Abstract

The subwavelength microstructures (SWMS) on the surface of ZnS for antireflection in an infrared band have been theoretically designed and experimentally fabricated. The finite difference time domain (FDTD) simulation has been utilized to optimize geometry for obtaining high transmittance of SWMS. Then, during simulation for light field intensity distribution, the inner of SWMS emerges location and wavelength dependent light resonant region, which can be explained by Wood-Rayleigh (WR) law. Furthermore, according to refractive index gradient formation and light field coupling effect, the grating period and height are capable of regulating the band selection of antireflection and value of the transmittance, respectively. In addition, a rapid facile approach based on femtosecond laser parallel multi-beam has been proposed to experimentally realize the designed and optimal structures. The depth, period, and embedded nano-gratings of fabricated SWMS are tunable by controlling laser-processing parameters for antireflection in the wavelength of 8 μm-12 μm. Finally, the broadband and wide-angle antireflective SWMS on ZnS as well as robust mechanical strength and hydrophobicity have been achieved, expecting to be of great potential in an optoelectronic device application.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband terahertz antireflective microstructures on quartz crystal surface by CO2 laser micro-processing

Du Wang, Yaguo Li, Chuanchao Zhang, Wei Liao, Zeyu Li, Qinghua Zhang, and Qiao Xu
Opt. Express 27(13) 18351-18362 (2019)

Femtosecond-laser-fabricated periodic tapered structures on a silicon substrate for terahertz antireflection

Xi Yu, Michiharu Ohta, Nobuhito Takizawa, Kazuhisa Mikame, Shingo Ono, and Jongsuck Bae
Appl. Opt. 58(35) 9595-9602 (2019)

Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication

Min Tang, Zai Chun Chen, Zhi Qiang Huang, Yoo Sang Choo, and Ming Hui Hong
Appl. Opt. 50(35) 6536-6542 (2011)

References

  • View by:
  • |
  • |
  • |

  1. L. E. Busse, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, and J. S. Sanghera, “Review of antireflective surface structures on laser optics and windows,” Appl. Opt. 54(31), F303–F310 (2015).
    [Crossref] [PubMed]
  2. V. I. Bredikhin, E. M. Gavrishchuk, V. B. Ikonnikov, E. V. Karaksina, L. A. Ketkova, S. P. Kuznetsov, and O. A. Malshakova, “Optical losses in polycrystalline CVD ZnS,” Inorg. Mater. 45(3), 235–241 (2009).
    [Crossref]
  3. S. M. Jung, Y. H. Kim, S. I. Kim, and S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for iii-v solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
    [Crossref]
  4. R. Z. Moghadam, H. Ahmadvand, and M. Jannesari, “Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate,” Infrared Phys. Technol. 75, 18–21 (2016).
    [Crossref]
  5. L. Chan, E. A. J. Decuir, R. Fu, D. E. Morse, and M. J. Gordon, “Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity,” J. Opt. 19(11), 114007 (2017).
    [Crossref]
  6. B. B. Xu, H. B. Sun, L. Wang, Q. D. Chen, X. F. Lin, and Z. H. Lu, “Rapid fabrication of large-area periodic structures by multiple exposure of two-beam interference,” J. Lightwave Technol. 31(2), 276–281 (2012).
  7. M. Karlsson and F. Nikolajeff, “Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region,” Opt. Express 11(5), 502–507 (2003).
    [Crossref] [PubMed]
  8. A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57(3), 1 (2018).
    [Crossref]
  9. M. Schulze, D. Tonova, A. Gatto, and E. B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
    [Crossref]
  10. H. Gao, Z. Y. Zheng, S. J. Chen, and H. Y. Hao, “Achieving enhanced mid-infrared transmission through subwavelength periodic structures via redshift effect of the extraordinary optical transmission,” J. Mod. Opt. 61(9), 766–772 (2014).
    [Crossref]
  11. L. W. Chan, D. E. Morse, and M. J. Gordon, “Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching,” Bioinspir. Biomim. 13(4), 041001 (2018).
    [Crossref] [PubMed]
  12. T. Li, T. Fan, J. Ding, and S. Lou, “Antireflective amorphous carbon nanocone arrays inspired from compound eyes,” Bioinspired Biomimetic Nanobiomater. 3(1), 29–37 (2014).
    [Crossref]
  13. K. Yin, D. Chu, X. Dong, C. Wang, J. A. Duan, and J. He, “Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation,” Nanoscale 9(37), 14229–14235 (2017).
    [Crossref] [PubMed]
  14. L. Vertchenko, E. Shkondin, R. Malureanu, and C. Monken, “Laguerre-Gauss beam generation in IR and UV by subwavelength surface-relief gratings,” Opt. Express 25(6), 5917–5926 (2017).
    [Crossref] [PubMed]
  15. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  16. X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, W. Wu, and W. Zheng, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
    [Crossref] [PubMed]
  17. M. A. Verschuuren, P. Gerlach, H. A. van Sprang, and A. Polman, “Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint lithography,” Nanotechnology 22(50), 505201 (2011).
    [Crossref] [PubMed]
  18. K. Yin, H. Du, X. Dong, C. Wang, J. A. Duan, and J. He, “A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection,” Nanoscale 9(38), 14620–14626 (2017).
    [Crossref] [PubMed]
  19. F. Zhang, C. Wang, K. Yin, X. R. Dong, Y. X. Song, Y. X. Tian, and J. A. Duan, “Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching,” Sci. Rep. 8(1), 2419 (2018).
    [Crossref] [PubMed]
  20. F. Zhang, C. Wang, K. Yin, X. Dong, Y. Song, Y. Tian, and J. A. Duan, “Underwater giant enhancement of broadband diffraction efficiency of surface diffraction gratings fabricated by femtosecond laser,” J. Appl. Phys. 121(24), 243102 (2017).
    [Crossref]
  21. Q. K. Li, J. J. Cao, Y. H. Yu, L. Wang, Y. L. Sun, Q. D. Chen, and H. B. Sun, “Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing,” Opt. Lett. 42(3), 543–546 (2017).
    [Crossref] [PubMed]
  22. H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett. 36(7), 1176–1178 (2011).
    [Crossref] [PubMed]
  23. Y. Li, T. Zhang, S. Fan, and G. Cheng, “Fabrication of micro hole array on the surface of CVD ZnS by scanning ultrafast pulse laser for antireflection,” Opt. Mater. 66, 356–360 (2017).
    [Crossref]
  24. S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, and S. De Zuani, “A. berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography,” Opt. Mater. Express 5(11), 2625–2633 (2015).
    [Crossref]
  25. C. A. Klein, “Room-temperature dispersion equations for cubic zinc sulfide,” Appl. Opt. 25(12), 1873–1875 (1986).
    [Crossref] [PubMed]
  26. P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
    [Crossref]
  27. A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
    [Crossref]
  28. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
    [Crossref]
  29. H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
    [Crossref] [PubMed]
  30. A. T. M. A. Rahman, P. Majewski, and K. Vasilev, “Extraordinary optical transmission: coupling of the Wood-Rayleigh anomaly and the fabry-perot resonance,” Opt. Lett. 37(10), 1742–1744 (2012).
    [Crossref] [PubMed]
  31. P. I. Stavroulakis, S. A. Boden, T. Johnson, and D. M. Bagnall, “Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays,” Opt. Express 21(1), 1–11 (2013).
    [Crossref] [PubMed]
  32. Y. M. Song, S. J. Jang, H. J. Choi, and J. S. Yu, “Design and fabrication of nanoscale antireflection structures with linearly graded refractive index,” 10th IEEE International Conference on Nanotechnology 294–297 (2010).
    [Crossref]
  33. N. Nguyen-Huu, M. Cada, Y. Ma, F. Che, J. Pistora, K. Yasumoto, Y. Ma, J. Lin, and H. Maeda, “Mid-infrared fano resonance in heavily doped silicon and metallic nanostructures due to coupling of wood-rayleigh anomaly and surface plasmons,” J. Phys. D Appl. Phys. 50(20), 205105 (2017).
    [Crossref]
  34. A. S. Vengurlekar, “Optical properties of metallo-dielectric deep trench gratings: role of surface plasmons and Wood-Rayleigh anomaly,” Opt. Lett. 33(15), 1669–1671 (2008).
    [Crossref] [PubMed]
  35. I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(5), 2502 (2014).
  36. L. Wang, B. B. Xu, Q. D. Chen, Z. C. Ma, R. Zhang, Q. X. Liu, and H. B. Sun, “Maskless laser tailoring of conical pillar arrays for antireflective biomimetic surfaces,” Opt. Lett. 36(17), 3305–3307 (2011).
    [Crossref] [PubMed]
  37. T. Hoshino, S. Banerjee, M. Itoh, and T. Yatagai, “Diffraction pattern of triangular grating in the resonance domain,” J. Opt. Soc. Am. A 26(3), 715–722 (2009).
    [Crossref] [PubMed]
  38. Z. Luo, J. Duan, and C. Guo, “Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica,” Opt. Lett. 42(12), 2358–2361 (2017).
    [Crossref] [PubMed]
  39. E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
    [Crossref] [PubMed]
  40. H. Y. Kim, W. S. Choi, S. Y. Ji, Y. G. Shin, J. W. Jeon, S. Ahn, and S. H. Cho, “Morphologies of femtosecond laser ablation of ITO thin films using Gaussian or quasi-flat top beams for OLED repair,” Appl. Phys., A Mater. Sci. Process. 124(2), 123 (2018).
    [Crossref]
  41. C. Wang, Z. Luo, J. A. Duan, L. Jiang, X. Y. Sun, Y. W. Hu, J. Y. Zhou, and Y. F. Lu, “Adjustable annular rings of periodic surface structures induced by spatially shaped femtosecond laser,” Laser Phys. Lett. 12(5), 056001 (2015).
    [Crossref]
  42. K. Yin, X. R. Dong, F. Zhang, C. Wang, and J. A. Duan, “Superamphiphobic miniature boat fabricated by laser micromachining,” Appl. Phys. Lett. 110(12), 121909 (2017).
    [Crossref]
  43. J. Reif, C. Martens, S. Uhlig, M. Ratzke, O. Varlamova, S. Valette, and S. Benayoun, “On large area lipss coverage by multiple pulses,” Appl. Surf. Sci. 336, 249–254 (2015).
    [Crossref]
  44. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  45. L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
    [Crossref] [PubMed]
  46. R. Kumar and S. A. Ramakrishna, “Enhanced infra-red transmission through subwavelength hole arrays in a thin gold film mounted with dielectric micro-domes,” J. Phys. D Appl. Phys. 51(16), 165104 (2018).
    [Crossref]
  47. K. Yin, S. Yang, X. R. Dong, D. K. Chu, J. A. Duan, and J. He, “Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles,” Appl. Phys. Lett. 112(24), 243701 (2018).
    [Crossref]

