Abstract

The photon-counting technique is finding increasing applications in laser ranging systems owing to its high detection sensitivity and time resolution; however, it is still challenging to extract moving tracks accurately from an intensive noise background for non-cooperative targets using the photon-counting technique. To resolve this issue, a ranging method based on the Hough transform is proposed according to the distribution characteristics of a moving target in a point cloud figure. The proposed method divides the ranging process into the initial stage and the tracking stage. A large amount of point cloud data is used to acquire an accurate measurement of the initial distance and velocity of the target in the initial stage, whereas a smaller amount of point cloud data is used to rapidly update the distance and velocity for real-time processing in the tracking stage. The experimental results demonstrated that compared with the local distance statistics method and the density-based filtering method, the proposed method could extract target tracks effectively with decreased time consumption and lower ranging errors in different detection conditions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ranging performance models based on negative-binomial (NB) distribution for photon-counting lidars

Song Li, Zhiyu Zhang, Yue Ma, Haomin Zeng, Pufan Zhao, and Wenhao Zhang
Opt. Express 27(12) A861-A877 (2019)

False alarm suppression of multipulsed laser ranging system with Geiger-mode detector

Hanjun Luo, Huigang Xu, Benlian Xu, Zhengbiao Ouyang, and Yadan Fu
Appl. Opt. 54(17) 5513-5519 (2015)

Development and analysis of a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system

Min Seok Oh, Hong Jin Kong, Tae Hoon Kim, Sung Eun Jo, Byung Wook Kim, and Dong Jo Park
J. Opt. Soc. Am. A 28(5) 759-765 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Amann and R. A. Myllylae, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [Crossref]
  2. J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  3. J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Remote Sens. 23(4), 398–413 (1985).
    [Crossref]
  4. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, and R. M. Marino, “Three-dimensional imaging laser radars with geiger-mode avalanche photodiode arrays,” MIT Lincoln Lab. J. 13(2), 351–370 (2002).
  5. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
    [Crossref]
  6. S. O. Min, J. K. Hong, T. H. Kim, K. H. Hong, B. W. Kim, and J. P. Dong, “Time-of-flight analysis of three-dimensional imaging laser radar using a geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
    [Crossref]
  7. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer Berlin Heidelberg, 2005).
  8. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22(8), 543–545 (1997).
    [Crossref] [PubMed]
  9. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
    [Crossref] [PubMed]
  10. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometre-range, high resolution depth imaging using 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
    [Crossref] [PubMed]
  11. I. Prochazka, J. Kodet, J. Blazej, G. Kirchner, and F. Koidl, “Photon counting detector for space debris laser tracking and lunar laser ranging,” Adv. Space Res. 54(4), 755–758 (2014).
    [Crossref]
  12. J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3), 503–549 (2002).
    [Crossref]
  13. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
    [Crossref] [PubMed]
  14. W. He, Z. Feng, J. Lin, S. Shen, Q. Chen, and G. Gu, “Adaptive depth imaging with single-photon detectors,” IEEE Photonics J. 9(2), 7801812 (2016).
  15. R. I. Abbot, P. J. Shelus, J. D. Mulholland, and E. C. Silverberg, “Laser observations of the moon: identification and construction of normal points for 1969-1971,” Astron. J. 78(8), 784–793 (1973).
    [Crossref]
  16. S. W. Samwel, Z. Metwally, J. S. Mikhail, Y. S. Hanna, and M. Ibrahim, “Analyzing the range residuals of the SLR data using two different methods,” NRIAG J. Astron. Astrophys. 4(1), 1–14 (2005).
  17. R. L. Ricklefs and P. J. Shelus, “Poisson filtering of laser ranging data, “The 8th International Workshop on Laser Ranging Instrumentation (1993), pp. 26–32.
  18. S. B. Xia, C. Wang, X. H. Xi, S. Z. Luo, and H. C. Zeng, “Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2,” Yaogan Xuebao 18(6), 1199–1207 (2014).
  19. J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Geosci. Remote Sens. Lett. 12(4), 726–730 (2015).
    [Crossref]
  20. U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
    [Crossref]
  21. Z. Bao, Z. Li, Y. Shi, E. Wu, G. Wu, and H. Zeng, “Coincidence photon-counting laser ranging for moving targets with high signal-to-noise ratio,” IEEE Photonics Technol. Lett. 26(15), 1495–1498 (2014).
    [Crossref]
  22. Z. Zhang and Y. Zhao, “Noise filtering strategy in photon-counting laser radar using the multi-gates detection method,” Optik (Stuttg.) 127(20), 8926–8932 (2016).
    [Crossref]
  23. M. Henriksson, “Detection probabilities for photon-counting avalanche photodiodes applied to a laser radar system,” Appl. Opt. 44(24), 5140–5147 (2005).
    [Crossref] [PubMed]
  24. S. Deng, D. Gordon, and A. P. Morrison, “A geiger-mode APD photon counting system with adjustable dead-time and interchangeable detector,” IEEE Photonics Technol. Lett. 28(1), 99–102 (2016).
    [Crossref]
  25. J. Illingworth and J. Kittler, “A survey of the Hough Transform,” Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988).
    [Crossref]

