Abstract

In this work, a new spectral reduction algorithm for the echelle spectrometer was proposed. Unlike conventional approaches, the key concept in this algorithm is to model the spectrogram rather the spectrometer, which makes the algorithm more adaptive to different designs. This algorithm also introduces a dynamic adjusting procedure for generating optimized spectra from laser-induced plasmas. This additional step improved the spectrum stability and absolute line intensity of the spectrum and yielded better quantification performance. Experimental results demonstrated that the quantification results of analyzing aluminum alloy samples were improved using this new algorithm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simple spectral reduction algorithm used for the echelle spectrometer

Fajie Duan, Yuqian Qin, Xiao Fu, Ling Ma, Tingting Huang, and Cong Zhang
Appl. Opt. 57(30) 8921-8927 (2018)

High-accuracy spectral reduction algorithm for the échelle spectrometer

Lu Yin, Bayanheshig, Jin Yang, Yuxian Lu, Rui Zhang, Ci Sun, and Jicheng Cui
Appl. Opt. 55(13) 3574-3581 (2016)

Comparative study of two new commercial echelle spectrometers equipped with intensified CCD for analysis of laser-induced breakdown spectroscopy

Mohamad Sabsabi, Vincent Detalle, Mohamed A. Harith, Walid Tawfik, and Hisham Imam
Appl. Opt. 42(30) 6094-6098 (2003)

References

  • View by:
  • |
  • |
  • |

  1. J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A pls model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Analytical and Bioanalytical Chemistry 400, 3261–3271 (2011).
    [Crossref] [PubMed]
  2. S. Yao, J. Xu, X. Dong, B. Zhang, J. Zheng, and J. Lu, “Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters,” Spectrochimica Acta Part B: Atomic Spectroscopy 110, 146–150 (2015).
    [Crossref]
  3. X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Sensitive determinations of cu, pb, cd, and cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy,” Opt. Express 24, 13410–13417 (2016).
    [Crossref] [PubMed]
  4. L. Sun, H. Yu, Z. Cong, Y. Xin, Y. Li, and L. Qi, “In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a cassegrain telescope,” Spectrochimica Acta Part B: Atomic Spectroscopy 112, 40–48 (2015).
    [Crossref]
  5. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 1–14 (2010).
    [Crossref]
  6. B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 671–679 (2010). A Selection of Papers Presented at the 5th Euro-Mediterranean Symposium on Laser Induced Breakdown Spectroscopy (EMSLIBS 2009).
    [Crossref]
  7. S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochimica Acta Part B: Atomic Spectroscopy 64, 79–88 (2009).
    [Crossref]
  8. Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized pls model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182 (2011).
    [Crossref]
  9. P. Boumans and J. Vrakking, “High-resolution spectroscopy using an echelle spectrometer with predisperser—I. Characteristics of the instrument and approach for measuring physical line widths in an inductively coupled plasma,” Spectrochimica Acta Part B: Atomic Spectroscopy 39, 1239–1260 (1984).
    [Crossref]
  10. J. L. Wu, Y. Lu, Y. Li, K. Cheng, J. J. Guo, and R. E. Zheng, “Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water,” Optoelectronics Letters 7, 65–68 (2011).
    [Crossref]
  11. X. Mao, X. Zeng, S.-B. Wen, and R. E. Russo, “Time-resolved plasma properties for double pulsed laser-induced breakdown spectroscopy of silicon,” Spectrochimica Acta Part B: Atomic Spectroscopy 60, 960–967 (2005). Laser Induced Plasma Spectroscopy and Applications (LIBS 2004) Third International Conference.
    [Crossref]
  12. L. Yin, Bayanheshig, J. Yang, Y. Lu, R. Zhang, C. Sun, and J. Cui, “High-accuracy spectral reduction algorithm for the echelle spectrometer,” Appl. Opt. 55, 3574–3581 (2016).
    [Crossref] [PubMed]
  13. R. Zhang, Bayanheshig, X. Li, and J. Cui, “Establishment and correction of an echelle cross-prism spectrogram reduction model,” Optics Communications 403, 401–407 (2017).
    [Crossref]
  14. R. Zhang, Bayanheshig, L. Yin, X. Li, J. Cui, J. Yang, and C. Sun, “Wavelength calibration model for prism-type echelle spectrometer byreversely solving prism’s refractive index in real time,” Appl. Opt. 55, 4153–4158 (2016).
    [Crossref]
  15. R. M. Bernstein, S. M. Burles, and J. X. Prochaska, “Data reduction with the MIKE spectrometer,” Publications of the Astronomical Society of the Pacific 127, 911 (2015).
    [Crossref]
  16. A. A. Dantzler, “Echelle spectrograph software design aid,” Appl. Opt. 24, 4504–4508 (1985).
    [Crossref] [PubMed]
  17. D. A. Sadler, D. Littlejohn, and C. V. Perkins, “Automatic wavelength calibration procedure for use with an optical spectrometer and array detector,” J. Anal. At. Spectrom. 10, 253–257 (1995).
    [Crossref]
  18. A. Scheeline, C. A. Bye, D. L. Miller, S. W. Rynders, and R. C. Owen, “Design and characterization of an echelle spectrometer for fundamental and applied emission spectrochemical analysis,” Appl. Spectrosc. 45, 334–346 (1991).
    [Crossref]

