Abstract

We present an equalization based inter symbol interference (ISI) mitigation equalization method for time-interleaved photonic analog-to-digital converters (TIPADCs) by modelling the photodetection as a pulse shaper. A zero-forcing equalizer is designed and applied in a single-channel TIPADC system. The periodic ripples in equivalent channel frequency responses under three different photodetection bandwidths are suppressed from ∼2 dB, ∼5 dB, ∼10 dB to ∼0.5 dB, ∼0.5 dB, ∼1 dB, respectively, by the designed equalizer. The TIPADC after equalization has a bandwidth of 15 GHz, mainly limited by MZM. The ability for wideband signal distortion suppression of the proposed method is demonstrated by sampling an equal-power two-tone signal. The output power difference induced by ISI between two tones can be suppressed from ∼10.9 dB to ∼1.3 dB after equalization.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mismatches analysis based on channel response and an amplitude correction method for time interleaved photonic analog-to-digital converters

Zhengtao Jin, Guiling Wu, Cheng Wang, and Jianping Chen
Opt. Express 26(14) 17859-17871 (2018)

Effects of the photonic sampling pulse width and the photodetection bandwidth on the channel response of photonic ADCs

Feiran Su, Guiling Wu, Lei Ye, Rui Liu, Xiang Xue, and Jianping Chen
Opt. Express 24(2) 924-934 (2016)

Investigation of electronic aperture jitter effect in channel-interleaved photonic analog-to-digital converter

Guang Yang, Weiwen Zou, Lei Yu, Na Qian, and Jianping Chen
Opt. Express 27(6) 9205-9214 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
    [Crossref] [PubMed]
  2. F. Kärtner, A. Khilo, and A. Nejadmalayeri, “Progress in photonic analog-to-digital conversion,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, (Optical Society of America, 2013), p. OTh3D.5.
    [Crossref]
  3. F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Techn. 47, 1309–1314 (1999).
    [Crossref]
  4. A. O. J. Wiberg, “Progress in photonic sampled analog-to-digital conversion,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. M2E.1.
    [Crossref]
  5. H. F. Taylor, “An electrooptic analog-to-digital converter,” Proc. IEEE 63, 1524–1525 (1975).
    [Crossref]
  6. J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12, 1237–1239 (2000).
    [Crossref]
  7. T. R. Clark, J. U. Kang, and R. D. Esman, “Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion,” IEEE Photon. Technol. Lett. 11, 1168–1170 (1999).
    [Crossref]
  8. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Techn. 49, 1840–1853 (2001).
    [Crossref]
  9. S. Wang, G. Wu, F. Su, and J. Chen, “Simultaneous microwave photonic analog-to-digital conversion and digital filtering,” IEEE Photon. Technol. Lett. 30, 343–346 (2018).
    [Crossref]
  10. G. Wu, S. Li, X. Li, and J. Chen, “18 wavelengths 83.9gs/s optical sampling clock for photonic a/d converters,” Opt. Express 18, 21162–21168 (2010).
    [Crossref] [PubMed]
  11. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic adc: overcoming the bottleneck of electronic jitter,” Opt. Express 20, 4454–4469 (2012).
    [Crossref] [PubMed]
  12. F. Su, G. Wu, L. Ye, R. Liu, X. Xue, and J. Chen, “Effects of the photonic sampling pulse width and the photodetection bandwidth on the channel response of photonic adcs,” Opt. Express 24, 924–934 (2016).
    [Crossref] [PubMed]
  13. F. Su, G. Wu, and J. Chen, “Photonic analog-to-digital conversion with equivalent analog prefiltering by shaping sampling pulses,” Opt. Lett. 41, 2779–2782 (2016).
    [Crossref] [PubMed]
  14. Z. Jin, G. Wu, C. Wang, and J. Chen, “Mismatches analysis based on channel response and an amplitude correction method for time interleaved photonic analog-to-digital converters,” Opt. Express 26, 17859–17871 (2018).
    [Crossref] [PubMed]
  15. J. D. McKinney and K. J. Williams, “Sampled analog optical links,” IEEE Trans. Microw. Theory Techn. 57, 2093–2099 (2009).
    [Crossref]
  16. P. W. Juodawlkis, J. Hargreaves, and J. Twichell, “Impact of photodetector nonlinearities on photonic analog-to-digital converters,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2002), p. CMB7.
  17. J. Choi, M. Hwang, and D. Jeong, “A 0.18-/spl mu/m cmos 3.5-gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method,” IEEE J. Solid-State Circuits 39, 419–425 (2004).
    [Crossref]
  18. J. Kim, E. Chen, J. Ren, B. S. Leibowitz, P. Satarzadeh, J. L. Zerbe, and C. K. Yang, “Equalizer design and performance trade-offs in adc-based serial links,” IEEE Trans. Circuits Syst. I, Reg. Pap. 58, 2096–2107 (2011).
    [Crossref]
  19. W. Kim, C. Seong, and W. Choi, “A 5.4-gbit/s adaptive continuous-time linear equalizer using asynchronous undersampling histograms,” IEEE Trans. Circuits Syst. II, Exp. Briefs 59, 553–557 (2012).
    [Crossref]
  20. D. Tse and P. Viswanath, Fundamentals of wireless communication (Cambridge University, 2005).
    [Crossref]
  21. A. Goldsmith, Wireless communications (Cambridge University, 2005).
    [Crossref]

