Abstract

A strongly coupled finite element model of the optical breakdown during femtosecond laser pulse interaction, with different morphology of aluminum nanoparticles in water, was developed. This model provided new insight into the optical breakdown dependence on the nanoparticles’ morphology and assembly. This model was used to theoretically investigate a 300 fs laser pulse interaction with uncoupled and plasmon coupled aluminum coated silica shell nanoparticles. This study revealed how the nanoparticles’ one-dimensional assembly affected the optical breakdown threshold of its surrounding mediums. The optical breakdown threshold had much stronger dependence on the optical near-field enhancement than on the nanostructure’s extinction cross-section. The maximum electric field that is outside of the aluminum nanoparticles, with 2 nm silica shell and 2 nm gap, was more than 4 times greater to the one inside of the aluminum nanoparticles. For dimer and trimer configuration, the calculated lattice cross-section temperatures at each breakdown threshold were below their melting point. It is suggested that water could be ionized by aluminum/silica (core/shell) nanostructure during femtosecond laser exposures without nanoparticles consumption. This model could increase understanding of the aluminum nanoparticle-mediated optical breakdown in water.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics

Anja Hansen, Romain Géneaux, Axel Günther, Alexander Krüger, and Tammo Ripken
Biomed. Opt. Express 4(6) 852-867 (2013)

Study on ablation threshold of fused silica by liquid-assisted femtosecond laser processing

Xiaoyan Sun, Jinlong Yu, Youwang Hu, Dongmei Cui, Guowei Chen, Dongkai Chu, and Ji’an Duan
Appl. Opt. 58(33) 9027-9032 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
    [Crossref] [PubMed]
  2. D. Heinemann, M. Schomaker, S. Kalies, M. Schieck, R. Carlson, H. Murua Escobar, T. Ripken, H. Meyer, and A. Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS One 8(3), e58604 (2013).
    [Crossref] [PubMed]
  3. É. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C 117(18), 9386–9396 (2013).
    [Crossref]
  4. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10(3), 375–386 (1974).
    [Crossref]
  5. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  6. A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
    [Crossref]
  7. Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
    [Crossref]
  8. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
    [Crossref]
  9. P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
    [Crossref]
  10. N. Linz, S. Freidank, X.-X. Liang, J. Noack, G. Paltauf, and A. Vogel, “Roles of tunneling, multiphoton ionization, and cascade ionization for optical breakdown in aqueous media,” AFOSR Int. Res. Initiat. Proj. SPC 053010/EOARD, 0–206 (2009).
  11. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B Condens. Matter Mater. Phys. 69(5), 54102 (2004).
    [Crossref]
  12. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
    [Crossref]
  13. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
    [Crossref]
  14. N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
    [Crossref]
  15. N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 24113 (2016).
    [Crossref]
  16. N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
    [Crossref]
  17. J. E. B. J. K. Chen, “Numerical Study of Ultrashort Laser Pulse Interactions with Metal Films,” Numerical Heat Transfer, Part A: Applications 40(1), 1–20 (2001).
    [Crossref]
  18. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Zh.eksperim.i Teor.fiz 47(1964).
  19. Nanoshel, “Aluminum Coated Silica Nanopowder”, retrieved 2018, https://www.nanoshel.com/product/aluminum-coated-silica/ .
  20. Y. R. Davletshin and J. C. Kumaradas, “The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures,” Beilstein J. Nanotechnol. 7, 869–880 (2016).
    [Crossref] [PubMed]
  21. A. Hatef and M. Meunier, “Plasma-mediated photothermal effects in ultrafast laser irradiation of gold nanoparticle dimers in water,” Opt. Express 23(3), 1967–1980 (2015).
    [Crossref] [PubMed]
  22. A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B Condens. Matter Mater. Phys. 72(8), 85128 (2005).
    [Crossref]
  23. J. R. Gulley and T. E. Lanier, “Model for ultrashort laser pulse-induced ionization dynamics in transparent solids,” Phys. Rev. B Condens. Matter Mater. Phys. 90(15), 155119 (2014).
    [Crossref]
  24. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
    [Crossref]
  25. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
    [Crossref] [PubMed]
  26. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D Appl. Phys. 40(22), 7152–7158 (2007).
    [Crossref]
  27. A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
    [Crossref]
  28. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995), Vol. 25.
  29. Y. R. Davletshin, A. Lombardi, M. F. Cardinal, V. Juvé, A. Crut, P. Maioli, L. M. Liz-Marzán, F. Vallée, N. Del Fatti, and J. C. Kumaradas, “A quantitative study of the environmental effects on the optical response of gold nanorods,” ACS Nano 6(9), 8183–8193 (2012).
    [Crossref] [PubMed]
  30. C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
    [Crossref] [PubMed]
  31. E. D. Palik, “Handbook of Optical Constants of Solids(Academic Press,San Diego),” Handbook of Optical Constants of Solids(Academic Press,San Diego) (1985).
  32. Z. Lin and L. Zhigilei, “Electron-phonon coupling and electron heat capacity in metals at high electron temperatures.” ( http://faculty.virginia.edu/CompMat/electron-phonon-coupling/ , 2008).
  33. P. E. Hopkins, L. M. Phinney, J. R. Serrano, and T. E. Beechem, “Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 85307 (2010).
    [Crossref]
  34. M. Hu, J. V. Goicochea, B. Michel, and D. Poulikakos, “Thermal rectification at water/functionalized silica interfaces,” Appl. Phys. Lett. 95(15), 151903 (2009).
    [Crossref]
  35. C. DeMichelis, “Laser induced gas breakdown: A bibliographical review,” IEEE J. Quantum Electron. 5(4), 188–202 (1969).
    [Crossref]
  36. F. Docchio, “Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration,” EPL 6(5), 407–412 (1988).
    [Crossref]
  37. S. Zafar, K. A. Conrad, Q. Liu, E. A. Irene, G. Hames, R. Kuehn, and J. J. Wortman, “Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations,” Appl. Phys. Lett. 67(7), 1031–1033 (1995).
    [Crossref]
  38. C. A. Sacchi, “Laser-induced electric breakdown in water,” J. Opt. Soc. Am. B 8(2), 337–345 (1991).
    [Crossref]
  39. G. Bisker and D. Yelin, “Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis,” J. Opt. Soc. Am. B 29(6), 1383 (2012).
    [Crossref]

