Abstract

Taking advantage of unique molecular absorption lines in the mid-infrared fingerprint region and of the atmosphere transparency window (3-5 µm and 8-14 µm), mid-infrared silicon photonics has attracted more research activities with a great potential for applications in different areas, including spectroscopy, remote sensing, free-space communication and many others. However, the demonstration of resonant structures operating at long-wave infrared wavelengths still remains challenging. Here, we demonstrate Bragg grating-based Fabry-Perot resonators based on Ge-rich SiGe waveguides with broadband operation in the mid-infrared. Bragg grating waveguides are investigated first at different wavelengths from 5.4 µm up to 8.4 µm, showing a rejection band up to 21 dB. Integrated Fabry-Perot resonators are then demonstrated for the first time in the 8 µm-wavelength range, showing Q-factors as high as 2200. This first demonstration of integrated mid-infrared Fabry-Perot resonators paves the way towards resonance-enhanced sensing circuits and non-linear based devices at these wavelengths.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ge-on-Si modulators operating at mid-infrared wavelengths up to 8  μm

Tiantian Li, Milos Nedeljkovic, Nannicha Hattasan, Wei Cao, Zhibo Qu, Callum G. Littlejohns, Jordi Soler Penades, Lorenzo Mastronardi, Vinita Mittal, Daniel Benedikovic, David J. Thomson, Frederic Y. Gardes, Hequan Wu, Zhiping Zhou, and Goran Z. Mashanovich
Photon. Res. 7(8) 828-836 (2019)

Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited]

Qiankun Liu, Joan Manel Ramirez, Vladyslav Vakarin, Xavier Le Roux, Andrea Ballabio, Jacopo Frigerio, Daniel Chrastina, Giovanni Isella, David Bouville, Laurent Vivien, Carlos Alonso Ramos, and Delphine Marris-Morini
Opt. Mater. Express 8(5) 1305-1312 (2018)

Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm

Milos Nedeljkovic, Jordi Soler Penades, Vinita Mittal, Ganapathy Senthil Murugan, Ali Z. Khokhar, Callum Littlejohns, Lewis G. Carpenter, Corin B. E. Gawith, James S. Wilkinson, and Goran Z. Mashanovich
Opt. Express 25(22) 27431-27441 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
    [Crossref]
  2. L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40(2), 268–271 (2015).
    [Crossref] [PubMed]
  3. A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, V. A. Armbrister, A. V. Dvurechenskii, and J.-M. Hartmann, “Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons,” Opt. Express 25(21), 25602–25611 (2017).
    [Crossref] [PubMed]
  4. T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5(5), 417–430 (2017).
    [Crossref]
  5. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  6. T. Jin, L. Li, B. Zhang, H. G. Lin, H. Wang, and P. T. Lin, “Real-time and label-free chemical sensor-on-a-chip using monolithic Si-on-BaTiO3 Mid-Infrared waveguides,” Sci. Rep. 7(1), 5836 (2017).
    [Crossref] [PubMed]
  7. L. Tombez, E. J. Zhang, J. S. Orcutt, S. Kamlapurkar, and W. M. J. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica 4(11), 1322–1325 (2017).
    [Crossref]
  8. L. Laplatine, E. Luan, K. Cheung, D. M. Ratner, Y. Dattner, and L. Chrostowski, “System-level integration of active silicon photonic biosensors using Fan-Out Wafer-Level-Packaging for low cost and multiplexed point-of-care diagnostic testing,” Sens. Actuators B Chem. 273, 1610–1617 (2018).
    [Crossref]
  9. Y. C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N. F. de Rooij, and H. Peter Herzig, “Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip,” Lab Chip 12(17), 3020–3023 (2012).
    [Crossref] [PubMed]
  10. A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
    [Crossref] [PubMed]
  11. M. Sinobad, C. Monat, B. Luther-davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J.-M. Hartmann, J.-M. Fedeli, and C. Grillet, “Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides,” Optica 5(4), 360–366 (2018).
    [Crossref]
  12. M. A. Ettabib, L. Xu, A. Bogris, A. Kapsalis, M. Belal, E. Lorent, P. Labeye, S. Nicoletti, K. Hammani, D. Syvridis, D. P. Shepherd, J. H. V. Price, D. J. Richardson, and P. Petropoulos, “Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide,” Opt. Lett. 40(17), 4118–4121 (2015).
    [Crossref] [PubMed]
  13. D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
    [Crossref]
  14. M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
    [Crossref] [PubMed]
  15. M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22(1), 508–518 (2014).
    [Crossref] [PubMed]
  16. L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).
    [Crossref]
  17. V. Vakarin, J. M. Ramírez, J. Frigerio, A. Ballabio, X. Le Roux, Q. Liu, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy,” Opt. Lett. 42(17), 3482–3485 (2017).
    [Crossref] [PubMed]
  18. J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
    [Crossref] [PubMed]
  19. Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8(5), 1305–1312 (2018).
    [Crossref]
  20. V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
    [Crossref]
  21. J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25(6), 6561–6567 (2017).
    [PubMed]
  22. S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
    [Crossref] [PubMed]
  23. R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
    [Crossref]
  24. S. Radosavljevic, N. T. Beneitez, A. Katumba, M. Muneeb, M. Vanslembrouck, B. Kuyken, and G. Roelkens, “Mid-infrared Vernier racetrack resonator tunable filter implemented on a germanium on SOI waveguide platform [Invited],” Opt. Mater. Express 8(4), 824–835 (2018).
    [Crossref]
  25. T. H. Xiao, Z. Zhao, W. Zhou, C. Y. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium microring resonator,” Opt. Lett. 43(12), 2885–2888 (2018).
    [Crossref] [PubMed]
  26. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
    [Crossref] [PubMed]
  27. A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
    [Crossref]
  28. E. H. Bernhardi, PhD thesis “Bragg-Grating-Based Rare-Earth-Ion-Doped Channel Waveguide Lasers and Their Applications” (2012).
  29. Lumerical Inc, http://www.lumerical.com/tcad-products/mode/
  30. G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H. J. Herzog, U. König, and H. Von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
    [Crossref]
  31. X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21(16), 19029–19039 (2013).
    [Crossref] [PubMed]

2018 (9)

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

L. Laplatine, E. Luan, K. Cheung, D. M. Ratner, Y. Dattner, and L. Chrostowski, “System-level integration of active silicon photonic biosensors using Fan-Out Wafer-Level-Packaging for low cost and multiplexed point-of-care diagnostic testing,” Sens. Actuators B Chem. 273, 1610–1617 (2018).
[Crossref]

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

M. Sinobad, C. Monat, B. Luther-davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J.-M. Hartmann, J.-M. Fedeli, and C. Grillet, “Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides,” Optica 5(4), 360–366 (2018).
[Crossref]

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
[Crossref] [PubMed]

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8(5), 1305–1312 (2018).
[Crossref]

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

S. Radosavljevic, N. T. Beneitez, A. Katumba, M. Muneeb, M. Vanslembrouck, B. Kuyken, and G. Roelkens, “Mid-infrared Vernier racetrack resonator tunable filter implemented on a germanium on SOI waveguide platform [Invited],” Opt. Mater. Express 8(4), 824–835 (2018).
[Crossref]

T. H. Xiao, Z. Zhao, W. Zhou, C. Y. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium microring resonator,” Opt. Lett. 43(12), 2885–2888 (2018).
[Crossref] [PubMed]

2017 (8)

J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25(6), 6561–6567 (2017).
[PubMed]

S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
[Crossref] [PubMed]

V. Vakarin, J. M. Ramírez, J. Frigerio, A. Ballabio, X. Le Roux, Q. Liu, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy,” Opt. Lett. 42(17), 3482–3485 (2017).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
[Crossref] [PubMed]