2018 (2)

S. Wang, G. Wu, F. Su, and J. Chen, “Simultaneous microwave photonic analog-to-digital conversion and digital filtering,” IEEE Photon. Technol. Lett. 30, 343–346 (2018).
[Crossref]

Z. Jin, G. Wu, C. Wang, and J. Chen, “Mismatches analysis based on channel response and an amplitude correction method for time interleaved photonic analog-to-digital converters,” Opt. Express 26, 17859–17871 (2018).
[Crossref] [PubMed]

2016 (2)

2012 (2)

2011 (1)

J. Kim, E. Chen, J. Ren, B. S. Leibowitz, P. Satarzadeh, J. L. Zerbe, and C. K. Yang, “Equalizer design and performance trade-offs in adc-based serial links,” IEEE Trans. Circuits Syst. I, Reg. Pap. 58, 2096–2107 (2011).
[Crossref]

2010 (1)

2009 (1)

J. D. McKinney and K. J. Williams, “Sampled analog optical links,” IEEE Trans. Microw. Theory Techn. 57, 2093–2099 (2009).
[Crossref]

2007 (1)

2004 (1)

J. Choi, M. Hwang, and D. Jeong, “A 0.18-/spl mu/m cmos 3.5-gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method,” IEEE J. Solid-State Circuits 39, 419–425 (2004).
[Crossref]

2001 (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Techn. 49, 1840–1853 (2001).
[Crossref]

2000 (1)

J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12, 1237–1239 (2000).
[Crossref]

1999 (2)

T. R. Clark, J. U. Kang, and R. D. Esman, “Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion,” IEEE Photon. Technol. Lett. 11, 1168–1170 (1999).
[Crossref]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Techn. 47, 1309–1314 (1999).
[Crossref]

1975 (1)

H. F. Taylor, “An electrooptic analog-to-digital converter,” Proc. IEEE 63, 1524–1525 (1975).
[Crossref]

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Techn. 49, 1840–1853 (2001).
[Crossref]

Bhushan, A. S.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Techn. 47, 1309–1314 (1999).
[Crossref]

Byun, H.

Chen, E.

J. Kim, E. Chen, J. Ren, B. S. Leibowitz, P. Satarzadeh, J. L. Zerbe, and C. K. Yang, “Equalizer design and performance trade-offs in adc-based serial links,” IEEE Trans. Circuits Syst. I, Reg. Pap. 58, 2096–2107 (2011).
[Crossref]

Chen, J.