2016 (3)

N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 24113 (2016).
[Crossref]

N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
[Crossref]

Y. R. Davletshin and J. C. Kumaradas, “The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures,” Beilstein J. Nanotechnol. 7, 869–880 (2016).
[Crossref] [PubMed]

2015 (2)

A. Hatef and M. Meunier, “Plasma-mediated photothermal effects in ultrafast laser irradiation of gold nanoparticle dimers in water,” Opt. Express 23(3), 1967–1980 (2015).
[Crossref] [PubMed]

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

2014 (1)

J. R. Gulley and T. E. Lanier, “Model for ultrashort laser pulse-induced ionization dynamics in transparent solids,” Phys. Rev. B Condens. Matter Mater. Phys. 90(15), 155119 (2014).
[Crossref]

2013 (2)

D. Heinemann, M. Schomaker, S. Kalies, M. Schieck, R. Carlson, H. Murua Escobar, T. Ripken, H. Meyer, and A. Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS One 8(3), e58604 (2013).
[Crossref] [PubMed]

É. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C 117(18), 9386–9396 (2013).
[Crossref]

2012 (3)

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

Y. R. Davletshin, A. Lombardi, M. F. Cardinal, V. Juvé, A. Crut, P. Maioli, L. M. Liz-Marzán, F. Vallée, N. Del Fatti, and J. C. Kumaradas, “A quantitative study of the environmental effects on the optical response of gold nanorods,” ACS Nano 6(9), 8183–8193 (2012).
[Crossref] [PubMed]

G. Bisker and D. Yelin, “Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis,” J. Opt. Soc. Am. B 29(6), 1383 (2012).
[Crossref]

2010 (1)

P. E. Hopkins, L. M. Phinney, J. R. Serrano, and T. E. Beechem, “Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 85307 (2010).
[Crossref]

2009 (1)

M. Hu, J. V. Goicochea, B. Michel, and D. Poulikakos, “Thermal rectification at water/functionalized silica interfaces,” Appl. Phys. Lett. 95(15), 151903 (2009).
[Crossref]