2018 (6)

A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57(3), 1 (2018).
[Crossref]

F. Zhang, C. Wang, K. Yin, X. R. Dong, Y. X. Song, Y. X. Tian, and J. A. Duan, “Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching,” Sci. Rep. 8(1), 2419 (2018).
[Crossref] [PubMed]

L. W. Chan, D. E. Morse, and M. J. Gordon, “Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching,” Bioinspir. Biomim. 13(4), 041001 (2018).
[Crossref] [PubMed]

H. Y. Kim, W. S. Choi, S. Y. Ji, Y. G. Shin, J. W. Jeon, S. Ahn, and S. H. Cho, “Morphologies of femtosecond laser ablation of ITO thin films using Gaussian or quasi-flat top beams for OLED repair,” Appl. Phys., A Mater. Sci. Process. 124(2), 123 (2018).
[Crossref]

R. Kumar and S. A. Ramakrishna, “Enhanced infra-red transmission through subwavelength hole arrays in a thin gold film mounted with dielectric micro-domes,” J. Phys. D Appl. Phys. 51(16), 165104 (2018).
[Crossref]

K. Yin, S. Yang, X. R. Dong, D. K. Chu, J. A. Duan, and J. He, “Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles,” Appl. Phys. Lett. 112(24), 243701 (2018).
[Crossref]

2017 (11)

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

K. Yin, X. R. Dong, F. Zhang, C. Wang, and J. A. Duan, “Superamphiphobic miniature boat fabricated by laser micromachining,” Appl. Phys. Lett. 110(12), 121909 (2017).
[Crossref]

Y. Li, T. Zhang, S. Fan, and G. Cheng, “Fabrication of micro hole array on the surface of CVD ZnS by scanning ultrafast pulse laser for antireflection,” Opt. Mater. 66, 356–360 (2017).
[Crossref]

K. Yin, H. Du, X. Dong, C. Wang, J. A. Duan, and J. He, “A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection,” Nanoscale 9(38), 14620–14626 (2017).
[Crossref] [PubMed]

N. Nguyen-Huu, M. Cada, Y. Ma, F. Che, J. Pistora, K. Yasumoto, Y. Ma, J. Lin, and H. Maeda, “Mid-infrared fano resonance in heavily doped silicon and metallic nanostructures due to coupling of wood-rayleigh anomaly and surface plasmons,” J. Phys. D Appl. Phys. 50(20), 205105 (2017).
[Crossref]

Z. Luo, J. Duan, and C. Guo, “Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica,” Opt. Lett. 42(12), 2358–2361 (2017).
[Crossref] [PubMed]

F. Zhang, C. Wang, K. Yin, X. Dong, Y. Song, Y. Tian, and J. A. Duan, “Underwater giant enhancement of broadband diffraction efficiency of surface diffraction gratings fabricated by femtosecond laser,” J. Appl. Phys. 121(24), 243102 (2017).
[Crossref]

Q. K. Li, J. J. Cao, Y. H. Yu, L. Wang, Y. L. Sun, Q. D. Chen, and H. B. Sun, “Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing,” Opt. Lett. 42(3), 543–546 (2017).
[Crossref] [PubMed]

K. Yin, D. Chu, X. Dong, C. Wang, J. A. Duan, and J. He, “Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation,” Nanoscale 9(37), 14229–14235 (2017).
[Crossref] [PubMed]

L. Vertchenko, E. Shkondin, R. Malureanu, and C. Monken, “Laguerre-Gauss beam generation in IR and UV by subwavelength surface-relief gratings,” Opt. Express 25(6), 5917–5926 (2017).
[Crossref] [PubMed]

L. Chan, E. A. J. Decuir, R. Fu, D. E. Morse, and M. J. Gordon, “Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity,” J. Opt. 19(11), 114007 (2017).
[Crossref]

2016 (3)

M. Schulze, D. Tonova, A. Gatto, and E. B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

R. Z. Moghadam, H. Ahmadvand, and M. Jannesari, “Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate,” Infrared Phys. Technol. 75, 18–21 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

2015 (6)

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, W. Wu, and W. Zheng, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref] [PubMed]

L. E. Busse, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, and J. S. Sanghera, “Review of antireflective surface structures on laser optics and windows,” Appl. Opt. 54(31), F303–F310 (2015).
[Crossref] [PubMed]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, and S. De Zuani, “A. berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography,” Opt. Mater. Express 5(11), 2625–2633 (2015).
[Crossref]

J. Reif, C. Martens, S. Uhlig, M. Ratzke, O. Varlamova, S. Valette, and S. Benayoun, “On large area lipss coverage by multiple pulses,” Appl. Surf. Sci. 336, 249–254 (2015).
[Crossref]

C. Wang, Z. Luo, J. A. Duan, L. Jiang, X. Y. Sun, Y. W. Hu, J. Y. Zhou, and Y. F. Lu, “Adjustable annular rings of periodic surface structures induced by spatially shaped femtosecond laser,” Laser Phys. Lett. 12(5), 056001 (2015).
[Crossref]

2014 (3)

T. Li, T. Fan, J. Ding, and S. Lou, “Antireflective amorphous carbon nanocone arrays inspired from compound eyes,” Bioinspired Biomimetic Nanobiomater. 3(1), 29–37 (2014).
[Crossref]

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(5), 2502 (2014).