S. Wang, G. Wu, F. Su, and J. Chen, “Simultaneous microwave photonic analog-to-digital conversion and digital filtering,” IEEE Photon. Technol. Lett. 30, 343–346 (2018).
[Crossref]

Z. Jin, G. Wu, C. Wang, and J. Chen, “Mismatches analysis based on channel response and an amplitude correction method for time interleaved photonic analog-to-digital converters,” Opt. Express 26, 17859–17871 (2018).
[Crossref] [PubMed]

F. Su, G. Wu, and J. Chen, “Photonic analog-to-digital conversion with equivalent analog prefiltering by shaping sampling pulses,” Opt. Lett. 41, 2779–2782 (2016).
[Crossref] [PubMed]

F. Su, G. Wu, L. Ye, R. Liu, X. Xue, and J. Chen, “Effects of the photonic sampling pulse width and the photodetection bandwidth on the channel response of photonic adcs,” Opt. Express 24, 924–934 (2016).
[Crossref] [PubMed]

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic adc: overcoming the bottleneck of electronic jitter,” Opt. Express 20, 4454–4469 (2012).
[Crossref] [PubMed]

G. Wu, S. Li, X. Li, and J. Chen, “18 wavelengths 83.9gs/s optical sampling clock for photonic a/d converters,” Opt. Express 18, 21162–21168 (2010).
[Crossref] [PubMed]

Choi, J.

J. Choi, M. Hwang, and D. Jeong, “A 0.18-/spl mu/m cmos 3.5-gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method,” IEEE J. Solid-State Circuits 39, 419–425 (2004).
[Crossref]

Choi, W.

W. Kim, C. Seong, and W. Choi, “A 5.4-gbit/s adaptive continuous-time linear equalizer using asynchronous undersampling histograms,” IEEE Trans. Circuits Syst. II, Exp. Briefs 59, 553–557 (2012).
[Crossref]

Clark, T. R.

T. R. Clark, J. U. Kang, and R. D. Esman, “Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion,” IEEE Photon. Technol. Lett. 11, 1168–1170 (1999).
[Crossref]

Coppinger, F.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Techn. 47, 1309–1314 (1999).
[Crossref]

Dahlem, M. S.

DiLello, N. A.

Esman, R. D.

T. R. Clark, J. U. Kang, and R. D. Esman, “Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion,” IEEE Photon. Technol. Lett. 11, 1168–1170 (1999).
[Crossref]

Geis, M. W.

Goldsmith, A.

A. Goldsmith, Wireless communications (Cambridge University, 2005).
[Crossref]

Grein, M. E.

Hargreaves, J.

P. W. Juodawlkis, J. Hargreaves, and J. Twichell, “Impact of photodetector nonlinearities on photonic analog-to-digital converters,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2002), p. CMB7.

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Techn. 49, 1840–1853 (2001).
[Crossref]

Helkey, R.

J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12, 1237–1239 (2000).
[Crossref]

Holzwarth, C. W.

Hoyt, J. L.

Hwang, M.

J. Choi, M. Hwang, and D. Jeong, “A 0.18-/spl mu/m cmos 3.5-gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method,” IEEE J. Solid-State Circuits 39, 419–425 (2004).
[Crossref]

Ippen, E. P.

Jalali, B.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Techn. 47, 1309–1314 (1999).
[Crossref]

Jeong, D.

J. Choi, M. Hwang, and D. Jeong, “A 0.18-/spl mu/m cmos 3.5-gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method,” IEEE J. Solid-State Circuits 39, 419–425 (2004).
[Crossref]

Jin, Z.

Juodawlkis, P. W.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Techn. 49, 1840–1853 (2001).
[Crossref]

P. W. Juodawlkis, J. Hargreaves, and J. Twichell, “Impact of photodetector nonlinearities on photonic analog-to-digital converters,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2002), p. CMB7.

Kang, J. U.

T. R. Clark, J. U. Kang, and R. D. Esman, “Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion,” IEEE Photon. Technol. Lett. 11, 1168–1170 (1999).
[Crossref]

Kärtner, F.