2008 (1)

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
[Crossref]

2007 (1)

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D Appl. Phys. 40(22), 7152–7158 (2007).
[Crossref]

2006 (1)

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref] [PubMed]

2005 (2)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B Condens. Matter Mater. Phys. 72(8), 85128 (2005).
[Crossref]

2004 (1)

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B Condens. Matter Mater. Phys. 69(5), 54102 (2004).
[Crossref]

2002 (1)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

2001 (1)

J. E. B. J. K. Chen, “Numerical Study of Ultrashort Laser Pulse Interactions with Metal Films,” Numerical Heat Transfer, Part A: Applications 40(1), 1–20 (2001).
[Crossref]

2000 (1)

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
[Crossref]

1999 (2)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

1997 (1)

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

1996 (2)

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

1995 (2)

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

S. Zafar, K. A. Conrad, Q. Liu, E. A. Irene, G. Hames, R. Kuehn, and J. J. Wortman, “Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations,” Appl. Phys. Lett. 67(7), 1031–1033 (1995).
[Crossref]

1991 (1)

1988 (1)

F. Docchio, “Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration,” EPL 6(5), 407–412 (1988).
[Crossref]

1974 (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10(3), 375–386 (1974).
[Crossref]

1969 (1)

C. DeMichelis, “Laser induced gas breakdown: A bibliographical review,” IEEE J. Quantum Electron. 5(4), 188–202 (1969).
[Crossref]

Beechem, T. E.

P. E. Hopkins, L. M. Phinney, J. R. Serrano, and T. E. Beechem, “Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 85307 (2010).
[Crossref]

Birngruber, R.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Bisker, G.

Bloembergen, N.

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10(3), 375–386 (1974).
[Crossref]

Boppart, S. A.

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

Boulais, E.

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

Boulais, É.

É. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C 117(18), 9386–9396 (2013).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B Condens. Matter Mater. Phys. 69(5), 54102 (2004).
[Crossref]

Busch, S.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Campbell, E. E. B.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B Condens. Matter Mater. Phys. 69(5), 54102 (2004).
[Crossref]

Cardinal, M. F.

Y. R. Davletshin, A. Lombardi, M. F. Cardinal, V. Juvé, A. Crut, P. Maioli, L. M. Liz-Marzán, F. Vallée, N. Del Fatti, and J. C. Kumaradas, “A quantitative study of the environmental effects on the optical response of gold nanorods,” ACS Nano 6(9), 8183–8193 (2012).
[Crossref] [PubMed]

Carlson, R.

D. Heinemann, M. Schomaker, S. Kalies, M. Schieck, R. Carlson, H. Murua Escobar, T. Ripken, H. Meyer, and A. Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS One 8(3), e58604 (2013).
[Crossref] [PubMed]

Chen, J. E. B. J. K.

J. E. B. J. K. Chen, “Numerical Study of Ultrashort Laser Pulse Interactions with Metal Films,” Numerical Heat Transfer, Part A: Applications 40(1), 1–20 (2001).
[Crossref]

Chowdhury, I. H.

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B Condens. Matter Mater. Phys. 72(8), 85128 (2005).
[Crossref]

Conrad, K. A.

S. Zafar, K. A. Conrad, Q. Liu, E. A. Irene, G. Hames, R. Kuehn, and J. J. Wortman, “Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations,” Appl. Phys. Lett. 67(7), 1031–1033 (1995).
[Crossref]

Cook, K.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

Couairon, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Crut, A.

Y. R. Davletshin, A. Lombardi, M. F. Cardinal, V. Juvé, A. Crut, P. Maioli, L. M. Liz-Marzán, F. Vallée, N. Del Fatti, and J. C. Kumaradas, “A quantitative study of the environmental effects on the optical response of gold nanorods,” ACS Nano 6(9), 8183–8193 (2012).
[Crossref] [PubMed]

Davletshin, Y. R.