H. Gao, Z. Y. Zheng, S. J. Chen, and H. Y. Hao, “Achieving enhanced mid-infrared transmission through subwavelength periodic structures via redshift effect of the extraordinary optical transmission,” J. Mod. Opt. 61(9), 766–772 (2014).
[Crossref]

2013 (2)

P. I. Stavroulakis, S. A. Boden, T. Johnson, and D. M. Bagnall, “Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays,” Opt. Express 21(1), 1–11 (2013).
[Crossref] [PubMed]

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[Crossref]

2012 (2)

2011 (4)

S. M. Jung, Y. H. Kim, S. I. Kim, and S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for iii-v solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
[Crossref]

M. A. Verschuuren, P. Gerlach, H. A. van Sprang, and A. Polman, “Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint lithography,” Nanotechnology 22(50), 505201 (2011).
[Crossref] [PubMed]

H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett. 36(7), 1176–1178 (2011).
[Crossref] [PubMed]

L. Wang, B. B. Xu, Q. D. Chen, Z. C. Ma, R. Zhang, Q. X. Liu, and H. B. Sun, “Maskless laser tailoring of conical pillar arrays for antireflective biomimetic surfaces,” Opt. Lett. 36(17), 3305–3307 (2011).
[Crossref] [PubMed]

2009 (4)

T. Hoshino, S. Banerjee, M. Itoh, and T. Yatagai, “Diffraction pattern of triangular grating in the resonance domain,” J. Opt. Soc. Am. A 26(3), 715–722 (2009).
[Crossref] [PubMed]

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

V. I. Bredikhin, E. M. Gavrishchuk, V. B. Ikonnikov, E. V. Karaksina, L. A. Ketkova, S. P. Kuznetsov, and O. A. Malshakova, “Optical losses in polycrystalline CVD ZnS,” Inorg. Mater. 45(3), 235–241 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

2008 (1)

2003 (1)

2001 (1)

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

1996 (1)

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
[Crossref]

1986 (1)

Aggarwal, I. D.

Ahmadvand, H.

R. Z. Moghadam, H. Ahmadvand, and M. Jannesari, “Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate,” Infrared Phys. Technol. 75, 18–21 (2016).
[Crossref]

Ahn, S.

H. Y. Kim, W. S. Choi, S. Y. Ji, Y. G. Shin, J. W. Jeon, S. Ahn, and S. H. Cho, “Morphologies of femtosecond laser ablation of ITO thin films using Gaussian or quasi-flat top beams for OLED repair,” Appl. Phys., A Mater. Sci. Process. 124(2), 123 (2018).
[Crossref]

Algra, R. E.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Bagheri, S.

Bagnall, D. M.

Bakkers, E. P. A. M.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Banerjee, S.

Benayoun, S.

J. Reif, C. Martens, S. Uhlig, M. Ratzke, O. Varlamova, S. Valette, and S. Benayoun, “On large area lipss coverage by multiple pulses,” Appl. Surf. Sci. 336, 249–254 (2015).
[Crossref]

Bertsch, M.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Boden, S. A.

Boneberg, J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Bonse, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Bredikhin, V. I.

V. I. Bredikhin, E. M. Gavrishchuk, V. B. Ikonnikov, E. V. Karaksina, L. A. Ketkova, S. P. Kuznetsov, and O. A. Malshakova, “Optical losses in polycrystalline CVD ZnS,” Inorg. Mater. 45(3), 235–241 (2009).
[Crossref]

Buividas, R.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Busse, L. E.

Cada, M.

N. Nguyen-Huu, M. Cada, Y. Ma, F. Che, J. Pistora, K. Yasumoto, Y. Ma, J. Lin, and H. Maeda, “Mid-infrared fano resonance in heavily doped silicon and metallic nanostructures due to coupling of wood-rayleigh anomaly and surface plasmons,” J. Phys. D Appl. Phys. 50(20), 205105 (2017).
[Crossref]

Cao, J. J.

Cao, X. W.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Case, J. R.

A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57(3), 1 (2018).
[Crossref]

Chan, L.

L. Chan, E. A. J. Decuir, R. Fu, D. E. Morse, and M. J. Gordon, “Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity,” J. Opt. 19(11), 114007 (2017).
[Crossref]

Chan, L. W.

L. W. Chan, D. E. Morse, and M. J. Gordon, “Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching,” Bioinspir. Biomim. 13(4), 041001 (2018).
[Crossref] [PubMed]

Che, F.

N. Nguyen-Huu, M. Cada, Y. Ma, F. Che, J. Pistora, K. Yasumoto, Y. Ma, J. Lin, and H. Maeda, “Mid-infrared fano resonance in heavily doped silicon and metallic nanostructures due to coupling of wood-rayleigh anomaly and surface plasmons,” J. Phys. D Appl. Phys. 50(20), 205105 (2017).
[Crossref]

Chen, Q. D.

Chen, S. J.

H. Gao, Z. Y. Zheng, S. J. Chen, and H. Y. Hao, “Achieving enhanced mid-infrared transmission through subwavelength periodic structures via redshift effect of the extraordinary optical transmission,” J. Mod. Opt. 61(9), 766–772 (2014).
[Crossref]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Cheng, G.

Y. Li, T. Zhang, S. Fan, and G. Cheng, “Fabrication of micro hole array on the surface of CVD ZnS by scanning ultrafast pulse laser for antireflection,” Opt. Mater. 66, 356–360 (2017).
[Crossref]

Cho, S. H.

H. Y. Kim, W. S. Choi, S. Y. Ji, Y. G. Shin, J. W. Jeon, S. Ahn, and S. H. Cho, “Morphologies of femtosecond laser ablation of ITO thin films using Gaussian or quasi-flat top beams for OLED repair,” Appl. Phys., A Mater. Sci. Process. 124(2), 123 (2018).
[Crossref]

Choi, W. S.

H. Y. Kim, W. S. Choi, S. Y. Ji, Y. G. Shin, J. W. Jeon, S. Ahn, and S. H. Cho, “Morphologies of femtosecond laser ablation of ITO thin films using Gaussian or quasi-flat top beams for OLED repair,” Appl. Phys., A Mater. Sci. Process. 124(2), 123 (2018).
[Crossref]

Chu, D.

K. Yin, D. Chu, X. Dong, C. Wang, J. A. Duan, and J. He, “Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation,” Nanoscale 9(37), 14229–14235 (2017).
[Crossref] [PubMed]

Chu, D. K.

K. Yin, S. Yang, X. R. Dong, D. K. Chu, J. A. Duan, and J. He, “Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles,” Appl. Phys. Lett. 112(24), 243701 (2018).
[Crossref]

De Zuani, S.

Decuir, E. A. J.

L. Chan, E. A. J. Decuir, R. Fu, D. E. Morse, and M. J. Gordon, “Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity,” J. Opt. 19(11), 114007 (2017).
[Crossref]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Diedenhofen, S. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Ding, J.

T. Li, T. Fan, J. Ding, and S. Lou, “Antireflective amorphous carbon nanocone arrays inspired from compound eyes,” Bioinspired Biomimetic Nanobiomater. 3(1), 29–37 (2014).
[Crossref]

Dong, X.