F. Kärtner, A. Khilo, and A. Nejadmalayeri, “Progress in photonic analog-to-digital conversion,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, (Optical Society of America, 2013), p. OTh3D.5.
[Crossref]

Kärtner, F. X.

Khilo, A.

Kim, J.

J. Kim, E. Chen, J. Ren, B. S. Leibowitz, P. Satarzadeh, J. L. Zerbe, and C. K. Yang, “Equalizer design and performance trade-offs in adc-based serial links,” IEEE Trans. Circuits Syst. I, Reg. Pap. 58, 2096–2107 (2011).
[Crossref]

Kim, W.

W. Kim, C. Seong, and W. Choi, “A 5.4-gbit/s adaptive continuous-time linear equalizer using asynchronous undersampling histograms,” IEEE Trans. Circuits Syst. II, Exp. Briefs 59, 553–557 (2012).
[Crossref]

Leibowitz, B. S.

J. Kim, E. Chen, J. Ren, B. S. Leibowitz, P. Satarzadeh, J. L. Zerbe, and C. K. Yang, “Equalizer design and performance trade-offs in adc-based serial links,” IEEE Trans. Circuits Syst. I, Reg. Pap. 58, 2096–2107 (2011).
[Crossref]

Li, S.

Li, X.

Liu, R.

Lyszczarz, T. M.

McKinney, J. D.

J. D. McKinney and K. J. Williams, “Sampled analog optical links,” IEEE Trans. Microw. Theory Techn. 57, 2093–2099 (2009).
[Crossref]

Motamedi, A.

Nejadmalayeri, A.

F. Kärtner, A. Khilo, and A. Nejadmalayeri, “Progress in photonic analog-to-digital conversion,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, (Optical Society of America, 2013), p. OTh3D.5.
[Crossref]

Nejadmalayeri, A. H.

O’Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Techn. 49, 1840–1853 (2001).
[Crossref]

Orcutt, J. S.

Peng, M. Y.

Perrott, M.

Popovic, M. A.

Ram, R. J.

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Techn. 49, 1840–1853 (2001).
[Crossref]

Ren, J.

J. Kim, E. Chen, J. Ren, B. S. Leibowitz, P. Satarzadeh, J. L. Zerbe, and C. K. Yang, “Equalizer design and performance trade-offs in adc-based serial links,” IEEE Trans. Circuits Syst. I, Reg. Pap. 58, 2096–2107 (2011).
[Crossref]

Sander, M. Y.

Satarzadeh, P.

J. Kim, E. Chen, J. Ren, B. S. Leibowitz, P. Satarzadeh, J. L. Zerbe, and C. K. Yang, “Equalizer design and performance trade-offs in adc-based serial links,” IEEE Trans. Circuits Syst. I, Reg. Pap. 58, 2096–2107 (2011).
[Crossref]

Seong, C.

W. Kim, C. Seong, and W. Choi, “A 5.4-gbit/s adaptive continuous-time linear equalizer using asynchronous undersampling histograms,” IEEE Trans. Circuits Syst. II, Exp. Briefs 59, 553–557 (2012).
[Crossref]

Smith, H. I.

Sorace-Agaskar, C. M.

Spector, S. J.

Su, F.

Sun, J.

Taylor, H. F.

H. F. Taylor, “An electrooptic analog-to-digital converter,” Proc. IEEE 63, 1524–1525 (1975).
[Crossref]

Tse, D.

D. Tse and P. Viswanath, Fundamentals of wireless communication (Cambridge University, 2005).
[Crossref]

Twichell, J.

P. W. Juodawlkis, J. Hargreaves, and J. Twichell, “Impact of photodetector nonlinearities on photonic analog-to-digital converters,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2002), p. CMB7.

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Techn. 49, 1840–1853 (2001).
[Crossref]

J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12, 1237–1239 (2000).
[Crossref]

Valley, G. C.

Viswanath, P.