2017 (1)

R. Zhang, Bayanheshig, X. Li, and J. Cui, “Establishment and correction of an echelle cross-prism spectrogram reduction model,” Optics Communications 403, 401–407 (2017).
[Crossref]

2016 (3)

2015 (3)

S. Yao, J. Xu, X. Dong, B. Zhang, J. Zheng, and J. Lu, “Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters,” Spectrochimica Acta Part B: Atomic Spectroscopy 110, 146–150 (2015).
[Crossref]

R. M. Bernstein, S. M. Burles, and J. X. Prochaska, “Data reduction with the MIKE spectrometer,” Publications of the Astronomical Society of the Pacific 127, 911 (2015).
[Crossref]

L. Sun, H. Yu, Z. Cong, Y. Xin, Y. Li, and L. Qi, “In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a cassegrain telescope,” Spectrochimica Acta Part B: Atomic Spectroscopy 112, 40–48 (2015).
[Crossref]

2011 (3)

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized pls model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182 (2011).
[Crossref]

J. L. Wu, Y. Lu, Y. Li, K. Cheng, J. J. Guo, and R. E. Zheng, “Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water,” Optoelectronics Letters 7, 65–68 (2011).
[Crossref]

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A pls model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Analytical and Bioanalytical Chemistry 400, 3261–3271 (2011).
[Crossref] [PubMed]

2010 (2)

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 1–14 (2010).
[Crossref]

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 671–679 (2010). A Selection of Papers Presented at the 5th Euro-Mediterranean Symposium on Laser Induced Breakdown Spectroscopy (EMSLIBS 2009).
[Crossref]

2009 (1)

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochimica Acta Part B: Atomic Spectroscopy 64, 79–88 (2009).
[Crossref]

2005 (1)

X. Mao, X. Zeng, S.-B. Wen, and R. E. Russo, “Time-resolved plasma properties for double pulsed laser-induced breakdown spectroscopy of silicon,” Spectrochimica Acta Part B: Atomic Spectroscopy 60, 960–967 (2005). Laser Induced Plasma Spectroscopy and Applications (LIBS 2004) Third International Conference.
[Crossref]

1995 (1)

D. A. Sadler, D. Littlejohn, and C. V. Perkins, “Automatic wavelength calibration procedure for use with an optical spectrometer and array detector,” J. Anal. At. Spectrom. 10, 253–257 (1995).
[Crossref]

1991 (1)

1985 (1)

1984 (1)

P. Boumans and J. Vrakking, “High-resolution spectroscopy using an echelle spectrometer with predisperser—I. Characteristics of the instrument and approach for measuring physical line widths in an inductively coupled plasma,” Spectrochimica Acta Part B: Atomic Spectroscopy 39, 1239–1260 (1984).
[Crossref]

Barefield, J. E.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochimica Acta Part B: Atomic Spectroscopy 64, 79–88 (2009).
[Crossref]

Bayanheshig,

Bernstein, R. M.

R. M. Bernstein, S. M. Burles, and J. X. Prochaska, “Data reduction with the MIKE spectrometer,” Publications of the Astronomical Society of the Pacific 127, 911 (2015).
[Crossref]

Boumans, P.