K. Yin, D. Chu, X. Dong, C. Wang, J. A. Duan, and J. He, “Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation,” Nanoscale 9(37), 14229–14235 (2017).
[Crossref] [PubMed]

K. Yin, H. Du, X. Dong, C. Wang, J. A. Duan, and J. He, “A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection,” Nanoscale 9(38), 14620–14626 (2017).
[Crossref] [PubMed]

F. Zhang, C. Wang, K. Yin, X. Dong, Y. Song, Y. Tian, and J. A. Duan, “Underwater giant enhancement of broadband diffraction efficiency of surface diffraction gratings fabricated by femtosecond laser,” J. Appl. Phys. 121(24), 243102 (2017).
[Crossref]

Dong, X. R.

F. Zhang, C. Wang, K. Yin, X. R. Dong, Y. X. Song, Y. X. Tian, and J. A. Duan, “Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching,” Sci. Rep. 8(1), 2419 (2018).
[Crossref] [PubMed]

K. Yin, S. Yang, X. R. Dong, D. K. Chu, J. A. Duan, and J. He, “Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles,” Appl. Phys. Lett. 112(24), 243701 (2018).
[Crossref]

K. Yin, X. R. Dong, F. Zhang, C. Wang, and J. A. Duan, “Superamphiphobic miniature boat fabricated by laser micromachining,” Appl. Phys. Lett. 110(12), 121909 (2017).
[Crossref]

Du, H.

K. Yin, H. Du, X. Dong, C. Wang, J. A. Duan, and J. He, “A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection,” Nanoscale 9(38), 14620–14626 (2017).
[Crossref] [PubMed]

Duan, J.

Duan, J. A.

K. Yin, S. Yang, X. R. Dong, D. K. Chu, J. A. Duan, and J. He, “Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles,” Appl. Phys. Lett. 112(24), 243701 (2018).
[Crossref]

F. Zhang, C. Wang, K. Yin, X. R. Dong, Y. X. Song, Y. X. Tian, and J. A. Duan, “Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching,” Sci. Rep. 8(1), 2419 (2018).
[Crossref] [PubMed]

F. Zhang, C. Wang, K. Yin, X. Dong, Y. Song, Y. Tian, and J. A. Duan, “Underwater giant enhancement of broadband diffraction efficiency of surface diffraction gratings fabricated by femtosecond laser,” J. Appl. Phys. 121(24), 243102 (2017).
[Crossref]

K. Yin, H. Du, X. Dong, C. Wang, J. A. Duan, and J. He, “A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection,” Nanoscale 9(38), 14620–14626 (2017).
[Crossref] [PubMed]

K. Yin, D. Chu, X. Dong, C. Wang, J. A. Duan, and J. He, “Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation,” Nanoscale 9(37), 14229–14235 (2017).
[Crossref] [PubMed]

K. Yin, X. R. Dong, F. Zhang, C. Wang, and J. A. Duan, “Superamphiphobic miniature boat fabricated by laser micromachining,” Appl. Phys. Lett. 110(12), 121909 (2017).
[Crossref]

C. Wang, Z. Luo, J. A. Duan, L. Jiang, X. Y. Sun, Y. W. Hu, J. Y. Zhou, and Y. F. Lu, “Adjustable annular rings of periodic surface structures induced by spatially shaped femtosecond laser,” Laser Phys. Lett. 12(5), 056001 (2015).
[Crossref]

Einishi, T.

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(5), 2502 (2014).

Fan, S.

Y. Li, T. Zhang, S. Fan, and G. Cheng, “Fabrication of micro hole array on the surface of CVD ZnS by scanning ultrafast pulse laser for antireflection,” Opt. Mater. 66, 356–360 (2017).
[Crossref]

Fan, T.

T. Li, T. Fan, J. Ding, and S. Lou, “Antireflective amorphous carbon nanocone arrays inspired from compound eyes,” Bioinspired Biomimetic Nanobiomater. 3(1), 29–37 (2014).
[Crossref]

Frantz, J. A.

Fu, R.

L. Chan, E. A. J. Decuir, R. Fu, D. E. Morse, and M. J. Gordon, “Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity,” J. Opt. 19(11), 114007 (2017).
[Crossref]

Fukumi, K.

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(5), 2502 (2014).

Gao, H.

H. Gao, Z. Y. Zheng, S. J. Chen, and H. Y. Hao, “Achieving enhanced mid-infrared transmission through subwavelength periodic structures via redshift effect of the extraordinary optical transmission,” J. Mod. Opt. 61(9), 766–772 (2014).
[Crossref]

Garliauskas, M.

Gatto, A.

M. Schulze, D. Tonova, A. Gatto, and E. B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

Gavrishchuk, E. M.

V. I. Bredikhin, E. M. Gavrishchuk, V. B. Ikonnikov, E. V. Karaksina, L. A. Ketkova, S. P. Kuznetsov, and O. A. Malshakova, “Optical losses in polycrystalline CVD ZnS,” Inorg. Mater. 45(3), 235–241 (2009).
[Crossref]

Gedvilas, M.

Geng, F.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, W. Wu, and W. Zheng, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref] [PubMed]

Gerlach, P.

M. A. Verschuuren, P. Gerlach, H. A. van Sprang, and A. Polman, “Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint lithography,” Nanotechnology 22(50), 505201 (2011).
[Crossref] [PubMed]

Gissibl, T.

Gordon, M. J.

L. W. Chan, D. E. Morse, and M. J. Gordon, “Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching,” Bioinspir. Biomim. 13(4), 041001 (2018).
[Crossref] [PubMed]

L. Chan, E. A. J. Decuir, R. Fu, D. E. Morse, and M. J. Gordon, “Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity,” J. Opt. 19(11), 114007 (2017).
[Crossref]

Guo, C.

Hao, H. Y.

H. Gao, Z. Y. Zheng, S. J. Chen, and H. Y. Hao, “Achieving enhanced mid-infrared transmission through subwavelength periodic structures via redshift effect of the extraordinary optical transmission,” J. Mod. Opt. 61(9), 766–772 (2014).
[Crossref]

Hartsuiker, A.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

He, J.

K. Yin, S. Yang, X. R. Dong, D. K. Chu, J. A. Duan, and J. He, “Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles,” Appl. Phys. Lett. 112(24), 243701 (2018).
[Crossref]

K. Yin, H. Du, X. Dong, C. Wang, J. A. Duan, and J. He, “A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection,” Nanoscale 9(38), 14620–14626 (2017).
[Crossref] [PubMed]

K. Yin, D. Chu, X. Dong, C. Wang, J. A. Duan, and J. He, “Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation,” Nanoscale 9(37), 14229–14235 (2017).
[Crossref] [PubMed]

Hirao, K.

Hoshino, T.

Hu, Y. W.

C. Wang, Z. Luo, J. A. Duan, L. Jiang, X. Y. Sun, Y. W. Hu, J. Y. Zhou, and Y. F. Lu, “Adjustable annular rings of periodic surface structures induced by spatially shaped femtosecond laser,” Laser Phys. Lett. 12(5), 056001 (2015).
[Crossref]

Huang, J.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, W. Wu, and W. Zheng, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref] [PubMed]

Ikonnikov, V. B.

V. I. Bredikhin, E. M. Gavrishchuk, V. B. Ikonnikov, E. V. Karaksina, L. A. Ketkova, S. P. Kuznetsov, and O. A. Malshakova, “Optical losses in polycrystalline CVD ZnS,” Inorg. Mater. 45(3), 235–241 (2009).
[Crossref]

Imamoto, H.

Immink, G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Ionin, A. A.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[Crossref]

Itoh, M.

Jannesari, M.

R. Z. Moghadam, H. Ahmadvand, and M. Jannesari, “Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate,” Infrared Phys. Technol. 75, 18–21 (2016).
[Crossref]

Jeon, J. W.

H. Y. Kim, W. S. Choi, S. Y. Ji, Y. G. Shin, J. W. Jeon, S. Ahn, and S. H. Cho, “Morphologies of femtosecond laser ablation of ITO thin films using Gaussian or quasi-flat top beams for OLED repair,” Appl. Phys., A Mater. Sci. Process. 124(2), 123 (2018).
[Crossref]

Ji, S. Y.