D. Tse and P. Viswanath, Fundamentals of wireless communication (Cambridge University, 2005).
[Crossref]

Wang, C.

Wang, J. P.

Wang, S.

S. Wang, G. Wu, F. Su, and J. Chen, “Simultaneous microwave photonic analog-to-digital conversion and digital filtering,” IEEE Photon. Technol. Lett. 30, 343–346 (2018).
[Crossref]

Wasserman, J. L.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Techn. 49, 1840–1853 (2001).
[Crossref]

Wiberg, A. O. J.

A. O. J. Wiberg, “Progress in photonic sampled analog-to-digital conversion,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. M2E.1.
[Crossref]

Williams, K. J.

J. D. McKinney and K. J. Williams, “Sampled analog optical links,” IEEE Trans. Microw. Theory Techn. 57, 2093–2099 (2009).
[Crossref]

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Techn. 49, 1840–1853 (2001).
[Crossref]

Wu, G.

Xue, X.

Yang, C. K.

J. Kim, E. Chen, J. Ren, B. S. Leibowitz, P. Satarzadeh, J. L. Zerbe, and C. K. Yang, “Equalizer design and performance trade-offs in adc-based serial links,” IEEE Trans. Circuits Syst. I, Reg. Pap. 58, 2096–2107 (2011).
[Crossref]

Ye, L.

Yoon, J. U.

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Techn. 49, 1840–1853 (2001).
[Crossref]

Zerbe, J. L.

J. Kim, E. Chen, J. Ren, B. S. Leibowitz, P. Satarzadeh, J. L. Zerbe, and C. K. Yang, “Equalizer design and performance trade-offs in adc-based serial links,” IEEE Trans. Circuits Syst. I, Reg. Pap. 58, 2096–2107 (2011).
[Crossref]

Zhou, G.-R.

IEEE J. Solid-State Circuits (1)

J. Choi, M. Hwang, and D. Jeong, “A 0.18-/spl mu/m cmos 3.5-gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method,” IEEE J. Solid-State Circuits 39, 419–425 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12, 1237–1239 (2000).
[Crossref]

T. R. Clark, J. U. Kang, and R. D. Esman, “Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion,” IEEE Photon. Technol. Lett. 11, 1168–1170 (1999).
[Crossref]

S. Wang, G. Wu, F. Su, and J. Chen, “Simultaneous microwave photonic analog-to-digital conversion and digital filtering,” IEEE Photon. Technol. Lett. 30, 343–346 (2018).
[Crossref]

IEEE Trans. Circuits Syst. I, Reg. Pap. (1)

J. Kim, E. Chen, J. Ren, B. S. Leibowitz, P. Satarzadeh, J. L. Zerbe, and C. K. Yang, “Equalizer design and performance trade-offs in adc-based serial links,” IEEE Trans. Circuits Syst. I, Reg. Pap. 58, 2096–2107 (2011).
[Crossref]

IEEE Trans. Circuits Syst. II, Exp. Briefs (1)

W. Kim, C. Seong, and W. Choi, “A 5.4-gbit/s adaptive continuous-time linear equalizer using asynchronous undersampling histograms,” IEEE Trans. Circuits Syst. II, Exp. Briefs 59, 553–557 (2012).
[Crossref]

IEEE Trans. Microw. Theory Techn. (3)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Techn. 49, 1840–1853 (2001).
[Crossref]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Techn. 47, 1309–1314 (1999).
[Crossref]

J. D. McKinney and K. J. Williams, “Sampled analog optical links,” IEEE Trans. Microw. Theory Techn. 57, 2093–2099 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Proc. IEEE (1)

H. F. Taylor, “An electrooptic analog-to-digital converter,” Proc. IEEE 63, 1524–1525 (1975).
[Crossref]

Other (5)

D. Tse and P. Viswanath, Fundamentals of wireless communication (Cambridge University, 2005).
[Crossref]

A. Goldsmith, Wireless communications (Cambridge University, 2005).
[Crossref]

F. Kärtner, A. Khilo, and A. Nejadmalayeri, “Progress in photonic analog-to-digital conversion,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, (Optical Society of America, 2013), p. OTh3D.5.
[Crossref]