T. Jin, L. Li, B. Zhang, H. G. Lin, H. Wang, and P. T. Lin, “Real-time and label-free chemical sensor-on-a-chip using monolithic Si-on-BaTiO3 Mid-Infrared waveguides,” Sci. Rep. 7(1), 5836 (2017).
[Crossref] [PubMed]

L. Tombez, E. J. Zhang, J. S. Orcutt, S. Kamlapurkar, and W. M. J. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica 4(11), 1322–1325 (2017).
[Crossref]

A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, V. A. Armbrister, A. V. Dvurechenskii, and J.-M. Hartmann, “Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons,” Opt. Express 25(21), 25602–25611 (2017).
[Crossref] [PubMed]

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5(5), 417–430 (2017).
[Crossref]

2015 (2)

2014 (3)

2013 (3)

2012 (1)

Y. C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N. F. de Rooij, and H. Peter Herzig, “Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip,” Lab Chip 12(17), 3020–3023 (2012).
[Crossref] [PubMed]

2010 (2)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

2004 (1)

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H. J. Herzog, U. König, and H. Von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Agarwal, A.

Agarwal, A. M.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).
[Crossref]

Allioux, D.

Alonso-Ramos, C.

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

Armbrister, V. A.

Baehr-Jones, T.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Ballabio, A.

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8(5), 1305–1312 (2018).
[Crossref]

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
[Crossref] [PubMed]

V. Vakarin, J. M. Ramírez, J. Frigerio, A. Ballabio, X. Le Roux, Q. Liu, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy,” Opt. Lett. 42(17), 3482–3485 (2017).
[Crossref] [PubMed]

J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25(6), 6561–6567 (2017).
[PubMed]

S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
[Crossref] [PubMed]

Belal, M.

Benedikovic, D.

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

Beneitez, N. T.

Billat, A.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Bloshkin, A. A.

Bogris, A.

Boulila, F.

Boutami, S.

Bouville, D.

Brès, C. S.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Brun, M.

Bulu, I.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Carpenter, L. G.

Carras, M.

Cassan, E.

S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
[Crossref] [PubMed]

Chaisakul, P.

Chang, C. Y.

Chang, Y. C.

Y. C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N. F. de Rooij, and H. Peter Herzig, “Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip,” Lab Chip 12(17), 3020–3023 (2012).
[Crossref] [PubMed]

Cheben, P.

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

Cheng, Z.

Cheung, K.

L. Laplatine, E. Luan, K. Cheung, D. M. Ratner, Y. Dattner, and L. Chrostowski, “System-level integration of active silicon photonic biosensors using Fan-Out Wafer-Level-Packaging for low cost and multiplexed point-of-care diagnostic testing,” Sens. Actuators B Chem. 273, 1610–1617 (2018).
[Crossref]

Chrastina, D.

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8(5), 1305–1312 (2018).
[Crossref]

J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25(6), 6561–6567 (2017).
[PubMed]

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H. J. Herzog, U. König, and H. Von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Chrostowski, L.

L. Laplatine, E. Luan, K. Cheung, D. M. Ratner, Y. Dattner, and L. Chrostowski, “System-level integration of active silicon photonic biosensors using Fan-Out Wafer-Level-Packaging for low cost and multiplexed point-of-care diagnostic testing,” Sens. Actuators B Chem. 273, 1610–1617 (2018).
[Crossref]

X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21(16), 19029–19039 (2013).
[Crossref] [PubMed]

Danto, S.

Dattner, Y.

L. Laplatine, E. Luan, K. Cheung, D. M. Ratner, Y. Dattner, and L. Chrostowski, “System-level integration of active silicon photonic biosensors using Fan-Out Wafer-Level-Packaging for low cost and multiplexed point-of-care diagnostic testing,” Sens. Actuators B Chem. 273, 1610–1617 (2018).
[Crossref]

de Rooij, N. F.