H. Y. Kim, W. S. Choi, S. Y. Ji, Y. G. Shin, J. W. Jeon, S. Ahn, and S. H. Cho, “Morphologies of femtosecond laser ablation of ITO thin films using Gaussian or quasi-flat top beams for OLED repair,” Appl. Phys., A Mater. Sci. Process. 124(2), 123 (2018).
[Crossref]

Jiang, L.

C. Wang, Z. Luo, J. A. Duan, L. Jiang, X. Y. Sun, Y. W. Hu, J. Y. Zhou, and Y. F. Lu, “Adjustable annular rings of periodic surface structures induced by spatially shaped femtosecond laser,” Laser Phys. Lett. 12(5), 056001 (2015).
[Crossref]

Jiang, X.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, W. Wu, and W. Zheng, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref] [PubMed]

Johnson, T.

Jung, S. M.

S. M. Jung, Y. H. Kim, S. I. Kim, and S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for iii-v solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
[Crossref]

Juodkazis, S.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Kametani, K.

Kanehira, S.

Karaksina, E. V.

V. I. Bredikhin, E. M. Gavrishchuk, V. B. Ikonnikov, E. V. Karaksina, L. A. Ketkova, S. P. Kuznetsov, and O. A. Malshakova, “Optical losses in polycrystalline CVD ZnS,” Inorg. Mater. 45(3), 235–241 (2009).
[Crossref]

Karlsson, M.

Ketkova, L. A.

V. I. Bredikhin, E. M. Gavrishchuk, V. B. Ikonnikov, E. V. Karaksina, L. A. Ketkova, S. P. Kuznetsov, and O. A. Malshakova, “Optical losses in polycrystalline CVD ZnS,” Inorg. Mater. 45(3), 235–241 (2009).
[Crossref]

Khmelnitsky, R. A.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kim, H. Y.

H. Y. Kim, W. S. Choi, S. Y. Ji, Y. G. Shin, J. W. Jeon, S. Ahn, and S. H. Cho, “Morphologies of femtosecond laser ablation of ITO thin films using Gaussian or quasi-flat top beams for OLED repair,” Appl. Phys., A Mater. Sci. Process. 124(2), 123 (2018).
[Crossref]

Kim, S. I.

S. M. Jung, Y. H. Kim, S. I. Kim, and S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for iii-v solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
[Crossref]

Kim, Y. H.

S. M. Jung, Y. H. Kim, S. I. Kim, and S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for iii-v solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
[Crossref]

Klein, C. A.

Kley, E. B.

M. Schulze, D. Tonova, A. Gatto, and E. B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

Klimachev, Y. M.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[Crossref]

Kozlov, A. Y.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[Crossref]

Krüger, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Kudryashov, S. I.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[Crossref]

Kumar, R.

R. Kumar and S. A. Ramakrishna, “Enhanced infra-red transmission through subwavelength hole arrays in a thin gold film mounted with dielectric micro-domes,” J. Phys. D Appl. Phys. 51(16), 165104 (2018).
[Crossref]

Kuznetsov, S. P.

V. I. Bredikhin, E. M. Gavrishchuk, V. B. Ikonnikov, E. V. Karaksina, L. A. Ketkova, S. P. Kuznetsov, and O. A. Malshakova, “Optical losses in polycrystalline CVD ZnS,” Inorg. Mater. 45(3), 235–241 (2009).
[Crossref]

Lalanne, P.

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
[Crossref]

Leiderer, P.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Lemercier-Lalanne, D.

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
[Crossref]

Li, Q. K.

Li, T.

T. Li, T. Fan, J. Ding, and S. Lou, “Antireflective amorphous carbon nanocone arrays inspired from compound eyes,” Bioinspired Biomimetic Nanobiomater. 3(1), 29–37 (2014).
[Crossref]

Li, Y.

Y. Li, T. Zhang, S. Fan, and G. Cheng, “Fabrication of micro hole array on the surface of CVD ZnS by scanning ultrafast pulse laser for antireflection,” Opt. Mater. 66, 356–360 (2017).
[Crossref]

Ligachev, A. E.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[Crossref]

Lin, J.

N. Nguyen-Huu, M. Cada, Y. Ma, F. Che, J. Pistora, K. Yasumoto, Y. Ma, J. Lin, and H. Maeda, “Mid-infrared fano resonance in heavily doped silicon and metallic nanostructures due to coupling of wood-rayleigh anomaly and surface plasmons,” J. Phys. D Appl. Phys. 50(20), 205105 (2017).
[Crossref]

Lin, X. F.

Liu, Q. X.

Lou, S.

T. Li, T. Fan, J. Ding, and S. Lou, “Antireflective amorphous carbon nanocone arrays inspired from compound eyes,” Bioinspired Biomimetic Nanobiomater. 3(1), 29–37 (2014).
[Crossref]

Lu, Y. F.

C. Wang, Z. Luo, J. A. Duan, L. Jiang, X. Y. Sun, Y. W. Hu, J. Y. Zhou, and Y. F. Lu, “Adjustable annular rings of periodic surface structures induced by spatially shaped femtosecond laser,” Laser Phys. Lett. 12(5), 056001 (2015).
[Crossref]

Lu, Z. H.

Luo, Z.

Z. Luo, J. Duan, and C. Guo, “Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica,” Opt. Lett. 42(12), 2358–2361 (2017).
[Crossref] [PubMed]

C. Wang, Z. Luo, J. A. Duan, L. Jiang, X. Y. Sun, Y. W. Hu, J. Y. Zhou, and Y. F. Lu, “Adjustable annular rings of periodic surface structures induced by spatially shaped femtosecond laser,” Laser Phys. Lett. 12(5), 056001 (2015).
[Crossref]

Ma, Y.

N. Nguyen-Huu, M. Cada, Y. Ma, F. Che, J. Pistora, K. Yasumoto, Y. Ma, J. Lin, and H. Maeda, “Mid-infrared fano resonance in heavily doped silicon and metallic nanostructures due to coupling of wood-rayleigh anomaly and surface plasmons,” J. Phys. D Appl. Phys. 50(20), 205105 (2017).
[Crossref]

N. Nguyen-Huu, M. Cada, Y. Ma, F. Che, J. Pistora, K. Yasumoto, Y. Ma, J. Lin, and H. Maeda, “Mid-infrared fano resonance in heavily doped silicon and metallic nanostructures due to coupling of wood-rayleigh anomaly and surface plasmons,” J. Phys. D Appl. Phys. 50(20), 205105 (2017).
[Crossref]

Ma, Z. C.

Maeda, H.

N. Nguyen-Huu, M. Cada, Y. Ma, F. Che, J. Pistora, K. Yasumoto, Y. Ma, J. Lin, and H. Maeda, “Mid-infrared fano resonance in heavily doped silicon and metallic nanostructures due to coupling of wood-rayleigh anomaly and surface plasmons,” J. Phys. D Appl. Phys. 50(20), 205105 (2017).
[Crossref]

Majewski, P.

Makarov, S. V.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[Crossref]

Malshakova, O. A.

V. I. Bredikhin, E. M. Gavrishchuk, V. B. Ikonnikov, E. V. Karaksina, L. A. Ketkova, S. P. Kuznetsov, and O. A. Malshakova, “Optical losses in polycrystalline CVD ZnS,” Inorg. Mater. 45(3), 235–241 (2009).
[Crossref]

Malureanu, R.

Martens, C.

J. Reif, C. Martens, S. Uhlig, M. Ratzke, O. Varlamova, S. Valette, and S. Benayoun, “On large area lipss coverage by multiple pulses,” Appl. Surf. Sci. 336, 249–254 (2015).
[Crossref]

Miura, K.

Moghadam, R. Z.