A. O. J. Wiberg, “Progress in photonic sampled analog-to-digital conversion,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. M2E.1.
[Crossref]

P. W. Juodawlkis, J. Hargreaves, and J. Twichell, “Impact of photodetector nonlinearities on photonic analog-to-digital converters,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2002), p. CMB7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Scheme of TIPADCs. MLL: Mode Locked Laser; WDM: Wavelength Division Multiplexer; MZM: Mach-Zehnder Modulator; EADC: Electronic Analog-to-Digital Converter; DSP: Digital Signal Processing.
Fig. 2
Fig. 2 Equivalent sampling procedure of a single channel.
Fig. 3
Fig. 3 Schematic of the pulse shaping of the photodetection with (a) wide bandwidth and (b) narrow bandwidth.
Fig. 4
Fig. 4 Equivalent sampling procedure with an equalizer.
Fig. 5
Fig. 5 (a) Measurement procedure of photodetection impulse response and (b) Measurement result.
Fig. 6
Fig. 6 A single-channel TIPADC setup. MLL: Mode Locked Laser; SG: Signal Source; MZM: Mach-Zehnder Modulator; WDM: Wavelength Division Multiplexing; VDL: Variable Delay Line; VOA: Variable Optical Attenuator; PD: Photodiode; LPF: Low Pass Filter; EADC: Electronic Analog-to-Digital Converter; PLL: Phase Locked Loop.
Fig. 7
Fig. 7 Photodetection impulse response measurement setup. MLL: Mode Locked Laser; SG: Signal Generator; MZM: Mach-Zehnder Modulator; WDM: Wavelength Division Multiplexing; VDL: Variable Delay Line; PD: Photodiode; EADC: Electronic Analog-to-Digital Converter; LPF: Low Pass Filter.
Fig. 8
Fig. 8 Photodetection impulse response measurement results. (a) Δf = 2 KHz; (b) Δf = −2 KHz; (c) Δf = 0.
Fig. 9
Fig. 9 Measured channel equivalent frequency response with photodetection bandwidth of (a) 90 MHz, (b) 70 MHz and (c) 40 MHz; (d) MZM frequency response.
Fig. 10
Fig. 10 The two-tone signal power spectrum before and after equalization with a photodetection bandwidth of (a) 90 MHz, (b) 70 MHz, and (c) 40 MHz.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

p n ( t ) = P A k = δ ( t k T s d p , n ) ,
v Q , n [ k ] = 0.5 p n ( t ) [ h M ( t ) * v I ( t ) ] * h E ( t d E , n ) | t = k T s ,
H A , n ( Ω ) = 0.5 P A H M ( Ω ) R ( Ω ) exp ( j Ω d p , n ) ,
R ( Ω ) = 1 T s m = H E ( Ω + m Ω s ) exp [ j ( Ω + m Ω s ) ( d E , n + d p , n ) ] .
k = H E ( Ω + k Ω s ) = k = H E ( Ω + k Ω s ) H EQ ( Ω + k Ω s ) = T s .
H EQ ( Ω ) = i = c i exp ( j i T s Ω ) ,
c i = Ω s π / T s π / T s T s k = H E ( Ω + k Ω s ) exp ( j i T s Ω ) d Ω .
h EQ [ k ] = i = c i δ [ k i ] .
| H A , n ( Ω ) | = 0.5 P A | H M ( Ω ) | .
{ i = N N c i h E [ k i ] = 0 k = ± 1 , ± 2 , , ± N , i = N N c i h E [ i ] = 1 k = 0 .
h E , m [ l ] = h E ( t ) * [ P A k = δ ( t k f m ) ] | t = l ( 1 f m + τ ) , = P A h E ( l τ )
τ = 1 f m 1 f c .
h E [ k ] = h E , m [ k T s τ L ] .

Metrics