Abstract

By definition, optical quantities transmittance and reflectance can basically be determined as the ratio of two flux measurements. One measurement is performed with, and the other without, the sample under test in the optical path. However, at longer wavelengths the temperature radiation of the sample itself as well as of the applied spectrometer and detector increasingly contribute to the detected radiation budget. This leads to growing systematic errors in the determination of the transmittance and reflectance of samples with Fourier transform infrared spectrometers at longer wavelengths. We present an effective method to overcome this problem by measuring a sequence of four measurements at two different flux levels. Results obtained with this method are compared to the basic ratio method over a spectral range from 200 cm−1 to 30 cm−1 (0.9 THz to 6 THz).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intercomparison of far-infrared transmittance measurements

M. Kehrt, C. Monte, A. Steiger, A. Hoehl, J. Hollandt, H.-P. Gemünd, A. Brömel, F. Hänschke, T. May, N. Deßmann, H.-W. Hübers, R. Mientus, and E. Reck
Opt. Express 26(26) 34484-34496 (2018)

Traceable terahertz power measurement from 1 THz to 5 THz

Andreas Steiger, Mathias Kehrt, Christian Monte, and Ralf Müller
Opt. Express 21(12) 14466-14473 (2013)

Testing the radiometric accuracy of Fourier transform infrared transmittance measurements

S. G. Kaplan, L. M. Hanssen, and R. U. Datla
Appl. Opt. 36(34) 8896-8908 (1997)

References

  • View by:
  • |
  • |
  • |

  1. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier transform spectrometry (Academic, 2001).
  2. J. W. Goodman, Introduction to Fourier optics (Roberts and Company, 2005).
  3. S. G. Kaplan, L. M. Hanssen, and R. U. Datla, “Testing the radiometric accuracy of Fourier transform infrared transmittance measurements,” Appl. Opt. 36(34), 8896–8908 (1997).
    [Crossref] [PubMed]
  4. J. R. Birch and F. J. J. Clarke, “Interreflection errors in Fourier transform spectroscopy: a preliminary appraisal,” Anal. Chim. Acta 380(2–3), 369–378 (1999).
    [Crossref]
  5. J. R. Birch and E. A. Nicol, “The removal of detector port radiation effects in power transmission or reflection Fourier transform spectroscopy,” Infrared Phys. 27(3), 159–165 (1987).
    [Crossref]
  6. W. Woltersdorff, “Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot,” Z. Phys. 91(3–4), 230–252 (1934).
    [Crossref]
  7. R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Thz Waves 35(8), 659–670 (2014).
    [Crossref]
  8. M. Kehrt, C. Monte, J. Beyer, and J. Hollandt, “A highly linear superconducting bolometer for quantitative THz Fourier transform spectroscopy,” Opt. Express 23(9), 11170–11182 (2015).
    [Crossref] [PubMed]
  9. D. B. Chase, “Nonlinear Detector Response in FT-IR,” Appl. Spectrosc. 38(4), 491–494 (1984).
    [Crossref]
  10. A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21(12), 14466–14473 (2013).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Thz Waves 35(8), 659–670 (2014).
[Crossref]

2013 (1)

1999 (1)

J. R. Birch and F. J. J. Clarke, “Interreflection errors in Fourier transform spectroscopy: a preliminary appraisal,” Anal. Chim. Acta 380(2–3), 369–378 (1999).
[Crossref]

1997 (1)

1987 (1)

J. R. Birch and E. A. Nicol, “The removal of detector port radiation effects in power transmission or reflection Fourier transform spectroscopy,” Infrared Phys. 27(3), 159–165 (1987).
[Crossref]

1984 (1)

1934 (1)

W. Woltersdorff, “Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot,” Z. Phys. 91(3–4), 230–252 (1934).
[Crossref]

Beyer, J.

Birch, J. R.

J. R. Birch and F. J. J. Clarke, “Interreflection errors in Fourier transform spectroscopy: a preliminary appraisal,” Anal. Chim. Acta 380(2–3), 369–378 (1999).
[Crossref]

J. R. Birch and E. A. Nicol, “The removal of detector port radiation effects in power transmission or reflection Fourier transform spectroscopy,” Infrared Phys. 27(3), 159–165 (1987).
[Crossref]

Bohmeyer, W.

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Thz Waves 35(8), 659–670 (2014).
[Crossref]

Chase, D. B.

Clarke, F. J. J.

J. R. Birch and F. J. J. Clarke, “Interreflection errors in Fourier transform spectroscopy: a preliminary appraisal,” Anal. Chim. Acta 380(2–3), 369–378 (1999).
[Crossref]

Datla, R. U.

Hanssen, L. M.

Hollandt, J.

Kaplan, S. G.

Kehrt, M.

Lange, K.

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Thz Waves 35(8), 659–670 (2014).
[Crossref]

Monte, C.

Müller, R.

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Thz Waves 35(8), 659–670 (2014).
[Crossref]

A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21(12), 14466–14473 (2013).
[Crossref] [PubMed]

Nicol, E. A.

J. R. Birch and E. A. Nicol, “The removal of detector port radiation effects in power transmission or reflection Fourier transform spectroscopy,” Infrared Phys. 27(3), 159–165 (1987).
[Crossref]

Steiger, A.

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Thz Waves 35(8), 659–670 (2014).
[Crossref]

A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21(12), 14466–14473 (2013).
[Crossref] [PubMed]

Woltersdorff, W.

W. Woltersdorff, “Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot,” Z. Phys. 91(3–4), 230–252 (1934).
[Crossref]

Anal. Chim. Acta (1)

J. R. Birch and F. J. J. Clarke, “Interreflection errors in Fourier transform spectroscopy: a preliminary appraisal,” Anal. Chim. Acta 380(2–3), 369–378 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Infrared Phys. (1)

J. R. Birch and E. A. Nicol, “The removal of detector port radiation effects in power transmission or reflection Fourier transform spectroscopy,” Infrared Phys. 27(3), 159–165 (1987).
[Crossref]

J. Infrared Millim. Thz Waves (1)

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Thz Waves 35(8), 659–670 (2014).
[Crossref]

Opt. Express (2)

Z. Phys. (1)

W. Woltersdorff, “Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot,” Z. Phys. 91(3–4), 230–252 (1934).
[Crossref]

Other (2)

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier transform spectrometry (Academic, 2001).

J. W. Goodman, Introduction to Fourier optics (Roberts and Company, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1 Transmittance of a metalized pyroelectric thin foil measured with a FT-IR spectrometer (lines) and a THz laser at 1.04 THz, 1.40 THz and 1.63 THz. The spectrometer was equipped with an uncooled DTGS detector (blue) and a helium cooled TES-bolometer (green and red lines). Thin lines denote uncorrected results at different flux levels according to Eq. (1).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ= Φ ˜ S Φ ˜ 0 .
Φ ˜ 0 = Φ 0 + Φ A
Φ ˜ S =τ( Φ 0 + Φ B )+ Φ C .
Φ ˜ 01 = Φ 01 + Φ A Φ ˜ 02 = Φ 02 + Φ A Φ ˜ S1 =τ( Φ 01 + Φ B )+ Φ C Φ ˜ S2 =τ( Φ 02 + Φ B )+ Φ C .
Φ ˜ S1 - Φ ˜ S2 Φ ˜ 01 - Φ ˜ 02 = τ( Φ 01 + Φ B )+ Φ C -[ τ( Φ 02 + Φ B )+ Φ C ] Φ 01 + Φ A -( Φ 02 + Φ A ) =τ Φ 01 - Φ 02 Φ 01 - Φ 02 =τ.

Metrics