R. Z. Moghadam, H. Ahmadvand, and M. Jannesari, “Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate,” Infrared Phys. Technol. 75, 18–21 (2016).
[Crossref]

Monken, C.

Morse, D. E.

L. W. Chan, D. E. Morse, and M. J. Gordon, “Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching,” Bioinspir. Biomim. 13(4), 041001 (2018).
[Crossref] [PubMed]

L. Chan, E. A. J. Decuir, R. Fu, D. E. Morse, and M. J. Gordon, “Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity,” J. Opt. 19(11), 114007 (2017).
[Crossref]

Mosbacher, M.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Münzer, H. J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Muskens, O. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Nguyen-Huu, N.

N. Nguyen-Huu, M. Cada, Y. Ma, F. Che, J. Pistora, K. Yasumoto, Y. Ma, J. Lin, and H. Maeda, “Mid-infrared fano resonance in heavily doped silicon and metallic nanostructures due to coupling of wood-rayleigh anomaly and surface plasmons,” J. Phys. D Appl. Phys. 50(20), 205105 (2017).
[Crossref]

Nikolajeff, F.

Nishii, J.

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(5), 2502 (2014).

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Peltier, A.

A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57(3), 1 (2018).
[Crossref]

Pistora, J.

N. Nguyen-Huu, M. Cada, Y. Ma, F. Che, J. Pistora, K. Yasumoto, Y. Ma, J. Lin, and H. Maeda, “Mid-infrared fano resonance in heavily doped silicon and metallic nanostructures due to coupling of wood-rayleigh anomaly and surface plasmons,” J. Phys. D Appl. Phys. 50(20), 205105 (2017).
[Crossref]

Polman, A.

M. A. Verschuuren, P. Gerlach, H. A. van Sprang, and A. Polman, “Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint lithography,” Nanotechnology 22(50), 505201 (2011).
[Crossref] [PubMed]

Poutous, M. K.

A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57(3), 1 (2018).
[Crossref]

Raciukaitis, G.

Rahman, A. T. M. A.

Ramakrishna, S. A.

R. Kumar and S. A. Ramakrishna, “Enhanced infra-red transmission through subwavelength hole arrays in a thin gold film mounted with dielectric micro-domes,” J. Phys. D Appl. Phys. 51(16), 165104 (2018).
[Crossref]

Ratzke, M.

J. Reif, C. Martens, S. Uhlig, M. Ratzke, O. Varlamova, S. Valette, and S. Benayoun, “On large area lipss coverage by multiple pulses,” Appl. Surf. Sci. 336, 249–254 (2015).
[Crossref]

Reif, J.

J. Reif, C. Martens, S. Uhlig, M. Ratzke, O. Varlamova, S. Valette, and S. Benayoun, “On large area lipss coverage by multiple pulses,” Appl. Surf. Sci. 336, 249–254 (2015).
[Crossref]

Rivas, J. G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Rosenfeld, A.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Rudenko, A. A.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[Crossref]

Saito, M.

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(5), 2502 (2014).

Sakakura, M.

Sanghera, J. S.

Sapkota, G.

A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57(3), 1 (2018).
[Crossref]

Schulze, M.

M. Schulze, D. Tonova, A. Gatto, and E. B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

Seleznev, L. V.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[Crossref]

Shaw, L. B.

Shimotsuma, Y.

Shin, Y. G.

H. Y. Kim, W. S. Choi, S. Y. Ji, Y. G. Shin, J. W. Jeon, S. Ahn, and S. H. Cho, “Morphologies of femtosecond laser ablation of ITO thin films using Gaussian or quasi-flat top beams for OLED repair,” Appl. Phys., A Mater. Sci. Process. 124(2), 123 (2018).
[Crossref]

Shkondin, E.

Sinitsyn, D. V.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[Crossref]

Song, Y.

F. Zhang, C. Wang, K. Yin, X. Dong, Y. Song, Y. Tian, and J. A. Duan, “Underwater giant enhancement of broadband diffraction efficiency of surface diffraction gratings fabricated by femtosecond laser,” J. Appl. Phys. 121(24), 243102 (2017).
[Crossref]

Song, Y. X.

F. Zhang, C. Wang, K. Yin, X. R. Dong, Y. X. Song, Y. X. Tian, and J. A. Duan, “Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching,” Sci. Rep. 8(1), 2419 (2018).
[Crossref] [PubMed]

Stankevicius, E.

Stavroulakis, P. I.

Sterl, F.

Sun, H. B.

Sun, L.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, W. Wu, and W. Zheng, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref] [PubMed]

Sun, X. Y.

C. Wang, Z. Luo, J. A. Duan, L. Jiang, X. Y. Sun, Y. W. Hu, J. Y. Zhou, and Y. F. Lu, “Adjustable annular rings of periodic surface structures induced by spatially shaped femtosecond laser,” Laser Phys. Lett. 12(5), 056001 (2015).
[Crossref]

Sun, Y. L.

Tani, K.

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(5), 2502 (2014).

Tian, Y.

F. Zhang, C. Wang, K. Yin, X. Dong, Y. Song, Y. Tian, and J. A. Duan, “Underwater giant enhancement of broadband diffraction efficiency of surface diffraction gratings fabricated by femtosecond laser,” J. Appl. Phys. 121(24), 243102 (2017).
[Crossref]

Tian, Y. X.

F. Zhang, C. Wang, K. Yin, X. R. Dong, Y. X. Song, Y. X. Tian, and J. A. Duan, “Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching,” Sci. Rep. 8(1), 2419 (2018).
[Crossref] [PubMed]

Tittl, A.

Tonova, D.

M. Schulze, D. Tonova, A. Gatto, and E. B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

Uhlig, S.

J. Reif, C. Martens, S. Uhlig, M. Ratzke, O. Varlamova, S. Valette, and S. Benayoun, “On large area lipss coverage by multiple pulses,” Appl. Surf. Sci. 336, 249–254 (2015).
[Crossref]

Valette, S.

J. Reif, C. Martens, S. Uhlig, M. Ratzke, O. Varlamova, S. Valette, and S. Benayoun, “On large area lipss coverage by multiple pulses,” Appl. Surf. Sci. 336, 249–254 (2015).
[Crossref]

van Sprang, H. A.

M. A. Verschuuren, P. Gerlach, H. A. van Sprang, and A. Polman, “Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint lithography,” Nanotechnology 22(50), 505201 (2011).
[Crossref] [PubMed]

Varlamova, O.

J. Reif, C. Martens, S. Uhlig, M. Ratzke, O. Varlamova, S. Valette, and S. Benayoun, “On large area lipss coverage by multiple pulses,” Appl. Surf. Sci. 336, 249–254 (2015).
[Crossref]

Vasilev, K.

Vecchi, G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Vengurlekar, A. S.

Verschuuren, M. A.

M. A. Verschuuren, P. Gerlach, H. A. van Sprang, and A. Polman, “Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint lithography,” Nanotechnology 22(50), 505201 (2011).
[Crossref] [PubMed]

Vertchenko, L.

Vos, W. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Walter, R.

Wang, C.

F. Zhang, C. Wang, K. Yin, X. R. Dong, Y. X. Song, Y. X. Tian, and J. A. Duan, “Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching,” Sci. Rep. 8(1), 2419 (2018).
[Crossref] [PubMed]

K. Yin, H. Du, X. Dong, C. Wang, J. A. Duan, and J. He, “A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection,” Nanoscale 9(38), 14620–14626 (2017).
[Crossref] [PubMed]

K. Yin, D. Chu, X. Dong, C. Wang, J. A. Duan, and J. He, “Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation,” Nanoscale 9(37), 14229–14235 (2017).
[Crossref] [PubMed]

F. Zhang, C. Wang, K. Yin, X. Dong, Y. Song, Y. Tian, and J. A. Duan, “Underwater giant enhancement of broadband diffraction efficiency of surface diffraction gratings fabricated by femtosecond laser,” J. Appl. Phys. 121(24), 243102 (2017).
[Crossref]

K. Yin, X. R. Dong, F. Zhang, C. Wang, and J. A. Duan, “Superamphiphobic miniature boat fabricated by laser micromachining,” Appl. Phys. Lett. 110(12), 121909 (2017).
[Crossref]

C. Wang, Z. Luo, J. A. Duan, L. Jiang, X. Y. Sun, Y. W. Hu, J. Y. Zhou, and Y. F. Lu, “Adjustable annular rings of periodic surface structures induced by spatially shaped femtosecond laser,” Laser Phys. Lett. 12(5), 056001 (2015).
[Crossref]

Wang, L.