2016 (3)

W. He, Z. Feng, J. Lin, S. Shen, Q. Chen, and G. Gu, “Adaptive depth imaging with single-photon detectors,” IEEE Photonics J. 9(2), 7801812 (2016).

Z. Zhang and Y. Zhao, “Noise filtering strategy in photon-counting laser radar using the multi-gates detection method,” Optik (Stuttg.) 127(20), 8926–8932 (2016).
[Crossref]

S. Deng, D. Gordon, and A. P. Morrison, “A geiger-mode APD photon counting system with adjustable dead-time and interchangeable detector,” IEEE Photonics Technol. Lett. 28(1), 99–102 (2016).
[Crossref]

2015 (1)

J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Geosci. Remote Sens. Lett. 12(4), 726–730 (2015).
[Crossref]

2014 (4)

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

Z. Bao, Z. Li, Y. Shi, E. Wu, G. Wu, and H. Zeng, “Coincidence photon-counting laser ranging for moving targets with high signal-to-noise ratio,” IEEE Photonics Technol. Lett. 26(15), 1495–1498 (2014).
[Crossref]

S. B. Xia, C. Wang, X. H. Xi, S. Z. Luo, and H. C. Zeng, “Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2,” Yaogan Xuebao 18(6), 1199–1207 (2014).

I. Prochazka, J. Kodet, J. Blazej, G. Kirchner, and F. Koidl, “Photon counting detector for space debris laser tracking and lunar laser ranging,” Adv. Space Res. 54(4), 755–758 (2014).
[Crossref]

2013 (1)

2010 (2)

S. O. Min, J. K. Hong, T. H. Kim, K. H. Hong, B. W. Kim, and J. P. Dong, “Time-of-flight analysis of three-dimensional imaging laser radar using a geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[Crossref]

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

2007 (1)

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

2005 (2)

S. W. Samwel, Z. Metwally, J. S. Mikhail, Y. S. Hanna, and M. Ibrahim, “Analyzing the range residuals of the SLR data using two different methods,” NRIAG J. Astron. Astrophys. 4(1), 1–14 (2005).

M. Henriksson, “Detection probabilities for photon-counting avalanche photodiodes applied to a laser radar system,” Appl. Opt. 44(24), 5140–5147 (2005).
[Crossref] [PubMed]

2002 (3)

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3), 503–549 (2002).
[Crossref]

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
[Crossref] [PubMed]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, and R. M. Marino, “Three-dimensional imaging laser radars with geiger-mode avalanche photodiode arrays,” MIT Lincoln Lab. J. 13(2), 351–370 (2002).

2001 (1)

M. C. Amann and R. A. Myllylae, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

1997 (1)

1996 (1)

1988 (1)

J. Illingworth and J. Kittler, “A survey of the Hough Transform,” Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988).
[Crossref]

1985 (1)

J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Remote Sens. 23(4), 398–413 (1985).
[Crossref]

1973 (1)

R. I. Abbot, P. J. Shelus, J. D. Mulholland, and E. C. Silverberg, “Laser observations of the moon: identification and construction of normal points for 1969-1971,” Astron. J. 78(8), 784–793 (1973).
[Crossref]

Abbot, R. I.

R. I. Abbot, P. J. Shelus, J. D. Mulholland, and E. C. Silverberg, “Laser observations of the moon: identification and construction of normal points for 1969-1971,” Astron. J. 78(8), 784–793 (1973).
[Crossref]

Albota, M. A.

