 (2006).
[Crossref]

Wu, R. X.

F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu, Y. Poo, J. H. Jiang, and S. John, “Topological light-trapping on a dislocation,” Nat. Commun. 9(1), 2462 (2018).
[Crossref] [PubMed]

Wu, X.

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining fss and ebg surfaces for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

Xiao, S. Q.

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-selective rasorber based on square-loop and cross-dipole arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

Xiong, Z.

F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu, Y. Poo, J. H. Jiang, and S. John, “Topological light-trapping on a dislocation,” Nat. Commun. 9(1), 2462 (2018).
[Crossref] [PubMed]

Xu, G. Y.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Xu, Z.

H. Zhou, L. W. Yang, S. B. Qu, K. Wang, J. F. Wang, H. Ma, and Z. Xu, “Experimental demonstration of an absorptive/transmissive fss with magnetic material,” IEEE Antennas Wirel. Propag. Lett. 13, 114–117 (2014).
[Crossref]

Yang, J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Yang, L. W.

H. Zhou, L. W. Yang, S. B. Qu, K. Wang, J. F. Wang, H. Ma, and Z. Xu, “Experimental demonstration of an absorptive/transmissive fss with magnetic material,” IEEE Antennas Wirel. Propag. Lett. 13, 114–117 (2014).
[Crossref]

Yu, J. W.

P. Mei, X. Q. Lin, J. W. Yu, P. C. Zhang, and A. Boukarkar, “A low radar cross section and low profile antenna co-designed with absorbent frequency selective radome,” IEEE Trans. Antenn. Propag. 66(1), 409–413 (2018).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, Z. Shen, T. Deng, and G. Luo, “3-D Frequency-Selective Rasorber with Wide Upper Absorption Band,” IEEE Trans. Antenn. Propag. 65(8), 4363–4367 (2017).
[Crossref]

Yuan, N.

Yuan, W.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Zarrabi, F. B.

S. Heydari, P. Jahangiri, A. S. Arezoomand, and F. B. Zarrabi, “Circular polarization fractal slot by jerusalem cross slot for wireless applications,” Prog. Electromag. Res. Lett. 63, 79–84 (2016).
[Crossref]

Zhang, C.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Zhang, J. Q.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Zhang, P. C.

P. Mei, X. Q. Lin, J. W. Yu, P. C. Zhang, and A. Boukarkar, “A low radar cross section and low profile antenna co-designed with absorbent frequency selective radome,” IEEE Trans. Antenn. Propag. 66(1), 409–413 (2018).
[Crossref]

Zhang, Y.

Y. Zhang, B. Li, L. Zhu, Y. Tang, Y. Chang, and Y. Bo, “Frequency Selective Rasorber With Low Insertion Loss and Dual-Band Absorptions Using Planar Slotline Structures,” IEEE Antennas Wirel. Propag. Lett. 17, 1 (2018).
[Crossref]

Zhao, J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express 25(5), 5571–5579 (2017).
[Crossref] [PubMed]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

J. Zhao, B. Sima, N. Jia, C. Wang, B. Zhu, T. Jiang, and Y. Feng, “Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements,” Opt. Express 24(24), 27849–27857 (2016).
[Crossref] [PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

Zhao, Y.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Zheng, Q. Q.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Zhou, H.

H. Zhou, L. W. Yang, S. B. Qu, K. Wang, J. F. Wang, H. Ma, and Z. Xu, “Experimental demonstration of an absorptive/transmissive fss with magnetic material,” IEEE Antennas Wirel. Propag. Lett. 13, 114–117 (2014).
[Crossref]

Zhu, B.

Zhu, L.

Y. Zhang, B. Li, L. Zhu, Y. Tang, Y. Chang, and Y. Bo, “Frequency Selective Rasorber With Low Insertion Loss and Dual-Band Absorptions Using Planar Slotline Structures,” IEEE Antennas Wirel. Propag. Lett. 17, 1 (2018).
[Crossref]

Appl. Phys. Lett. (2)

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (3)

H. Huang and Z. Shen, “Absorptive frequency-selective transmission structure with square-loop hybrid resonator,” IEEE Antennas Wirel. Propag. Lett. 16, 3212–3215 (2017).
[Crossref]

H. Zhou, L. W. Yang, S. B. Qu, K. Wang, J. F. Wang, H. Ma, and Z. Xu, “Experimental demonstration of an absorptive/transmissive fss with magnetic material,” IEEE Antennas Wirel. Propag. Lett. 13, 114–117 (2014).
[Crossref]

Y. Zhang, B. Li, L. Zhu, Y. Tang, Y. Chang, and Y. Bo, “Frequency Selective Rasorber With Low Insertion Loss and Dual-Band Absorptions Using Planar Slotline Structures,” IEEE Antennas Wirel. Propag. Lett. 17, 1 (2018).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