Y. R. Davletshin and J. C. Kumaradas, “The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures,” Beilstein J. Nanotechnol. 7, 869–880 (2016).
[Crossref] [PubMed]

Y. R. Davletshin, A. Lombardi, M. F. Cardinal, V. Juvé, A. Crut, P. Maioli, L. M. Liz-Marzán, F. Vallée, N. Del Fatti, and J. C. Kumaradas, “A quantitative study of the environmental effects on the optical response of gold nanorods,” ACS Nano 6(9), 8183–8193 (2012).
[Crossref] [PubMed]

Del Fatti, N.

Y. R. Davletshin, A. Lombardi, M. F. Cardinal, V. Juvé, A. Crut, P. Maioli, L. M. Liz-Marzán, F. Vallée, N. Del Fatti, and J. C. Kumaradas, “A quantitative study of the environmental effects on the optical response of gold nanorods,” ACS Nano 6(9), 8183–8193 (2012).
[Crossref] [PubMed]

DeMichelis, C.

C. DeMichelis, “Laser induced gas breakdown: A bibliographical review,” IEEE J. Quantum Electron. 5(4), 188–202 (1969).
[Crossref]

Docchio, F.

F. Docchio, “Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration,” EPL 6(5), 407–412 (1988).
[Crossref]

Feng, Q.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Freidank, S.

N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
[Crossref]

N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 24113 (2016).
[Crossref]

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

Goicochea, J. V.

M. Hu, J. V. Goicochea, B. Michel, and D. Poulikakos, “Thermal rectification at water/functionalized silica interfaces,” Appl. Phys. Lett. 95(15), 151903 (2009).
[Crossref]

Gomez, D.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref] [PubMed]

Gulley, J. R.

J. R. Gulley and T. E. Lanier, “Model for ultrashort laser pulse-induced ionization dynamics in transparent solids,” Phys. Rev. B Condens. Matter Mater. Phys. 90(15), 155119 (2014).
[Crossref]

Hames, G.

S. Zafar, K. A. Conrad, Q. Liu, E. A. Irene, G. Hames, R. Kuehn, and J. J. Wortman, “Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations,” Appl. Phys. Lett. 67(7), 1031–1033 (1995).
[Crossref]

Hammer, D. X.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

Hartland, G. V.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref] [PubMed]

Hatef, A.

Heinemann, D.

D. Heinemann, M. Schomaker, S. Kalies, M. Schieck, R. Carlson, H. Murua Escobar, T. Ripken, H. Meyer, and A. Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS One 8(3), e58604 (2013).
[Crossref] [PubMed]

Heisterkamp, A.

D. Heinemann, M. Schomaker, S. Kalies, M. Schieck, R. Carlson, H. Murua Escobar, T. Ripken, H. Meyer, and A. Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS One 8(3), e58604 (2013).
[Crossref] [PubMed]

Hertel, I. V.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B Condens. Matter Mater. Phys. 69(5), 54102 (2004).
[Crossref]

Hopkins, P. E.

P. E. Hopkins, L. M. Phinney, J. R. Serrano, and T. E. Beechem, “Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 85307 (2010).
[Crossref]

Hu, M.

M. Hu, J. V. Goicochea, B. Michel, and D. Poulikakos, “Thermal rectification at water/functionalized silica interfaces,” Appl. Phys. Lett. 95(15), 151903 (2009).
[Crossref]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Irene, E. A.

S. Zafar, K. A. Conrad, Q. Liu, E. A. Irene, G. Hames, R. Kuehn, and J. J. Wortman, “Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations,” Appl. Phys. Lett. 67(7), 1031–1033 (1995).
[Crossref]

Juvé, V.

Y. R. Davletshin, A. Lombardi, M. F. Cardinal, V. Juvé, A. Crut, P. Maioli, L. M. Liz-Marzán, F. Vallée, N. Del Fatti, and J. C. Kumaradas, “A quantitative study of the environmental effects on the optical response of gold nanorods,” ACS Nano 6(9), 8183–8193 (2012).
[Crossref] [PubMed]

Kaiser, A.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
[Crossref]

Kalies, S.

D. Heinemann, M. Schomaker, S. Kalies, M. Schieck, R. Carlson, H. Murua Escobar, T. Ripken, H. Meyer, and A. Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS One 8(3), e58604 (2013).
[Crossref] [PubMed]

Kennedy, P. K.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

Kuehn, R.