Y. C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N. F. de Rooij, and H. Peter Herzig, “Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip,” Lab Chip 12(17), 3020–3023 (2012).
[Crossref] [PubMed]

Di Francesco, J.

Y. C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N. F. de Rooij, and H. Peter Herzig, “Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip,” Lab Chip 12(17), 3020–3023 (2012).
[Crossref] [PubMed]

Dong, B.

Dubreuil, N.

S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
[Crossref] [PubMed]

Dvurechenskii, A. V.

Dwivedi, S.

Ettabib, M. A.

Fedeli, J.-M.

Flueckiger, J.

Frigerio, J.

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8(5), 1305–1312 (2018).
[Crossref]

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
[Crossref] [PubMed]

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

V. Vakarin, J. M. Ramírez, J. Frigerio, A. Ballabio, X. Le Roux, Q. Liu, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy,” Opt. Lett. 42(17), 3482–3485 (2017).
[Crossref] [PubMed]

S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
[Crossref] [PubMed]

J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25(6), 6561–6567 (2017).
[PubMed]

Gawith, C. B. E.

Goda, K.

Grand, G.

Grassani, D.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Green, W. M. J.

Grillet, C.

Grist, S.

Guo, H.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Hackbarth, T.

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H. J. Herzog, U. König, and H. Von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Hammani, K.

Hartmann, J.-M.

Healy, N.

Herkommer, C.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Herzog, H. J.

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H. J. Herzog, U. König, and H. Von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Hochberg, M.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Homsy, A.

Y. C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N. F. de Rooij, and H. Peter Herzig, “Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip,” Lab Chip 12(17), 3020–3023 (2012).
[Crossref] [PubMed]

Hu, J.

Hu, T.

Hvozdara, L.

Y. C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N. F. de Rooij, and H. Peter Herzig, “Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip,” Lab Chip 12(17), 3020–3023 (2012).
[Crossref] [PubMed]

Ilic, R.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Isella, G.

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
[Crossref] [PubMed]

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8(5), 1305–1312 (2018).
[Crossref]

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

V. Vakarin, J. M. Ramírez, J. Frigerio, A. Ballabio, X. Le Roux, Q. Liu, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy,” Opt. Lett. 42(17), 3482–3485 (2017).
[Crossref] [PubMed]

J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25(6), 6561–6567 (2017).
[PubMed]

S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
[Crossref] [PubMed]

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H. J. Herzog, U. König, and H. Von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Jaeger, N. A. F.

Jin, T.

T. Jin, L. Li, B. Zhang, H. G. Lin, H. Wang, and P. T. Lin, “Real-time and label-free chemical sensor-on-a-chip using monolithic Si-on-BaTiO3 Mid-Infrared waveguides,” Sci. Rep. 7(1), 5836 (2017).
[Crossref] [PubMed]

Kamlapurkar, S.

Kapsalis, A.

Katumba, A.

Khokhar, A. Z.

Kimerling, L. C.

Kippenberg, T. J.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Kirienko, V. V.

König, U.

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H. J. Herzog, U. König, and H. Von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Kozacik, S.

Kuyken, B.

Labeye, P.

Laplatine, L.

L. Laplatine, E. Luan, K. Cheung, D. M. Ratner, Y. Dattner, and L. Chrostowski, “System-level integration of active silicon photonic biosensors using Fan-Out Wafer-Level-Packaging for low cost and multiplexed point-of-care diagnostic testing,” Sens. Actuators B Chem. 273, 1610–1617 (2018).
[Crossref]

Le Roux, X.

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
[Crossref] [PubMed]

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8(5), 1305–1312 (2018).
[Crossref]

J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25(6), 6561–6567 (2017).
[PubMed]

S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
[Crossref] [PubMed]

V. Vakarin, J. M. Ramírez, J. Frigerio, A. Ballabio, X. Le Roux, Q. Liu, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy,” Opt. Lett. 42(17), 3482–3485 (2017).
[Crossref] [PubMed]

Lee, C.