G. I. Kiani, A. R. Weily, and K. P. Esselle, “A novel absorb/transmit fss for secure indoor wireless networks with reduced multipath fading,” IEEE Microw. Wirel. Compon. Lett. 16(6), 378–380 (2006).
[Crossref]

IEEE Trans. Antenn. Propag. (7)

P. Mei, X. Q. Lin, J. W. Yu, P. C. Zhang, and A. Boukarkar, “A low radar cross section and low profile antenna co-designed with absorbent frequency selective radome,” IEEE Trans. Antenn. Propag. 66(1), 409–413 (2018).
[Crossref]

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

Y. Yu, Z. Shen, T. Deng, and G. Luo, “3-D Frequency-Selective Rasorber with Wide Upper Absorption Band,” IEEE Trans. Antenn. Propag. 65(8), 4363–4367 (2017).
[Crossref]

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-selective rasorber based on square-loop and cross-dipole arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag. 60(6), 2740–2747 (2012).
[Crossref]

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining fss and ebg surfaces for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

IEEE Trans. Evol. Comput. (1)

M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

Z. Shen, J. Wang, and B. Li, “3-D Frequency Selective Rasorber: Concept, Analysis, and Design,” IEEE Trans. Microw. Theory Tech. 64(10), 3087–3096 (2016).
[Crossref]

J. Appl. Phys. (1)

L. Liu and H. Cha, “Analysis and design of the invisible radome by llumar glass,” J. Appl. Phys. 47(7), 075105 (2014).

J. Phys. D Appl. Phys. (1)

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Nat. Commun. (1)

F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu, Y. Poo, J. H. Jiang, and S. John, “Topological light-trapping on a dislocation,” Nat. Commun. 9(1), 2462 (2018).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rep. (1)

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Proc. IEEE (1)

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

Prog. Electromag. Res. Lett. (1)

S. Heydari, P. Jahangiri, A. S. Arezoomand, and F. B. Zarrabi, “Circular polarization fractal slot by jerusalem cross slot for wireless applications,” Prog. Electromag. Res. Lett. 63, 79–84 (2016).
[Crossref]

Sci. Rep. (2)

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (1)

W. S. Arceneaux, R. D. Akins, and W. B. May, “Absorptive/Transmissive Radome,” U.S. Patent 5,400,043, (1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Mechanism and schematic diagram of CM-FSS.
Fig. 2
Fig. 2 Schematic of designed CM-FSS and details of the basic elements [p = 13 mm, t = 4 mm, l = 12 mm, d = 6 mm, g = 0.5 mm, W1 = 0.5 mm, W2 = 0.5 mm, r1 = 1.5 mm, r2 = 2 mm, r3 = 2.5 mm, and r4 = 3.2 mm (Element 1) or 4 mm (Element 2)].
Fig. 3
Fig. 3 Reflection (a) amplitudes and (c) phases of basic elements of reflective CM and reflection (b) amplitudes and (d) phases of basic elements of CM-FSS with different r4; calculated RCSR of (e) reflective CM and (f) CM-FSS.
Fig. 4
Fig. 4 Reflection coefficients of a 4-mm-thick dielectric slab [εr = 2.6(1 – j0.001)] backed by a metal plate or Jerusalem cross slot FSS.
Fig. 5
Fig. 5 (a) Transmission amplitudes of flowerlike patterns and the FSS; transmission (b) amplitudes and (c) phases of basic elements of CM-FSS with different r4.
Fig. 6
Fig. 6 Calculated transmission, RCSR of proposed CM-FSS and ratio of energy dissipated.
Fig. 7
Fig. 7 Simulated electric filed distribution of Jerusalem-cross slot FSS [(a), (c) and (e)] and flower-like patterns [(b), (d) and (f)] at 4.6 GHz [(a) and (d)], 8.7 GHz [(b) and (c)] and 13.3 GHz [(e) and (f)].
Fig. 8
Fig. 8 (a) Top and (b) bottom view of the fabricated sample; calculated and measured (c) transmission and (d) RCSR of proposed CM-FSS; RCSR under oblique incidence for (e) TE polarization and (e) TM polarization.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

RCSR=| N= 2 n p i a i exp(j φ i ) N= 2 n p i |,
T=| 2 Z 0 C Z 0 2 +D Z 0 +A Z 0 +B |,
[ A B C D ]=[ 1 0 1 Z f 1 ][ cos( β d t) j Z d sin( β d t) j sin( β d t) Z d cos( β d t) ][ 1 0 1 Z J 1 ],
RCSR=| p 1 a 1 r exp(j φ 1 r )+(1 p 1 ) a 2 r exp(j φ 2 r ) |,
TR=| p 1 a 1 t exp(j φ 1 t )+(1 p 1 ) a 2 t exp(j φ 2 t ) |
fitness=max{ Δ 15dB }=2 fre q up fre q down fre q up +fre q down ,

Metrics