S. Zafar, K. A. Conrad, Q. Liu, E. A. Irene, G. Hames, R. Kuehn, and J. J. Wortman, “Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations,” Appl. Phys. Lett. 67(7), 1031–1033 (1995).
[Crossref]

Kumaradas, J. C.

Y. R. Davletshin and J. C. Kumaradas, “The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures,” Beilstein J. Nanotechnol. 7, 869–880 (2016).
[Crossref] [PubMed]

Y. R. Davletshin, A. Lombardi, M. F. Cardinal, V. Juvé, A. Crut, P. Maioli, L. M. Liz-Marzán, F. Vallée, N. Del Fatti, and J. C. Kumaradas, “A quantitative study of the environmental effects on the optical response of gold nanorods,” ACS Nano 6(9), 8183–8193 (2012).
[Crossref] [PubMed]

Lachaine, R.

É. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C 117(18), 9386–9396 (2013).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Lanier, T. E.

J. R. Gulley and T. E. Lanier, “Model for ultrashort laser pulse-induced ionization dynamics in transparent solids,” Phys. Rev. B Condens. Matter Mater. Phys. 90(15), 155119 (2014).
[Crossref]

Laroche, T.

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
[Crossref]

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D Appl. Phys. 40(22), 7152–7158 (2007).
[Crossref]

Liang, X.-X.

N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
[Crossref]

N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 24113 (2016).
[Crossref]

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

Lin, Z.

Z. Lin and L. Zhigilei, “Electron-phonon coupling and electron heat capacity in metals at high electron temperatures.” ( http://faculty.virginia.edu/CompMat/electron-phonon-coupling/ , 2008).

Linz, N.

N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 24113 (2016).
[Crossref]

N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
[Crossref]

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

Liu, Q.

S. Zafar, K. A. Conrad, Q. Liu, E. A. Irene, G. Hames, R. Kuehn, and J. J. Wortman, “Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations,” Appl. Phys. Lett. 67(7), 1031–1033 (1995).
[Crossref]

Liz-Marzán, L. M.

Y. R. Davletshin, A. Lombardi, M. F. Cardinal, V. Juvé, A. Crut, P. Maioli, L. M. Liz-Marzán, F. Vallée, N. Del Fatti, and J. C. Kumaradas, “A quantitative study of the environmental effects on the optical response of gold nanorods,” ACS Nano 6(9), 8183–8193 (2012).
[Crossref] [PubMed]

Lombardi, A.

Y. R. Davletshin, A. Lombardi, M. F. Cardinal, V. Juvé, A. Crut, P. Maioli, L. M. Liz-Marzán, F. Vallée, N. Del Fatti, and J. C. Kumaradas, “A quantitative study of the environmental effects on the optical response of gold nanorods,” ACS Nano 6(9), 8183–8193 (2012).
[Crossref] [PubMed]

Maioli, P.

Y. R. Davletshin, A. Lombardi, M. F. Cardinal, V. Juvé, A. Crut, P. Maioli, L. M. Liz-Marzán, F. Vallée, N. Del Fatti, and J. C. Kumaradas, “A quantitative study of the environmental effects on the optical response of gold nanorods,” ACS Nano 6(9), 8183–8193 (2012).
[Crossref] [PubMed]

Meunier, M.

A. Hatef and M. Meunier, “Plasma-mediated photothermal effects in ultrafast laser irradiation of gold nanoparticle dimers in water,” Opt. Express 23(3), 1967–1980 (2015).
[Crossref] [PubMed]

É. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C 117(18), 9386–9396 (2013).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

Meyer, H.

D. Heinemann, M. Schomaker, S. Kalies, M. Schieck, R. Carlson, H. Murua Escobar, T. Ripken, H. Meyer, and A. Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS One 8(3), e58604 (2013).
[Crossref] [PubMed]

Michel, B.

M. Hu, J. V. Goicochea, B. Michel, and D. Poulikakos, “Thermal rectification at water/functionalized silica interfaces,” Appl. Phys. Lett. 95(15), 151903 (2009).
[Crossref]

Moloney, J. V.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

Mulvaney, P.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref] [PubMed]

Murua Escobar, H.