Wang, X.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett. 36(7), 1176–1178 (2011).
[Crossref] [PubMed]

Wu, W.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, W. Wu, and W. Zheng, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref] [PubMed]

Xu, B. B.

Yamada, I.

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(5), 2502 (2014).

Yamashita, N.

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(5), 2502 (2014).

Yang, S.

K. Yin, S. Yang, X. R. Dong, D. K. Chu, J. A. Duan, and J. He, “Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles,” Appl. Phys. Lett. 112(24), 243701 (2018).
[Crossref]

Yasumoto, K.

N. Nguyen-Huu, M. Cada, Y. Ma, F. Che, J. Pistora, K. Yasumoto, Y. Ma, J. Lin, and H. Maeda, “Mid-infrared fano resonance in heavily doped silicon and metallic nanostructures due to coupling of wood-rayleigh anomaly and surface plasmons,” J. Phys. D Appl. Phys. 50(20), 205105 (2017).
[Crossref]

Yatagai, T.

Ye, X.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, W. Wu, and W. Zheng, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref] [PubMed]

Yin, K.

F. Zhang, C. Wang, K. Yin, X. R. Dong, Y. X. Song, Y. X. Tian, and J. A. Duan, “Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching,” Sci. Rep. 8(1), 2419 (2018).
[Crossref] [PubMed]

K. Yin, S. Yang, X. R. Dong, D. K. Chu, J. A. Duan, and J. He, “Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles,” Appl. Phys. Lett. 112(24), 243701 (2018).
[Crossref]

K. Yin, H. Du, X. Dong, C. Wang, J. A. Duan, and J. He, “A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection,” Nanoscale 9(38), 14620–14626 (2017).
[Crossref] [PubMed]

K. Yin, D. Chu, X. Dong, C. Wang, J. A. Duan, and J. He, “Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation,” Nanoscale 9(37), 14229–14235 (2017).
[Crossref] [PubMed]

K. Yin, X. R. Dong, F. Zhang, C. Wang, and J. A. Duan, “Superamphiphobic miniature boat fabricated by laser micromachining,” Appl. Phys. Lett. 110(12), 121909 (2017).
[Crossref]

F. Zhang, C. Wang, K. Yin, X. Dong, Y. Song, Y. Tian, and J. A. Duan, “Underwater giant enhancement of broadband diffraction efficiency of surface diffraction gratings fabricated by femtosecond laser,” J. Appl. Phys. 121(24), 243102 (2017).
[Crossref]

Yoo, S. I.

S. M. Jung, Y. H. Kim, S. I. Kim, and S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for iii-v solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
[Crossref]

Yu, Y. H.

Zgrabik, C. M.

Zhang, F.

F. Zhang, C. Wang, K. Yin, X. R. Dong, Y. X. Song, Y. X. Tian, and J. A. Duan, “Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching,” Sci. Rep. 8(1), 2419 (2018).
[Crossref] [PubMed]

F. Zhang, C. Wang, K. Yin, X. Dong, Y. Song, Y. Tian, and J. A. Duan, “Underwater giant enhancement of broadband diffraction efficiency of surface diffraction gratings fabricated by femtosecond laser,” J. Appl. Phys. 121(24), 243102 (2017).
[Crossref]

K. Yin, X. R. Dong, F. Zhang, C. Wang, and J. A. Duan, “Superamphiphobic miniature boat fabricated by laser micromachining,” Appl. Phys. Lett. 110(12), 121909 (2017).
[Crossref]

Zhang, R.

Zhang, T.

Y. Li, T. Zhang, S. Fan, and G. Cheng, “Fabrication of micro hole array on the surface of CVD ZnS by scanning ultrafast pulse laser for antireflection,” Opt. Mater. 66, 356–360 (2017).
[Crossref]

Zheng, W.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, W. Wu, and W. Zheng, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref] [PubMed]

Zheng, Z. Y.

H. Gao, Z. Y. Zheng, S. J. Chen, and H. Y. Hao, “Achieving enhanced mid-infrared transmission through subwavelength periodic structures via redshift effect of the extraordinary optical transmission,” J. Mod. Opt. 61(9), 766–772 (2014).
[Crossref]

Zhou, J. Y.

C. Wang, Z. Luo, J. A. Duan, L. Jiang, X. Y. Sun, Y. W. Hu, J. Y. Zhou, and Y. F. Lu, “Adjustable annular rings of periodic surface structures induced by spatially shaped femtosecond laser,” Laser Phys. Lett. 12(5), 056001 (2015).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Zimmermann, J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Zu, X.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, W. Wu, and W. Zheng, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[Crossref]

Appl. Phys. Express (1)

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(5), 2502 (2014).

Appl. Phys. Lett. (2)

K. Yin, S. Yang, X. R. Dong, D. K. Chu, J. A. Duan, and J. He, “Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles,” Appl. Phys. Lett. 112(24), 243701 (2018).
[Crossref]

K. Yin, X. R. Dong, F. Zhang, C. Wang, and J. A. Duan, “Superamphiphobic miniature boat fabricated by laser micromachining,” Appl. Phys. Lett. 110(12), 121909 (2017).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

H. Y. Kim, W. S. Choi, S. Y. Ji, Y. G. Shin, J. W. Jeon, S. Ahn, and S. H. Cho, “Morphologies of femtosecond laser ablation of ITO thin films using Gaussian or quasi-flat top beams for OLED repair,” Appl. Phys., A Mater. Sci. Process. 124(2), 123 (2018).
[Crossref]

Appl. Surf. Sci. (1)

J. Reif, C. Martens, S. Uhlig, M. Ratzke, O. Varlamova, S. Valette, and S. Benayoun, “On large area lipss coverage by multiple pulses,” Appl. Surf. Sci. 336, 249–254 (2015).
[Crossref]

Bioinspir. Biomim. (1)

L. W. Chan, D. E. Morse, and M. J. Gordon, “Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching,” Bioinspir. Biomim. 13(4), 041001 (2018).
[Crossref] [PubMed]

Bioinspired Biomimetic Nanobiomater. (1)

T. Li, T. Fan, J. Ding, and S. Lou, “Antireflective amorphous carbon nanocone arrays inspired from compound eyes,” Bioinspired Biomimetic Nanobiomater. 3(1), 29–37 (2014).
[Crossref]

Curr. Appl. Phys. (1)

S. M. Jung, Y. H. Kim, S. I. Kim, and S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for iii-v solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
[Crossref]

Infrared Phys. Technol. (1)

R. Z. Moghadam, H. Ahmadvand, and M. Jannesari, “Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate,” Infrared Phys. Technol. 75, 18–21 (2016).
[Crossref]

Inorg. Mater. (1)

V. I. Bredikhin, E. M. Gavrishchuk, V. B. Ikonnikov, E. V. Karaksina, L. A. Ketkova, S. P. Kuznetsov, and O. A. Malshakova, “Optical losses in polycrystalline CVD ZnS,” Inorg. Mater. 45(3), 235–241 (2009).
[Crossref]

J. Appl. Phys. (2)

F. Zhang, C. Wang, K. Yin, X. Dong, Y. Song, Y. Tian, and J. A. Duan, “Underwater giant enhancement of broadband diffraction efficiency of surface diffraction gratings fabricated by femtosecond laser,” J. Appl. Phys. 121(24), 243102 (2017).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Microsc. (1)