P. Boumans and J. Vrakking, “High-resolution spectroscopy using an echelle spectrometer with predisperser—I. Characteristics of the instrument and approach for measuring physical line widths in an inductively coupled plasma,” Spectrochimica Acta Part B: Atomic Spectroscopy 39, 1239–1260 (1984).
[Crossref]

Burles, S. M.

R. M. Bernstein, S. M. Burles, and J. X. Prochaska, “Data reduction with the MIKE spectrometer,” Publications of the Astronomical Society of the Pacific 127, 911 (2015).
[Crossref]

Bye, C. A.

Cheng, K.

J. L. Wu, Y. Lu, Y. Li, K. Cheng, J. J. Guo, and R. E. Zheng, “Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water,” Optoelectronics Letters 7, 65–68 (2011).
[Crossref]

Clegg, S. M.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochimica Acta Part B: Atomic Spectroscopy 64, 79–88 (2009).
[Crossref]

Cong, Z.

L. Sun, H. Yu, Z. Cong, Y. Xin, Y. Li, and L. Qi, “In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a cassegrain telescope,” Spectrochimica Acta Part B: Atomic Spectroscopy 112, 40–48 (2015).
[Crossref]

Cristoforetti, G.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 1–14 (2010).
[Crossref]

Cui, J.

Dantzler, A. A.

Dong, X.

S. Yao, J. Xu, X. Dong, B. Zhang, J. Zheng, and J. Lu, “Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters,” Spectrochimica Acta Part B: Atomic Spectroscopy 110, 146–150 (2015).
[Crossref]

Dyar, M. D.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochimica Acta Part B: Atomic Spectroscopy 64, 79–88 (2009).
[Crossref]

Feng, J.

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized pls model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182 (2011).
[Crossref]

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A pls model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Analytical and Bioanalytical Chemistry 400, 3261–3271 (2011).
[Crossref] [PubMed]

Guo, J. J.

J. L. Wu, Y. Lu, Y. Li, K. Cheng, J. J. Guo, and R. E. Zheng, “Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water,” Optoelectronics Letters 7, 65–68 (2011).
[Crossref]

Guo, L. B.

Hao, Z. Q.

Heitz, J.

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 671–679 (2010). A Selection of Papers Presented at the 5th Euro-Mediterranean Symposium on Laser Induced Breakdown Spectroscopy (EMSLIBS 2009).
[Crossref]

Legnaioli, S.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 1–14 (2010).
[Crossref]

Li, C. M.

Li, J. M.

Li, K. H.

Li, L.

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized pls model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182 (2011).
[Crossref]

Li, X.

R. Zhang, Bayanheshig, X. Li, and J. Cui, “Establishment and correction of an echelle cross-prism spectrogram reduction model,” Optics Communications 403, 401–407 (2017).
[Crossref]

R. Zhang, Bayanheshig, L. Yin, X. Li, J. Cui, J. Yang, and C. Sun, “Wavelength calibration model for prism-type echelle spectrometer byreversely solving prism’s refractive index in real time,” Appl. Opt. 55, 4153–4158 (2016).
[Crossref]

Li, X. Y.

Li, Y.

L. Sun, H. Yu, Z. Cong, Y. Xin, Y. Li, and L. Qi, “In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a cassegrain telescope,” Spectrochimica Acta Part B: Atomic Spectroscopy 112, 40–48 (2015).
[Crossref]

J. L. Wu, Y. Lu, Y. Li, K. Cheng, J. J. Guo, and R. E. Zheng, “Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water,” Optoelectronics Letters 7, 65–68 (2011).
[Crossref]

Li, Z.

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized pls model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182 (2011).
[Crossref]

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A pls model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Analytical and Bioanalytical Chemistry 400, 3261–3271 (2011).
[Crossref] [PubMed]

Littlejohn, D.

D. A. Sadler, D. Littlejohn, and C. V. Perkins, “Automatic wavelength calibration procedure for use with an optical spectrometer and array detector,” J. Anal. At. Spectrom. 10, 253–257 (1995).
[Crossref]

Lu, J.

S. Yao, J. Xu, X. Dong, B. Zhang, J. Zheng, and J. Lu, “Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters,” Spectrochimica Acta Part B: Atomic Spectroscopy 110, 146–150 (2015).
[Crossref]

Lu, Y.