D. Heinemann, M. Schomaker, S. Kalies, M. Schieck, R. Carlson, H. Murua Escobar, T. Ripken, H. Meyer, and A. Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS One 8(3), e58604 (2013).
[Crossref] [PubMed]

Mysyrowicz, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Nahen, K.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

Newell, A. C.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

Noojin, G. D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

Novo, C.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Parlitz, U.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Perez-Juste, J.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref] [PubMed]

Petrova, H.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref] [PubMed]

Phinney, L. M.

P. E. Hopkins, L. M. Phinney, J. R. Serrano, and T. E. Beechem, “Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 85307 (2010).
[Crossref]

Poulikakos, D.

M. Hu, J. V. Goicochea, B. Michel, and D. Poulikakos, “Thermal rectification at water/functionalized silica interfaces,” Appl. Phys. Lett. 95(15), 151903 (2009).
[Crossref]

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Reismann, M.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref] [PubMed]

Rethfeld, B.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
[Crossref]

Ripken, T.

D. Heinemann, M. Schomaker, S. Kalies, M. Schieck, R. Carlson, H. Murua Escobar, T. Ripken, H. Meyer, and A. Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS One 8(3), e58604 (2013).
[Crossref] [PubMed]

Roach, W. P.

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

Rockwell, B. A.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

Rosenfeld, A.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B Condens. Matter Mater. Phys. 69(5), 54102 (2004).
[Crossref]

Sacchi, C. A.

Schieck, M.

D. Heinemann, M. Schomaker, S. Kalies, M. Schieck, R. Carlson, H. Murua Escobar, T. Ripken, H. Meyer, and A. Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS One 8(3), e58604 (2013).
[Crossref] [PubMed]

Schomaker, M.

D. Heinemann, M. Schomaker, S. Kalies, M. Schieck, R. Carlson, H. Murua Escobar, T. Ripken, H. Meyer, and A. Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS One 8(3), e58604 (2013).
[Crossref] [PubMed]

Serrano, J. R.

P. E. Hopkins, L. M. Phinney, J. R. Serrano, and T. E. Beechem, “Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 85307 (2010).
[Crossref]

Simon, G.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
[Crossref]

Stoian, R.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B Condens. Matter Mater. Phys. 69(5), 54102 (2004).
[Crossref]

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Theisen, D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

Thompson, C. R.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

Trickl, T.

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Vallée, F.

Y. R. Davletshin, A. Lombardi, M. F. Cardinal, V. Juvé, A. Crut, P. Maioli, L. M. Liz-Marzán, F. Vallée, N. Del Fatti, and J. C. Kumaradas, “A quantitative study of the environmental effects on the optical response of gold nanorods,” ACS Nano 6(9), 8183–8193 (2012).
[Crossref] [PubMed]

Vial, A.

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
[Crossref]

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D Appl. Phys. 40(22), 7152–7158 (2007).
[Crossref]

Vicanek, M.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
[Crossref]

Vogel, A.

N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 24113 (2016).
[Crossref]

N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
[Crossref]

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Vogelmann, H.

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

Wortman, J. J.

S. Zafar, K. A. Conrad, Q. Liu, E. A. Irene, G. Hames, R. Kuehn, and J. J. Wortman, “Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations,” Appl. Phys. Lett. 67(7), 1031–1033 (1995).
[Crossref]

Wright, E. M.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

Wu, A. Q.

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B Condens. Matter Mater. Phys. 72(8), 85128 (2005).
[Crossref]

Xu, X.

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B Condens. Matter Mater. Phys. 72(8), 85128 (2005).
[Crossref]

Yelin, D.

Zafar, S.

S. Zafar, K. A. Conrad, Q. Liu, E. A. Irene, G. Hames, R. Kuehn, and J. J. Wortman, “Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations,” Appl. Phys. Lett. 67(7), 1031–1033 (1995).
[Crossref]

Zhang, Z.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref] [PubMed]

Zhigilei, L.

Z. Lin and L. Zhigilei, “Electron-phonon coupling and electron heat capacity in metals at high electron temperatures.” ( http://faculty.virginia.edu/CompMat/electron-phonon-coupling/ , 2008).