Lepage, G.

Li, L.

Lin, H.

Lin, H. G.

T. Jin, L. Li, B. Zhang, H. G. Lin, H. Wang, and P. T. Lin, “Real-time and label-free chemical sensor-on-a-chip using monolithic Si-on-BaTiO3 Mid-Infrared waveguides,” Sci. Rep. 7(1), 5836 (2017).
[Crossref] [PubMed]

Lin, P. T.

Liow, T.-Y.

Littlejohns, C.

Liu, Q.

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
[Crossref] [PubMed]

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8(5), 1305–1312 (2018).
[Crossref]

V. Vakarin, J. M. Ramírez, J. Frigerio, A. Ballabio, X. Le Roux, Q. Liu, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy,” Opt. Lett. 42(17), 3482–3485 (2017).
[Crossref] [PubMed]

Liu, Y.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Lo, G.-Q.

Loncar, M.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Loo, R.

Lorent, E.

Luan, E.

L. Laplatine, E. Luan, K. Cheung, D. M. Ratner, Y. Dattner, and L. Chrostowski, “System-level integration of active silicon photonic biosensors using Fan-Out Wafer-Level-Packaging for low cost and multiplexed point-of-care diagnostic testing,” Sens. Actuators B Chem. 273, 1610–1617 (2018).
[Crossref]

Luo, X.

Luther-davies, B.

Ma, P.

Madden, S.

Malik, A.

Marris-Morini, D.

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
[Crossref] [PubMed]

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8(5), 1305–1312 (2018).
[Crossref]

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25(6), 6561–6567 (2017).
[PubMed]

S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
[Crossref] [PubMed]

V. Vakarin, J. M. Ramírez, J. Frigerio, A. Ballabio, X. Le Roux, Q. Liu, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy,” Opt. Lett. 42(17), 3482–3485 (2017).
[Crossref] [PubMed]

Mashanovich, G. Z.

Michel, J.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).
[Crossref]

Mitchell, A.

Mitchell, C. J.

Mittal, V.

Monat, C.

Montesinos, M.

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

Moss, D. J.

Muneeb, M.

Murakowski, M.

Murugan, G. S.

Musgraves, J. D.

N. Ye, W.

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

Nedeljkovic, M.

Nicoletti, S.

Orcutt, J. S.

Orobtchouk, R.

Paeder, V.

Y. C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N. F. de Rooij, and H. Peter Herzig, “Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip,” Lab Chip 12(17), 3020–3023 (2012).
[Crossref] [PubMed]

Peacock, A. C.

Penades, J. S.

Peter Herzig, H.

Y. C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N. F. de Rooij, and H. Peter Herzig, “Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip,” Lab Chip 12(17), 3020–3023 (2012).
[Crossref] [PubMed]

Petropoulos, P.

Pfeiffer, M. H. P.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Prather, D.

Price, J. H. V.

Radosavljevic, S.

Ramirez, J. M.

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8(5), 1305–1312 (2018).
[Crossref]

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
[Crossref] [PubMed]

J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25(6), 6561–6567 (2017).
[PubMed]

S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
[Crossref] [PubMed]

Ramírez, J.

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

Ramírez, J. M.

Ramos, C. A.

Ratner, D. M.

L. Laplatine, E. Luan, K. Cheung, D. M. Ratner, Y. Dattner, and L. Chrostowski, “System-level integration of active silicon photonic biosensors using Fan-Out Wafer-Level-Packaging for low cost and multiplexed point-of-care diagnostic testing,” Sens. Actuators B Chem. 273, 1610–1617 (2018).
[Crossref]

Richardson, D. J.

Richardson, K.

Roelkens, G.

Rössner, B.

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H. J. Herzog, U. König, and H. Von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Serna, S.

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
[Crossref] [PubMed]

Set, S. Y.

Shankar, R.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Shen, L.