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
[Crossref] [PubMed]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, and R. M. Marino, “Three-dimensional imaging laser radars with geiger-mode avalanche photodiode arrays,” MIT Lincoln Lab. J. 13(2), 351–370 (2002).

Amann, M. C.

M. C. Amann and R. A. Myllylae, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Aull, B. F.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, and R. M. Marino, “Three-dimensional imaging laser radars with geiger-mode avalanche photodiode arrays,” MIT Lincoln Lab. J. 13(2), 351–370 (2002).

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
[Crossref] [PubMed]

Bao, Z.

Z. Bao, Z. Li, Y. Shi, E. Wu, G. Wu, and H. Zeng, “Coincidence photon-counting laser ranging for moving targets with high signal-to-noise ratio,” IEEE Photonics Technol. Lett. 26(15), 1495–1498 (2014).
[Crossref]

Blazej, J.

I. Prochazka, J. Kodet, J. Blazej, G. Kirchner, and F. Koidl, “Photon counting detector for space debris laser tracking and lunar laser ranging,” Adv. Space Res. 54(4), 755–758 (2014).
[Crossref]

Brenner, A.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

Buller, G. S.

Carlson, R. R.

Chen, Q.

W. He, Z. Feng, J. Lin, S. Shen, Q. Chen, and G. Gu, “Adaptive depth imaging with single-photon detectors,” IEEE Photonics J. 9(2), 7801812 (2016).

Cova, S.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

Degnan, J. J.

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3), 503–549 (2002).
[Crossref]

J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Remote Sens. 23(4), 398–413 (1985).
[Crossref]

Deng, S.

S. Deng, D. Gordon, and A. P. Morrison, “A geiger-mode APD photon counting system with adjustable dead-time and interchangeable detector,” IEEE Photonics Technol. Lett. 28(1), 99–102 (2016).
[Crossref]

Dong, J. P.

S. O. Min, J. K. Hong, T. H. Kim, K. H. Hong, B. W. Kim, and J. P. Dong, “Time-of-flight analysis of three-dimensional imaging laser radar using a geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[Crossref]

Dorenbos, S. N.

Fancey, S. J.

Feng, Z.

W. He, Z. Feng, J. Lin, S. Shen, Q. Chen, and G. Gu, “Adaptive depth imaging with single-photon detectors,” IEEE Photonics J. 9(2), 7801812 (2016).

Field, C.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

Fouche, D. G.

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
[Crossref] [PubMed]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, and R. M. Marino, “Three-dimensional imaging laser radars with geiger-mode avalanche photodiode arrays,” MIT Lincoln Lab. J. 13(2), 351–370 (2002).

Gemmell, N. R.

Ghioni, M.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

Gordon, D.

S. Deng, D. Gordon, and A. P. Morrison, “A geiger-mode APD photon counting system with adjustable dead-time and interchangeable detector,” IEEE Photonics Technol. Lett. 28(1), 99–102 (2016).
[Crossref]

Gu, G.

W. He, Z. Feng, J. Lin, S. Shen, Q. Chen, and G. Gu, “Adaptive depth imaging with single-photon detectors,” IEEE Photonics J. 9(2), 7801812 (2016).

Gulinatti, A.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

Hadfield, R. H.

Hanna, Y. S.

S. W. Samwel, Z. Metwally, J. S. Mikhail, Y. S. Hanna, and M. Ibrahim, “Analyzing the range residuals of the SLR data using two different methods,” NRIAG J. Astron. Astrophys. 4(1), 1–14 (2005).

He, W.

W. He, Z. Feng, J. Lin, S. Shen, Q. Chen, and G. Gu, “Adaptive depth imaging with single-photon detectors,” IEEE Photonics J. 9(2), 7801812 (2016).

Heinrichs, R. M.

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
[Crossref] [PubMed]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, and R. M. Marino, “Three-dimensional imaging laser radars with geiger-mode avalanche photodiode arrays,” MIT Lincoln Lab. J. 13(2), 351–370 (2002).

Henriksson, M.

Herzfeld, U. C.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

Hong, J. K.

S. O. Min, J. K. Hong, T. H. Kim, K. H. Hong, B. W. Kim, and J. P. Dong, “Time-of-flight analysis of three-dimensional imaging laser radar using a geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[Crossref]

Hong, K. H.

S. O. Min, J. K. Hong, T. H. Kim, K. H. Hong, B. W. Kim, and J. P. Dong, “Time-of-flight analysis of three-dimensional imaging laser radar using a geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[Crossref]

Ibrahim, M.