ACS Nano (1)

Y. R. Davletshin, A. Lombardi, M. F. Cardinal, V. Juvé, A. Crut, P. Maioli, L. M. Liz-Marzán, F. Vallée, N. Del Fatti, and J. C. Kumaradas, “A quantitative study of the environmental effects on the optical response of gold nanorods,” ACS Nano 6(9), 8183–8193 (2012).
[Crossref] [PubMed]

Appl. Phys. B (3)

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Appl. Phys. Lett. (2)

M. Hu, J. V. Goicochea, B. Michel, and D. Poulikakos, “Thermal rectification at water/functionalized silica interfaces,” Appl. Phys. Lett. 95(15), 151903 (2009).
[Crossref]

S. Zafar, K. A. Conrad, Q. Liu, E. A. Irene, G. Hames, R. Kuehn, and J. J. Wortman, “Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations,” Appl. Phys. Lett. 67(7), 1031–1033 (1995).
[Crossref]

Beilstein J. Nanotechnol. (1)

Y. R. Davletshin and J. C. Kumaradas, “The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures,” Beilstein J. Nanotechnol. 7, 869–880 (2016).
[Crossref] [PubMed]

EPL (1)

F. Docchio, “Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration,” EPL 6(5), 407–412 (1988).
[Crossref]

IEEE J. Quantum Electron. (5)

C. DeMichelis, “Laser induced gas breakdown: A bibliographical review,” IEEE J. Quantum Electron. 5(4), 188–202 (1969).
[Crossref]

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10(3), 375–386 (1974).
[Crossref]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

J. Acoust. Soc. Am. (1)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

É. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C 117(18), 9386–9396 (2013).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D Appl. Phys. 40(22), 7152–7158 (2007).
[Crossref]

Nano Lett. (1)

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

Numerical Heat Transfer, Part A: Applications (1)

J. E. B. J. K. Chen, “Numerical Study of Ultrashort Laser Pulse Interactions with Metal Films,” Numerical Heat Transfer, Part A: Applications 40(1), 1–20 (2001).
[Crossref]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref] [PubMed]

Phys. Rev. B (2)

N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 24113 (2016).
[Crossref]

N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (6)

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B Condens. Matter Mater. Phys. 69(5), 54102 (2004).
[Crossref]

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
[Crossref]

P. E. Hopkins, L. M. Phinney, J. R. Serrano, and T. E. Beechem, “Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 85307 (2010).
[Crossref]

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B Condens. Matter Mater. Phys. 72(8), 85128 (2005).
[Crossref]

J. R. Gulley and T. E. Lanier, “Model for ultrashort laser pulse-induced ionization dynamics in transparent solids,” Phys. Rev. B Condens. Matter Mater. Phys. 90(15), 155119 (2014).
[Crossref]

Phys. Rev. Lett. (1)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

PLoS One (1)

D. Heinemann, M. Schomaker, S. Kalies, M. Schieck, R. Carlson, H. Murua Escobar, T. Ripken, H. Meyer, and A. Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS One 8(3), e58604 (2013).
[Crossref] [PubMed]

Other (6)

N. Linz, S. Freidank, X.-X. Liang, J. Noack, G. Paltauf, and A. Vogel, “Roles of tunneling, multiphoton ionization, and cascade ionization for optical breakdown in aqueous media,” AFOSR Int. Res. Initiat. Proj. SPC 053010/EOARD, 0–206 (2009).

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Zh.eksperim.i Teor.fiz 47(1964).

Nanoshel, “Aluminum Coated Silica Nanopowder”, retrieved 2018, https://www.nanoshel.com/product/aluminum-coated-silica/ .

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995), Vol. 25.

E. D. Palik, “Handbook of Optical Constants of Solids(Academic Press,San Diego),” Handbook of Optical Constants of Solids(Academic Press,San Diego) (1985).