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

J. Mod. Opt. (2)

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
[Crossref]

H. Gao, Z. Y. Zheng, S. J. Chen, and H. Y. Hao, “Achieving enhanced mid-infrared transmission through subwavelength periodic structures via redshift effect of the extraordinary optical transmission,” J. Mod. Opt. 61(9), 766–772 (2014).
[Crossref]

J. Nanophotonics (1)

M. Schulze, D. Tonova, A. Gatto, and E. B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

J. Opt. (1)

L. Chan, E. A. J. Decuir, R. Fu, D. E. Morse, and M. J. Gordon, “Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity,” J. Opt. 19(11), 114007 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (2)

N. Nguyen-Huu, M. Cada, Y. Ma, F. Che, J. Pistora, K. Yasumoto, Y. Ma, J. Lin, and H. Maeda, “Mid-infrared fano resonance in heavily doped silicon and metallic nanostructures due to coupling of wood-rayleigh anomaly and surface plasmons,” J. Phys. D Appl. Phys. 50(20), 205105 (2017).
[Crossref]

R. Kumar and S. A. Ramakrishna, “Enhanced infra-red transmission through subwavelength hole arrays in a thin gold film mounted with dielectric micro-domes,” J. Phys. D Appl. Phys. 51(16), 165104 (2018).
[Crossref]

Laser Phys. Lett. (1)

C. Wang, Z. Luo, J. A. Duan, L. Jiang, X. Y. Sun, Y. W. Hu, J. Y. Zhou, and Y. F. Lu, “Adjustable annular rings of periodic surface structures induced by spatially shaped femtosecond laser,” Laser Phys. Lett. 12(5), 056001 (2015).
[Crossref]

Light Sci. Appl. (1)

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Nanoscale (2)

K. Yin, D. Chu, X. Dong, C. Wang, J. A. Duan, and J. He, “Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation,” Nanoscale 9(37), 14229–14235 (2017).
[Crossref] [PubMed]

K. Yin, H. Du, X. Dong, C. Wang, J. A. Duan, and J. He, “A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection,” Nanoscale 9(38), 14620–14626 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

M. A. Verschuuren, P. Gerlach, H. A. van Sprang, and A. Polman, “Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint lithography,” Nanotechnology 22(50), 505201 (2011).
[Crossref] [PubMed]

Opt. Eng. (1)

A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57(3), 1 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Opt. Mater. (1)

Y. Li, T. Zhang, S. Fan, and G. Cheng, “Fabrication of micro hole array on the surface of CVD ZnS by scanning ultrafast pulse laser for antireflection,” Opt. Mater. 66, 356–360 (2017).
[Crossref]

Opt. Mater. Express (1)

Sci. Rep. (2)

F. Zhang, C. Wang, K. Yin, X. R. Dong, Y. X. Song, Y. X. Tian, and J. A. Duan, “Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching,” Sci. Rep. 8(1), 2419 (2018).
[Crossref] [PubMed]

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, W. Wu, and W. Zheng, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref] [PubMed]

Science (1)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Other (1)

Y. M. Song, S. J. Jang, H. J. Choi, and J. S. Yu, “Design and fabrication of nanoscale antireflection structures with linearly graded refractive index,” 10th IEEE International Conference on Nanotechnology 294–297 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The effective refractive index of SWMS with different period (p) versus filling factor from EMT calculation. (b) The schematic of the designed SWMS. (c)-(f) Electric field intensity distribution of the SWMS on ZnS at incident wavelength of 9 μm, 7 μm, 5 μm, 3 μm.
Fig. 2
Fig. 2 Contour plot of the FDTD simulated transmittance (a) and reflectance (c) of SWMS as a function of height and wavelength. Simulated height-dependent transmittance spectra (b) and reflectance spectra (d) of SWMS on ZnS in the wavelength range 7 μm-13 μm. The transmittance and reflectance at wavelength of 9 μm versus height for single-side (e) and double-side (f) SWMS.
Fig. 3
Fig. 3 Contour plot of the FDTD simulated transmittance (a) and reflectance (c) of SWMS as a function of period p and wavelength. Simulated period-dependent transmittance spectra (b) and reflectance spectra (d) of SWMS on ZnS in the wavelength range 8 μm-13 μm. The transmittance (e) and reflectance (f) of SWMS at wavelength of 9 μm with different incident angle θ versus incident polarization angle.
Fig. 4
Fig. 4 (a) Schematic diagram of the experimental setup for parallel femtosecond laser fabrication. MLA: microlens array; OL: objective lens; D: distance between MLA and OL; Sample: ZnS. (b) Photography of a SWMS sample fabricated by parallel femtosecond laser. (c) A typical optical field intensity distribution of 5 × 5 foci diffraction pattern.
Fig. 5
Fig. 5 SEM images of the microstructures with different distance D between MLA and OL: (a) D = 40 mm, (b) D = 80 mm, (c) D = 120 mm, and different laser scanning speed: (d) ν = 1000 μm/s, (e) ν = 800 μm/s, (f) ν = 500 μm/s. The AFM profile of fabricated SWMS with scanning speed of (g) ν = 500 μm/s and (h) ν = 250 μm/s. The laser pulse energy is 50 μJ, and the repetition rate is 1000 Hz.
Fig. 6
Fig. 6 SEM images of the microstructures at different laser repetition rates: (a) 167 Hz, (b) 200 Hz, (c) 250 Hz. (d)-(f) are morphology evolution of the microstructures orientation adjusted by changing the incident laser polarization. The yellow arrows show different laser polarization direction. (g) Duty ratio of the nano-gratings’ area in the entire micro-grating region with various laser energies. The inset is the SEM image of fabricated surface corresponding to the laser energy. (h) Simulated nano-grating period versus excitation of electron. The inset is the SEM image of the typical nano-grating. The scale bars in (a)-(f) and (h) are 5 μm and 400 nm, respectively.
Fig. 7
Fig. 7 (a) Experimented (symbol exp) and simulated (symbol sim) transmittance spectra of the flat ZnS and SWMS. (b) Transmittance spectra of fabricated SWMS after different circle of abrasion tests. (c) Transmittance spectra of SWMS fabricated by different laser power of 50 mW, 60 mW, and 70 mW. (d) Transmittance spectra of SWMS with different orientation angle β between nano-gratings and micro-gratings. The inset shows the SEM image of SWMS with angle β = 60°. The incident angle θ dependent measured transmittance spectra of ZnS with one side (e) and double side (f) SWMS.
Fig. 8
Fig. 8 Photographs of water droplets on the surface of (a) flat ZnS and SWMS ZnS with laser scanning speed of (b) 0.5 mm/s and (c) 2 mm/s. (d) the contact angle and surface energy of SWMS as a function of laser scanning speed.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ε T E ( 0 ) = f ε 0 + ( 1 f ) ε 2
ε T E ( 2 ) = ε T E ( 0 ) [ 1 + π 2 3 ( p λ ) 2 f 2 ( 1 f ) 2 ( ε 2 ε 0 ) 2 ε T E ( 0 ) ]
1 ε T M ( 0 ) = f ε 2 + 1 f ε 0
ε T M ( 2 ) = ε T M ( 0 ) [ 1 + π 2 3 ( p λ ) 2 f 2 ( 1 f ) 2 ( ε 2 ε 0 ) 2 ε T E ( 0 ) ( ε T M ( 0 ) ε 0 ε 2 ) 2 ]
n 2 sin θ m ± n 0 sin θ 0 = m λ p
p λ < 1 n 2 + n 0
p ( n ± sin θ ) = k λ
Δ θ = λ N d M L A cos θ
d D = D Δ θ = λ D N d M L A
Δ L = λ D N d M L A m = λ D N d M L A D f M L A f O L f O L ( D f M L A )

Metrics