Shepherd, D. P.

Shimura, Y.

Singh, V.

Sinobad, M.

Song, J.

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Spott, A.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Syvridis, D.

Takenaka, M.

Tombez, L.

Tsang, H. K.

Vakarin, V.

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8(5), 1305–1312 (2018).
[Crossref]

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
[Crossref] [PubMed]

V. Vakarin, J. M. Ramírez, J. Frigerio, A. Ballabio, X. Le Roux, Q. Liu, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy,” Opt. Lett. 42(17), 3482–3485 (2017).
[Crossref] [PubMed]

S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
[Crossref] [PubMed]

J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25(6), 6561–6567 (2017).
[PubMed]

Van Campenhout, J.

van der Wal, P.

Y. C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N. F. de Rooij, and H. Peter Herzig, “Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip,” Lab Chip 12(17), 3020–3023 (2012).
[Crossref] [PubMed]

Van Landschoot, L.

Van Opstal, T.

Vanherle, W.

Vanslembrouck, M.

Vivien, L.

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8(5), 1305–1312 (2018).
[Crossref]

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
[Crossref] [PubMed]

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

V. Vakarin, J. M. Ramírez, J. Frigerio, A. Ballabio, X. Le Roux, Q. Liu, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy,” Opt. Lett. 42(17), 3482–3485 (2017).
[Crossref] [PubMed]

J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25(6), 6561–6567 (2017).
[PubMed]

S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
[Crossref] [PubMed]

Von Känel, H.

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H. J. Herzog, U. König, and H. Von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Wägli, P.

Y. C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N. F. de Rooij, and H. Peter Herzig, “Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip,” Lab Chip 12(17), 3020–3023 (2012).
[Crossref] [PubMed]

Wang, H.

T. Jin, L. Li, B. Zhang, H. G. Lin, H. Wang, and P. T. Lin, “Real-time and label-free chemical sensor-on-a-chip using monolithic Si-on-BaTiO3 Mid-Infrared waveguides,” Sci. Rep. 7(1), 5836 (2017).
[Crossref] [PubMed]

Wang, X.

Weng, W.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Wilkinson, J. S.

Xiao, T. H.

Xu, L.

Yakimov, A. I.

Zhang, B.

T. Jin, L. Li, B. Zhang, H. G. Lin, H. Wang, and P. T. Lin, “Real-time and label-free chemical sensor-on-a-chip using monolithic Si-on-BaTiO3 Mid-Infrared waveguides,” Sci. Rep. 7(1), 5836 (2017).
[Crossref] [PubMed]

Zhang, C.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Zhang, E. J.

Zhang, L.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).
[Crossref]

Zhao, Z.

Zhou, W.

Zou, Y.

Appl. Phys. Lett. (2)

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Appl. Sci. (Basel) (1)

V. Vakarin, J. Ramírez, J. Frigerio, Q. Liu, A. Ballabio, X. Le Roux, C. Alonso-Ramos, G. Isella, P. Cheben, W. N. Ye, L. Vivien, and D. Marris-Morini, “Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications,” Appl. Sci. (Basel) 8(7), 1154 (2018).
[Crossref]

Lab Chip (1)

Y. C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N. F. de Rooij, and H. Peter Herzig, “Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip,” Lab Chip 12(17), 3020–3023 (2012).
[Crossref] [PubMed]

Nanophotonics (2)

D. Marris-Morini, V. Vakarin, J. M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, and G. Isella, “Germanium-based integrated photonics from near- to mid-infrared applications,” Nanophotonics 7(11), 1781–1793 (2018), doi:.
[Crossref]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).
[Crossref]

Nat. Photonics (2)

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Opt. Express (7)

A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, V. A. Armbrister, A. V. Dvurechenskii, and J.-M. Hartmann, “Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons,” Opt. Express 25(21), 25602–25611 (2017).
[Crossref] [PubMed]

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26(2), 870–877 (2018).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
[Crossref] [PubMed]