Z. Lin and L. Zhigilei, “Electron-phonon coupling and electron heat capacity in metals at high electron temperatures.” ( http://faculty.virginia.edu/CompMat/electron-phonon-coupling/ , 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Calculation model. (a) Mesh of the coupled physics fields outside of the nanoparticles trimer. (b) Geometry of aluminum nanoparticles dimer nanostructure.
Fig. 2
Fig. 2 The extinction cross-section for different morphology of aluminum nanoparticles.
Fig. 3
Fig. 3 The relative electric near-field enhancement |(E)|/E0 for different morphology of aluminum nanoparticles with ds = dg = 2 nm (d = 40 nm, λ = 580 nm). (a) monomer, (b) dimer, (c) trimer.
Fig. 4
Fig. 4 The relative electric near-field enhancement |(E)|/E0 for different morphology of gold nanoparticles with ds = 0 nm, dg = 6 nm (d = 40 nm, λ = 580 nm). (a) monomer, (b) dimer, (c) trimer.
Fig. 5
Fig. 5 Evolution of electron density for different nanoparticle morphology of a 300 fs laser pulse at different fluence (ds = dg = 2 nm, d = 40 nm, λ = 580 nm). (a) monomer, (b) dimer, (c) trimer.
Fig. 6
Fig. 6 The lattice temperature (K) of different nanoparticle morphology at corresponding laser threshold of saturation density at t = 1200 fs.
Fig. 7
Fig. 7 Evolution of aluminum nanoparticle lattice temperature at different laser threshold of saturation density.
Fig. 8
Fig. 8 Evolution of water plasma temperature induced by aluminum nanoparticles trimer at laser fluence of saturation density.

Tables (1)

Tables Icon

Table 1 Parameters used in model.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

ε D C P ( ω ) = ε ω p 2 ω ( ω + i γ D ) + p = 1 2 A p Ω p ( e i ϕ p Ω p ω i Γ p + e i ϕ p Ω p + ω + i Γ p )
ε ( ω , L e f f ) = ε D C P ( ω ) + ω p 2 ω ( ω + i Γ b u l k ) ω p 2 ω 2 + i ω ( Γ b u l k + A v F L e f f + η V n p π )
E ( x , y , z ) = E 0 w 0 w ( y ) exp [ z 2 + x 2 w 2 ( y ) j k y j k z 2 + x 2 2 R ( y ) + j η ( y ) ]
× ( × E ) k 0 2 ε E = 0
ε w = ε r ρ e e 2 ε 0 m ( ω 2 + j ω / τ )
C e T e t = G ( T e T l ) + Q r h f ( t p )
C l T l t = G ( T e T l )
Q r h = 1 2 [ ( σ j ω ε ) Ε Ε ]
Q n p | s = q 0 ( T l T s )
ρ s c s T s t = ( k s T s ) + Q r h f ( t p )
Q s | w = q 1 ( T s T w )
ρ w c w T w t = ( k w T w ) + ( d T w d t ) c o l l + ( d T w d t ) r e c
d ρ e d t = ( d ρ e d t ) p h o t o + ( d ρ e d t ) c a s c + ( d ρ e d t ) d i f f + ( d ρ e d t ) r e c
( d ρ e d t ) p h o t o = 2 ω 9 π ( m ω 1 + γ 2 γ ) 3 / 2 Q ( γ , Δ ˜ ω ) × ( ρ b o u n d ρ e ρ b o u n d ) exp { π Δ ˜ ω + 1 × [ κ ( γ 1 + γ 2 ) ε ( γ 1 + γ 2 ) ] / ε ( 1 1 + γ 2 ) }
Q ( γ , x ) = π 2 κ ( 1 1 + γ 2 ) × l = 0 exp { π l × [ κ ( γ 1 + γ 2 ) ε ( γ 1 + γ 2 ) ] / ε ( 1 1 + γ 2 ) } × Φ { [ π 2 ( 2 x + 1 2 x + l ) 2 κ ( 1 1 + γ 2 ) × ε ( 1 1 + γ 2 ) ] 1 / 2 }
γ = ω ω t = ω m E g a p e | Ε |
Δ ˜ = E g a p ( 1+ 1 4 γ 2 )
Φ ( z ) = 0 z exp ( y 2 z 2 ) d y
η c a s c = 1 ω 2 τ 2 + 1 [ e 2 τ c 0 n ε 0 m e ( 3 / 2 ) Δ ˜ I i n ( t ) m e ω 2 τ M ]
( d ρ e d t ) c a s c = { ρ e 1 + η c a s c t r e t ( α c a s c I i n ( t ) β c a s c ) for ρ e ρ s e e d 0 for ρ e < ρ s e e d

Metrics