L. Yin, Bayanheshig, J. Yang, Y. Lu, R. Zhang, C. Sun, and J. Cui, “High-accuracy spectral reduction algorithm for the echelle spectrometer,” Appl. Opt. 55, 3574–3581 (2016).
[Crossref] [PubMed]

J. L. Wu, Y. Lu, Y. Li, K. Cheng, J. J. Guo, and R. E. Zheng, “Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water,” Optoelectronics Letters 7, 65–68 (2011).
[Crossref]

Lu, Y. F.

Mao, X.

X. Mao, X. Zeng, S.-B. Wen, and R. E. Russo, “Time-resolved plasma properties for double pulsed laser-induced breakdown spectroscopy of silicon,” Spectrochimica Acta Part B: Atomic Spectroscopy 60, 960–967 (2005). Laser Induced Plasma Spectroscopy and Applications (LIBS 2004) Third International Conference.
[Crossref]

Miller, D. L.

Ni, W.

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A pls model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Analytical and Bioanalytical Chemistry 400, 3261–3271 (2011).
[Crossref] [PubMed]

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized pls model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182 (2011).
[Crossref]

Owen, R. C.

Palleschi, V.

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 671–679 (2010). A Selection of Papers Presented at the 5th Euro-Mediterranean Symposium on Laser Induced Breakdown Spectroscopy (EMSLIBS 2009).
[Crossref]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 1–14 (2010).
[Crossref]

Pedarnig, J.

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 671–679 (2010). A Selection of Papers Presented at the 5th Euro-Mediterranean Symposium on Laser Induced Breakdown Spectroscopy (EMSLIBS 2009).
[Crossref]

Perkins, C. V.

D. A. Sadler, D. Littlejohn, and C. V. Perkins, “Automatic wavelength calibration procedure for use with an optical spectrometer and array detector,” J. Anal. At. Spectrom. 10, 253–257 (1995).
[Crossref]

Praher, B.

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 671–679 (2010). A Selection of Papers Presented at the 5th Euro-Mediterranean Symposium on Laser Induced Breakdown Spectroscopy (EMSLIBS 2009).
[Crossref]

Prochaska, J. X.

R. M. Bernstein, S. M. Burles, and J. X. Prochaska, “Data reduction with the MIKE spectrometer,” Publications of the Astronomical Society of the Pacific 127, 911 (2015).
[Crossref]

Qi, L.

L. Sun, H. Yu, Z. Cong, Y. Xin, Y. Li, and L. Qi, “In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a cassegrain telescope,” Spectrochimica Acta Part B: Atomic Spectroscopy 112, 40–48 (2015).
[Crossref]

Russo, R. E.

X. Mao, X. Zeng, S.-B. Wen, and R. E. Russo, “Time-resolved plasma properties for double pulsed laser-induced breakdown spectroscopy of silicon,” Spectrochimica Acta Part B: Atomic Spectroscopy 60, 960–967 (2005). Laser Induced Plasma Spectroscopy and Applications (LIBS 2004) Third International Conference.
[Crossref]

Rynders, S. W.

Sadler, D. A.

D. A. Sadler, D. Littlejohn, and C. V. Perkins, “Automatic wavelength calibration procedure for use with an optical spectrometer and array detector,” J. Anal. At. Spectrom. 10, 253–257 (1995).
[Crossref]

Scheeline, A.

Shen, M.

Sklute, E.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochimica Acta Part B: Atomic Spectroscopy 64, 79–88 (2009).
[Crossref]

Sun, C.

Sun, L.

L. Sun, H. Yu, Z. Cong, Y. Xin, Y. Li, and L. Qi, “In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a cassegrain telescope,” Spectrochimica Acta Part B: Atomic Spectroscopy 112, 40–48 (2015).
[Crossref]

Tognoni, E.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 1–14 (2010).
[Crossref]

Viskup, R.

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 671–679 (2010). A Selection of Papers Presented at the 5th Euro-Mediterranean Symposium on Laser Induced Breakdown Spectroscopy (EMSLIBS 2009).
[Crossref]

Vrakking, J.

P. Boumans and J. Vrakking, “High-resolution spectroscopy using an echelle spectrometer with predisperser—I. Characteristics of the instrument and approach for measuring physical line widths in an inductively coupled plasma,” Spectrochimica Acta Part B: Atomic Spectroscopy 39, 1239–1260 (1984).
[Crossref]

Wang, Z.