M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22(1), 508–518 (2014).
[Crossref] [PubMed]

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25(6), 6561–6567 (2017).
[PubMed]

X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21(16), 19029–19039 (2013).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. Express (2)

Optica (2)

Photon. Res. (1)

Sci. Rep. (2)

T. Jin, L. Li, B. Zhang, H. G. Lin, H. Wang, and P. T. Lin, “Real-time and label-free chemical sensor-on-a-chip using monolithic Si-on-BaTiO3 Mid-Infrared waveguides,” Sci. Rep. 7(1), 5836 (2017).
[Crossref] [PubMed]

S. Serna, V. Vakarin, J. M. Ramirez, J. Frigerio, A. Ballabio, X. Le Roux, L. Vivien, G. Isella, E. Cassan, N. Dubreuil, and D. Marris-Morini, “nonlinear properties of Ge-rich Si1-xGex materials with different Ge concentrations,” Sci. Rep. 7(1), 14692 (2017).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

L. Laplatine, E. Luan, K. Cheung, D. M. Ratner, Y. Dattner, and L. Chrostowski, “System-level integration of active silicon photonic biosensors using Fan-Out Wafer-Level-Packaging for low cost and multiplexed point-of-care diagnostic testing,” Sens. Actuators B Chem. 273, 1610–1617 (2018).
[Crossref]

Solid-State Electron. (1)

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H. J. Herzog, U. König, and H. Von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Other (2)

E. H. Bernhardi, PhD thesis “Bragg-Grating-Based Rare-Earth-Ion-Doped Channel Waveguide Lasers and Their Applications” (2012).

Lumerical Inc, http://www.lumerical.com/tcad-products/mode/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a)Schematic of the waveguide cross-section with the simulated transverse magnetic (TM) mode profile in the grating region at 7.3 µm wavelength. Right side: The vertical refractive index profile of the graded SiGe waveguide platform. (b) Calculated coupling efficiency of the Bragg grating waveguide as a function of the ratio r between the shallow-etch grating width (WEtch) and the nominal waveguide width (WWg) at a wavelength of 7.3 µm. Inset: Three-dimensional (3-D) schematic of a Bragg grating waveguide.
Fig. 2
Fig. 2 (a) The scanning electron microscopy (SEM) image of a fabricated Bragg grating waveguide. (b) The simulated (blue curve) and the measured (orange curve) transmittance spectra of the Bragg grating waveguides with a period of 0.74, 0.88, 1.02 µm, leading to an operation at 5.4, 6.4 and 7.3 µm wavelengths, respectively. (c) Measured transmittance of Bragg grating waveguides as a function of wavelength for various Bragg grating waveguides, featuring a different number of grating periods in a range from 210 to 280. (d) Minimum transmittance of the Bragg grating waveguides in the rejection band (simulation and measurement) as a function of the number of grating periods, with a Bragg grating period of 0.88 µm.
Fig. 3
Fig. 3 (a) Schematic view of a FP resonator. (b) Simulated transmittance of a FP resonator with Bragg grating period of 1.1 µm, number of period is 280, Lcav = 70 µm, showing a resonance at around of 7.9 µm (c) Measured transmittance spectrum of two different FP resonators with different design parameters: Λ = 1.1 µm (left), Λ = 1.16 µm (right), N = 280, Lcav = 70 µm. Orange lines correspond to the Lorentz fit of the central resonance. (d) Measured transmittance spectrum of a FP resonator with Λ = 1.1 µm, N = 500, Lcav = 70 µm. The used Lorentzian function is: y= y 0 + 1 π 2Γ [ 4 ( x x 0 ) 2 + Γ 2 ] . The R-squared value of Lorentzian fit is 0.97.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

K= Γ×( n h 2 + n l 2 )×sin(π×DC) λ B × n eff
Q int = 2π× n g ×4.34 λ [ μm ] ×100×α [ dB/cm ]

Metrics