S. W. Samwel, Z. Metwally, J. S. Mikhail, Y. S. Hanna, and M. Ibrahim, “Analyzing the range residuals of the SLR data using two different methods,” NRIAG J. Astron. Astrophys. 4(1), 1–14 (2005).

Illingworth, J.

J. Illingworth and J. Kittler, “A survey of the Hough Transform,” Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988).
[Crossref]

Kerekes, J.

J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Geosci. Remote Sens. Lett. 12(4), 726–730 (2015).
[Crossref]

Kim, B. W.

S. O. Min, J. K. Hong, T. H. Kim, K. H. Hong, B. W. Kim, and J. P. Dong, “Time-of-flight analysis of three-dimensional imaging laser radar using a geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[Crossref]

Kim, S. W.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kim, T. H.

S. O. Min, J. K. Hong, T. H. Kim, K. H. Hong, B. W. Kim, and J. P. Dong, “Time-of-flight analysis of three-dimensional imaging laser radar using a geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[Crossref]

Kim, Y. J.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kirchner, G.

I. Prochazka, J. Kodet, J. Blazej, G. Kirchner, and F. Koidl, “Photon counting detector for space debris laser tracking and lunar laser ranging,” Adv. Space Res. 54(4), 755–758 (2014).
[Crossref]

Kittler, J.

J. Illingworth and J. Kittler, “A survey of the Hough Transform,” Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988).
[Crossref]

Kocher, D. G.

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
[Crossref] [PubMed]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, and R. M. Marino, “Three-dimensional imaging laser radars with geiger-mode avalanche photodiode arrays,” MIT Lincoln Lab. J. 13(2), 351–370 (2002).

Kodet, J.

I. Prochazka, J. Kodet, J. Blazej, G. Kirchner, and F. Koidl, “Photon counting detector for space debris laser tracking and lunar laser ranging,” Adv. Space Res. 54(4), 755–758 (2014).
[Crossref]

Koidl, F.

I. Prochazka, J. Kodet, J. Blazej, G. Kirchner, and F. Koidl, “Photon counting detector for space debris laser tracking and lunar laser ranging,” Adv. Space Res. 54(4), 755–758 (2014).
[Crossref]

Krichel, N. J.

Lacaita, A.

Lee, J.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Li, Z.

Z. Bao, Z. Li, Y. Shi, E. Wu, G. Wu, and H. Zeng, “Coincidence photon-counting laser ranging for moving targets with high signal-to-noise ratio,” IEEE Photonics Technol. Lett. 26(15), 1495–1498 (2014).
[Crossref]

Lin, J.

W. He, Z. Feng, J. Lin, S. Shen, Q. Chen, and G. Gu, “Adaptive depth imaging with single-photon detectors,” IEEE Photonics J. 9(2), 7801812 (2016).

Luo, S. Z.

S. B. Xia, C. Wang, X. H. Xi, S. Z. Luo, and H. C. Zeng, “Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2,” Yaogan Xuebao 18(6), 1199–1207 (2014).

Marino, R. M.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, and R. M. Marino, “Three-dimensional imaging laser radars with geiger-mode avalanche photodiode arrays,” MIT Lincoln Lab. J. 13(2), 351–370 (2002).

Markus, T.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

Massa, J. S.

McCarthy, A.

Mcdonald, B. W.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

Metwally, Z.

S. W. Samwel, Z. Metwally, J. S. Mikhail, Y. S. Hanna, and M. Ibrahim, “Analyzing the range residuals of the SLR data using two different methods,” NRIAG J. Astron. Astrophys. 4(1), 1–14 (2005).

Mikhail, J. S.

S. W. Samwel, Z. Metwally, J. S. Mikhail, Y. S. Hanna, and M. Ibrahim, “Analyzing the range residuals of the SLR data using two different methods,” NRIAG J. Astron. Astrophys. 4(1), 1–14 (2005).

Min, S. O.

S. O. Min, J. K. Hong, T. H. Kim, K. H. Hong, B. W. Kim, and J. P. Dong, “Time-of-flight analysis of three-dimensional imaging laser radar using a geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[Crossref]

Mooney, J.

Morrison, A. P.

S. Deng, D. Gordon, and A. P. Morrison, “A geiger-mode APD photon counting system with adjustable dead-time and interchangeable detector,” IEEE Photonics Technol. Lett. 28(1), 99–102 (2016).
[Crossref]

Mulholland, J. D.