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized pls model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182 (2011).
[Crossref]

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A pls model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Analytical and Bioanalytical Chemistry 400, 3261–3271 (2011).
[Crossref] [PubMed]

Wen, S.-B.

X. Mao, X. Zeng, S.-B. Wen, and R. E. Russo, “Time-resolved plasma properties for double pulsed laser-induced breakdown spectroscopy of silicon,” Spectrochimica Acta Part B: Atomic Spectroscopy 60, 960–967 (2005). Laser Induced Plasma Spectroscopy and Applications (LIBS 2004) Third International Conference.
[Crossref]

West, L.

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A pls model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Analytical and Bioanalytical Chemistry 400, 3261–3271 (2011).
[Crossref] [PubMed]

Wiens, R. C.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochimica Acta Part B: Atomic Spectroscopy 64, 79–88 (2009).
[Crossref]

Wu, J. L.

J. L. Wu, Y. Lu, Y. Li, K. Cheng, J. J. Guo, and R. E. Zheng, “Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water,” Optoelectronics Letters 7, 65–68 (2011).
[Crossref]

Xin, Y.

L. Sun, H. Yu, Z. Cong, Y. Xin, Y. Li, and L. Qi, “In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a cassegrain telescope,” Spectrochimica Acta Part B: Atomic Spectroscopy 112, 40–48 (2015).
[Crossref]

Xu, J.

S. Yao, J. Xu, X. Dong, B. Zhang, J. Zheng, and J. Lu, “Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters,” Spectrochimica Acta Part B: Atomic Spectroscopy 110, 146–150 (2015).
[Crossref]

Yang, J.

Yang, X. Y.

Yao, S.

S. Yao, J. Xu, X. Dong, B. Zhang, J. Zheng, and J. Lu, “Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters,” Spectrochimica Acta Part B: Atomic Spectroscopy 110, 146–150 (2015).
[Crossref]

Yi, R. X.

Yin, L.

Yu, H.

L. Sun, H. Yu, Z. Cong, Y. Xin, Y. Li, and L. Qi, “In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a cassegrain telescope,” Spectrochimica Acta Part B: Atomic Spectroscopy 112, 40–48 (2015).
[Crossref]

Zeng, X.

X. Mao, X. Zeng, S.-B. Wen, and R. E. Russo, “Time-resolved plasma properties for double pulsed laser-induced breakdown spectroscopy of silicon,” Spectrochimica Acta Part B: Atomic Spectroscopy 60, 960–967 (2005). Laser Induced Plasma Spectroscopy and Applications (LIBS 2004) Third International Conference.
[Crossref]

Zeng, X. Y.

Zhang, B.

S. Yao, J. Xu, X. Dong, B. Zhang, J. Zheng, and J. Lu, “Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters,” Spectrochimica Acta Part B: Atomic Spectroscopy 110, 146–150 (2015).
[Crossref]

Zhang, R.

Zheng, J.

S. Yao, J. Xu, X. Dong, B. Zhang, J. Zheng, and J. Lu, “Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters,” Spectrochimica Acta Part B: Atomic Spectroscopy 110, 146–150 (2015).
[Crossref]

Zheng, R. E.

J. L. Wu, Y. Lu, Y. Li, K. Cheng, J. J. Guo, and R. E. Zheng, “Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water,” Optoelectronics Letters 7, 65–68 (2011).
[Crossref]

Analytical and Bioanalytical Chemistry (1)

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A pls model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Analytical and Bioanalytical Chemistry 400, 3261–3271 (2011).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (1)

J. Anal. At. Spectrom. (2)

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized pls model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182 (2011).
[Crossref]

D. A. Sadler, D. Littlejohn, and C. V. Perkins, “Automatic wavelength calibration procedure for use with an optical spectrometer and array detector,” J. Anal. At. Spectrom. 10, 253–257 (1995).
[Crossref]

Opt. Express (1)

Optics Communications (1)

R. Zhang, Bayanheshig, X. Li, and J. Cui, “Establishment and correction of an echelle cross-prism spectrogram reduction model,” Optics Communications 403, 401–407 (2017).
[Crossref]

Optoelectronics Letters (1)

J. L. Wu, Y. Lu, Y. Li, K. Cheng, J. J. Guo, and R. E. Zheng, “Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water,” Optoelectronics Letters 7, 65–68 (2011).
[Crossref]