R. I. Abbot, P. J. Shelus, J. D. Mulholland, and E. C. Silverberg, “Laser observations of the moon: identification and construction of normal points for 1969-1971,” Astron. J. 78(8), 784–793 (1973).
[Crossref]

Myllylae, R. A.

M. C. Amann and R. A. Myllylae, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Neumann, T. A.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

O’Brien, M. E.

Player, B. E.

Prochazka, I.

I. Prochazka, J. Kodet, J. Blazej, G. Kirchner, and F. Koidl, “Photon counting detector for space debris laser tracking and lunar laser ranging,” Adv. Space Res. 54(4), 755–758 (2014).
[Crossref]

Rech, I.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

Ren, X.

Samori, C.

Samwel, S. W.

S. W. Samwel, Z. Metwally, J. S. Mikhail, Y. S. Hanna, and M. Ibrahim, “Analyzing the range residuals of the SLR data using two different methods,” NRIAG J. Astron. Astrophys. 4(1), 1–14 (2005).

Shelus, P. J.

R. I. Abbot, P. J. Shelus, J. D. Mulholland, and E. C. Silverberg, “Laser observations of the moon: identification and construction of normal points for 1969-1971,” Astron. J. 78(8), 784–793 (1973).
[Crossref]

Shen, S.

W. He, Z. Feng, J. Lin, S. Shen, Q. Chen, and G. Gu, “Adaptive depth imaging with single-photon detectors,” IEEE Photonics J. 9(2), 7801812 (2016).

Shi, Y.

Z. Bao, Z. Li, Y. Shi, E. Wu, G. Wu, and H. Zeng, “Coincidence photon-counting laser ranging for moving targets with high signal-to-noise ratio,” IEEE Photonics Technol. Lett. 26(15), 1495–1498 (2014).
[Crossref]

Silverberg, E. C.

R. I. Abbot, P. J. Shelus, J. D. Mulholland, and E. C. Silverberg, “Laser observations of the moon: identification and construction of normal points for 1969-1971,” Astron. J. 78(8), 784–793 (1973).
[Crossref]

Tanner, M. G.

Walker, A. C.

Wallace, A. M.

Wallin, B. F.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

Wang, C.

S. B. Xia, C. Wang, X. H. Xi, S. Z. Luo, and H. C. Zeng, “Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2,” Yaogan Xuebao 18(6), 1199–1207 (2014).

Willard, B. C.

Wu, E.

Z. Bao, Z. Li, Y. Shi, E. Wu, G. Wu, and H. Zeng, “Coincidence photon-counting laser ranging for moving targets with high signal-to-noise ratio,” IEEE Photonics Technol. Lett. 26(15), 1495–1498 (2014).
[Crossref]

Wu, G.

Z. Bao, Z. Li, Y. Shi, E. Wu, G. Wu, and H. Zeng, “Coincidence photon-counting laser ranging for moving targets with high signal-to-noise ratio,” IEEE Photonics Technol. Lett. 26(15), 1495–1498 (2014).
[Crossref]

Xi, X. H.

S. B. Xia, C. Wang, X. H. Xi, S. Z. Luo, and H. C. Zeng, “Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2,” Yaogan Xuebao 18(6), 1199–1207 (2014).

Xia, S. B.

S. B. Xia, C. Wang, X. H. Xi, S. Z. Luo, and H. C. Zeng, “Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2,” Yaogan Xuebao 18(6), 1199–1207 (2014).

Zappa, F.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

Zayhowski, J. J.

Zeng, H.

Z. Bao, Z. Li, Y. Shi, E. Wu, G. Wu, and H. Zeng, “Coincidence photon-counting laser ranging for moving targets with high signal-to-noise ratio,” IEEE Photonics Technol. Lett. 26(15), 1495–1498 (2014).
[Crossref]

Zeng, H. C.

S. B. Xia, C. Wang, X. H. Xi, S. Z. Luo, and H. C. Zeng, “Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2,” Yaogan Xuebao 18(6), 1199–1207 (2014).

Zhang, J.

J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Geosci. Remote Sens. Lett. 12(4), 726–730 (2015).
[Crossref]

Zhang, Z.

Z. Zhang and Y. Zhao, “Noise filtering strategy in photon-counting laser radar using the multi-gates detection method,” Optik (Stuttg.) 127(20), 8926–8932 (2016).
[Crossref]

Zhao, Y.

Z. Zhang and Y. Zhao, “Noise filtering strategy in photon-counting laser radar using the multi-gates detection method,” Optik (Stuttg.) 127(20), 8926–8932 (2016).
[Crossref]

Zwiller, V.

Adv. Space Res. (1)

I. Prochazka, J. Kodet, J. Blazej, G. Kirchner, and F. Koidl, “Photon counting detector for space debris laser tracking and lunar laser ranging,” Adv. Space Res. 54(4), 755–758 (2014).
[Crossref]

Appl. Opt. (3)

Astron. J. (1)

R. I. Abbot, P. J. Shelus, J. D. Mulholland, and E. C. Silverberg, “Laser observations of the moon: identification and construction of normal points for 1969-1971,” Astron. J. 78(8), 784–793 (1973).
[Crossref]

Comput. Vis. Graph. Image Process. (1)

J. Illingworth and J. Kittler, “A survey of the Hough Transform,” Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (1)

J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Geosci. Remote Sens. Lett. 12(4), 726–730 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

IEEE Photonics J. (1)

W. He, Z. Feng, J. Lin, S. Shen, Q. Chen, and G. Gu, “Adaptive depth imaging with single-photon detectors,” IEEE Photonics J. 9(2), 7801812 (2016).

IEEE Photonics Technol. Lett. (2)

Z. Bao, Z. Li, Y. Shi, E. Wu, G. Wu, and H. Zeng, “Coincidence photon-counting laser ranging for moving targets with high signal-to-noise ratio,” IEEE Photonics Technol. Lett. 26(15), 1495–1498 (2014).
[Crossref]

S. Deng, D. Gordon, and A. P. Morrison, “A geiger-mode APD photon counting system with adjustable dead-time and interchangeable detector,” IEEE Photonics Technol. Lett. 28(1), 99–102 (2016).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (2)

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Remote Sens. 23(4), 398–413 (1985).
[Crossref]

J. Geodyn. (1)

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3), 503–549 (2002).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. O. Min, J. K. Hong, T. H. Kim, K. H. Hong, B. W. Kim, and J. P. Dong, “Time-of-flight analysis of three-dimensional imaging laser radar using a geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[Crossref]

MIT Lincoln Lab. J. (1)

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, and R. M. Marino, “Three-dimensional imaging laser radars with geiger-mode avalanche photodiode arrays,” MIT Lincoln Lab. J. 13(2), 351–370 (2002).

Nat. Photonics (1)

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

NRIAG J. Astron. Astrophys. (1)

S. W. Samwel, Z. Metwally, J. S. Mikhail, Y. S. Hanna, and M. Ibrahim, “Analyzing the range residuals of the SLR data using two different methods,” NRIAG J. Astron. Astrophys. 4(1), 1–14 (2005).

Opt. Eng. (1)

M. C. Amann and R. A. Myllylae, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optik (Stuttg.) (1)

Z. Zhang and Y. Zhao, “Noise filtering strategy in photon-counting laser radar using the multi-gates detection method,” Optik (Stuttg.) 127(20), 8926–8932 (2016).
[Crossref]

Yaogan Xuebao (1)

S. B. Xia, C. Wang, X. H. Xi, S. Z. Luo, and H. C. Zeng, “Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2,” Yaogan Xuebao 18(6), 1199–1207 (2014).

Other (2)

R. L. Ricklefs and P. J. Shelus, “Poisson filtering of laser ranging data, “The 8th International Workshop on Laser Ranging Instrumentation (1993), pp. 26–32.