Publications of the Astronomical Society of the Pacific (1)

R. M. Bernstein, S. M. Burles, and J. X. Prochaska, “Data reduction with the MIKE spectrometer,” Publications of the Astronomical Society of the Pacific 127, 911 (2015).
[Crossref]

Spectrochimica Acta Part B: Atomic Spectroscopy (7)

S. Yao, J. Xu, X. Dong, B. Zhang, J. Zheng, and J. Lu, “Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters,” Spectrochimica Acta Part B: Atomic Spectroscopy 110, 146–150 (2015).
[Crossref]

X. Mao, X. Zeng, S.-B. Wen, and R. E. Russo, “Time-resolved plasma properties for double pulsed laser-induced breakdown spectroscopy of silicon,” Spectrochimica Acta Part B: Atomic Spectroscopy 60, 960–967 (2005). Laser Induced Plasma Spectroscopy and Applications (LIBS 2004) Third International Conference.
[Crossref]

P. Boumans and J. Vrakking, “High-resolution spectroscopy using an echelle spectrometer with predisperser—I. Characteristics of the instrument and approach for measuring physical line widths in an inductively coupled plasma,” Spectrochimica Acta Part B: Atomic Spectroscopy 39, 1239–1260 (1984).
[Crossref]

L. Sun, H. Yu, Z. Cong, Y. Xin, Y. Li, and L. Qi, “In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a cassegrain telescope,” Spectrochimica Acta Part B: Atomic Spectroscopy 112, 40–48 (2015).
[Crossref]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 1–14 (2010).
[Crossref]

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochimica Acta Part B: Atomic Spectroscopy 65, 671–679 (2010). A Selection of Papers Presented at the 5th Euro-Mediterranean Symposium on Laser Induced Breakdown Spectroscopy (EMSLIBS 2009).
[Crossref]

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochimica Acta Part B: Atomic Spectroscopy 64, 79–88 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simplified optical layout of the echelle spectrograph, and correction lens used for reducing aberrations is omitted.
Fig. 2
Fig. 2 Simplified light path of echelle spectrograph (a) and corresponding echellegram (b), light from same diffraction order is painted with same color.
Fig. 3
Fig. 3 Spectrogram of two monochromatic lights. Light spots with same wavelength are painted with same color.
Fig. 4
Fig. 4 A part of spectrogram within one order (a) and corresponding spectrum (b).
Fig. 5
Fig. 5 The schematic diagram of experimental for LIBS.
Fig. 6
Fig. 6 Spectrograph of mercury lamp acquired by echelle spectrogram. Several easily identified light spots are marked with their wavelength and labeled by red dots in (a), other light spots identified by rough model are labeled by colored boxes in (b).
Fig. 7
Fig. 7 Spectrogram shifting caused by thermal changing.
Fig. 8
Fig. 8 Spectra comparison between two different algorithms after thermal changing. Intensity decreasing and wavelength drafting can be easily observed in (a), and since the spectra generated by the new algorithm got calibrated automatically, these lines are tightly overlapped in (b).

Tables (2)

Tables Icon

Table 1 Sample concentration (wt.%) of Si, Mn, Ni and Zn in aluminum samples

Tables Icon

Table 2 Quantitative results at different wavelength

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

m λ = a * ( sin  α + sin  β λ )
δ λ = arcsin  { n λ * sin  [ φ arcsin  ( s i n   ϕ n λ ) ] }
β λ = F ( x )
m λ = P ( x ) = i = 0 N p i x i
λ = Q ( y ) = i = 0 M q i * y i
m λ = P ( x r ) = i = 0 N p i * x r i
( m 1 ) λ = P ( x l ) = i = 0 N p i * x l i
λ n = Q ( y n ) = i = 0 M q i * y n i
λ m = Q ( y m ) = i = 0 M q i * y m i
m λ = P ( x ) + U ( x , y ) = i = 0 N p i * x i + i = 0 J j = 0 J u i j * x i * y j
λ = Q ( y ) + V ( x , y ) = i = 0 M q i * y i + i = 0 J j = 0 J v i j * x i * y j
z x , y = F ( Δ i x , y , Δ r x , y )
Δ i x , y = a b s ( i x , y i x ^ , j ^ )
Δ r x , y = c 1 * ( x x ^ ) 2 + c 2 * ( y y ^ ) 2

Metrics