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer Berlin Heidelberg, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Example of proposed method.
Fig. 2
Fig. 2 Block diagram of photon counting system.
Fig. 3
Fig. 3 Illustration of TOF measurement. (a) Echo photons in a measurement period. (b) Echo photons in several measurement periods.
Fig. 4
Fig. 4 Illustration of Hough Transform. (a) The line in the (x, y) plane. (b) The result in the parametric space.
Fig. 5
Fig. 5 Illustration of ranging process.
Fig. 6
Fig. 6 Echo photons of the four scenarios. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3. (d) Scenario 4.
Fig. 7
Fig. 7 Experimental results of local distance statistics method in the four scenarios. (a) Scenario1. (b) Scenario 2. (c) Scenario 3. (d) Scenario 4.
Fig. 8
Fig. 8 Experimental results of density-based filtering method in the four scenarios. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3. (d) Scenario 4.
Fig. 9
Fig. 9 Experimental results of proposed method in the four scenarios. (a) Scenario1. (b) Scenario 2. (c) Scenario 3. (d) Scenario 4.
Fig. 10
Fig. 10 Experimental results of the three methods. (a) Echo photons. (b) Local distance statistics method. (c) Density-based filtering method. (d) Proposed method.
Fig. 11
Fig. 11 Experimental results of the three methods. (a) Echo photons. (b) Local distance statistics method. (c) Density-based filtering method. (d) Proposed method.
Fig. 12
Fig. 12 Experimental results of the three methods. (a) Echo photons. (b) Local distance statistics method. (c) Density-based filtering method. (d) Proposed method.
Fig. 13
Fig. 13 Echo photons of the two scenarios. (a) Scenario 1. (b) Scenario 2.
Fig. 14
Fig. 14 Experimental results of the local distance statistics method in the two scenarios. (a) Scenario1. (b) Scenario 2.
Fig. 15
Fig. 15 Experimental results of the density-based filtering method in the two scenarios. (a) Scenario1. (b) Scenario 2.
Fig. 16
Fig. 16 Experimental results of the proposed method in the two scenarios. (a) Scenario1. (b) Scenario 2.

Tables (11)

Tables Icon

Table 1 Total computational complexities

Tables Icon

Table 2 Simulation parameters of the four scenarios

Tables Icon

Table 3 Target detection probability and SNR of the four scenarios

Tables Icon

Table 4 RMSE (m) of the three methods in the four scenarios

Tables Icon

Table 5 Processing time(s)of the three methods in the four scenarios

Tables Icon

Table 6 Performance comparisons of the three methods

Tables Icon

Table 7 Performance comparisons of the three methods

Tables Icon

Table 8 Performance comparisons of the three methods

Tables Icon

Table 9 Motion parameters of the targets in the two scenarios

Tables Icon

Table 10 RMSE (m)of the three methods in the two scenarios

Tables Icon

Table 11 Processing time (s) of the three methods in the two scenarios

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

N s n = N s + N n
P ( m , Δ t T O F ) = ( N s n Δ t T O F ) m exp ( N s n Δ t T O F ) m !
P d = 1 exp ( N s n Δ t T O F )
P d = exp ( N n t d e a d ) [ 1 exp ( N s n Δ t T O F ) ]
ρ = x cos θ + y sin θ = x 2 + y 2 sin ( θ + arc tan x y ) , 0 θ π
t 1 t t 1 + k 0 Δ t
s ( 1 ) = ρ 1 sin θ 1
v ( 1 ) = Δ d Δ t cot θ 1
n 1 Δ d = k 1 Δ t · v ( 1 )
t 2 t t 2 + k 1 Δ t
{ s ( 1 ) d s ( 1 ) + n Δ d , π / 2 < θ 0 < π s ( 1 ) n Δ d d s ( 1 ) , 0 < θ 0 < π / 2
{ s ( 2 ) = ρ 2 sin θ 2 Δ d + s ( 1 ) , π / 2 < θ 0 < π s ( 2 ) = ρ 2 sin θ 2 Δ d + s ( 1 ) n Δ d , 0 < θ 0 < π / 2
v ( 2 ) = Δ d Δ t cot θ 2
ρ i = x cos ( i Δ θ ) + y sin ( i Δ θ ) = x cos ( i π L ) + y sin ( i π L ) , i = 0 , 1 , L 1
C i = C i n + C i s = N k 0 P d n + k 0 P d t
C t = C t n + C t s = n 1 k 1 P d n + k 1 P d t
P d t = exp ( N n t d e a d ) [ 1 exp ( N s Δ t T O F ) ]
S N R = 10 lg ( N t arg e t N n o i s e ) = 10 lg ( N t arg e t N t o t a l N n o i s e )
s ( t ) = s v t
R M S E = 1 K i = 1 K ( s ' ( i ) s ( i ) ) 2
s ( t ) = s 0 v 0 t 1 2 a t 2
s ( t ) = ( s 0 v 0 t ) 2 + h 2
s ( t ) = ( r sin ( ω t + θ 0 ) ) 2 + ( s 0 + r cos ( ω t + θ 0 ) ) 2

Metrics