Abstract

We present the results of the first systematic “round-robin” comparison of far-infrared transmittance spectra measurements, which was performed by five laboratories and piloted by Physikalisch-Technische (PTB). The transmittance spectra of four different samples were measured by the participating laboratories in the 600 cm–1 to 10 cm–1 range (16.67 µm to 1000 µm) in a blind comparison. Different types of instruments, Fourier transform infrared (FT-IR) spectrometers of Michelson type and a laser radiation-based system were used for the transmittance measurements. FT-IR spectrometers are the most popular and commonly used instruments for the spectral characterization of materials in the infrared spectral range, and are well established for quantitative measurements in the mid- and near-infrared spectral ranges. However, obtaining quantitative transmittance measurements in the far-infrared spectral range by means of these instruments is challenging, because it involves weaker radiation sources, stronger diffraction effects, significant radiation originating from the sample itself and temperature gradients inside the spectrometer that may not be given proper consideration. Therefore, this comparison was initiated to test the actual capability of and identify problems with FT-IR transmittance measurements in this spectral region. We discuss the results and the possible reasons for the observed discrepancies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Background corrected measurements of optical quantities in the far-infrared spectral range

M. Kehrt, C. Monte, A. Steiger, and J. Hollandt
Opt. Express 26(26) 34002-34006 (2018)

Traceable terahertz power measurement from 1 THz to 5 THz

Andreas Steiger, Mathias Kehrt, Christian Monte, and Ralf Müller
Opt. Express 21(12) 14466-14473 (2013)

Multilateral spectral radiance factor scale comparison

C. Strothkämper, A. Ferrero, A. Koo, P. Jaanson, G. Ged, G. Obein, S. Källberg, J. Audenaert, F. B. Leloup, F. M. Martínez-Verdú, E. Perales, A. Schirmacher, and J. Campos
Appl. Opt. 56(7) 1996-2006 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. M. C. Instruments, “Filter technology for the Terahertz (mm and sub-mm) spectral region,” http://www.terahertz.co.uk/index.php?option=com_content&view=article&id=113&Itemid=537 .
  2. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infr. Phys. 7(1), 37–55 (1967).
    [Crossref]
  3. A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21(12), 14466–14473 (2013).
    [Crossref] [PubMed]
  4. H.-P. Gemünd, E. Kreysa, R. Ruprecht, W. Bacher, and A. Roberts, “LIGA-fabricated freestanding meshes for FIR-application,” in Proceedings of Submillimetre and Far-Infrared Space Instrumentation, E. J. Rolfe and G. Pilbratt, ed. (European Space Agency,1996), pp. 85–88.
  5. F. Keilmann, “Infrared high-pass filter with high contrast,” Int. J. Infrared Millim. Waves 2(2), 259–272 (1981).
    [Crossref]
  6. A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15(3), 505–517 (1994).
    [Crossref]
  7. C. Monte and J. Hollandt, “The measurement of directional spectral emissivity in the temperature range from 80 °C to 500 °C at the Physikalisch-Technische Bundesanstalt,” High Temp - High Pressures 39(2), 151–164 (2010).
  8. R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
    [Crossref]
  9. M. Kehrt, C. Monte, A. Steiger, and J. Hollandt, “Background corrected measurements of optical quantities in the far-infrared spectral range,” Opt. Express 26(26), 34002–34006 (2018).

2018 (1)

2013 (1)

2010 (1)

C. Monte and J. Hollandt, “The measurement of directional spectral emissivity in the temperature range from 80 °C to 500 °C at the Physikalisch-Technische Bundesanstalt,” High Temp - High Pressures 39(2), 151–164 (2010).

2008 (1)

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

1994 (1)

A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15(3), 505–517 (1994).
[Crossref]

1981 (1)

F. Keilmann, “Infrared high-pass filter with high contrast,” Int. J. Infrared Millim. Waves 2(2), 259–272 (1981).
[Crossref]

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infr. Phys. 7(1), 37–55 (1967).
[Crossref]

Abo-Bakr, M.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

Brandt, G.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

Feikes, J.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

Fliegauf, R.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

Gemünd, H.-P.

A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15(3), 505–517 (1994).
[Crossref]

Hartrott, M.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

Hoehl, A.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

Hollandt, J.

M. Kehrt, C. Monte, A. Steiger, and J. Hollandt, “Background corrected measurements of optical quantities in the far-infrared spectral range,” Opt. Express 26(26), 34002–34006 (2018).

C. Monte and J. Hollandt, “The measurement of directional spectral emissivity in the temperature range from 80 °C to 500 °C at the Physikalisch-Technische Bundesanstalt,” High Temp - High Pressures 39(2), 151–164 (2010).

Holldack, K.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

Instruments, Q. M. C.

Q. M. C. Instruments, “Filter technology for the Terahertz (mm and sub-mm) spectral region,” http://www.terahertz.co.uk/index.php?option=com_content&view=article&id=113&Itemid=537 .

Kehrt, M.

Keilmann, F.

F. Keilmann, “Infrared high-pass filter with high contrast,” Int. J. Infrared Millim. Waves 2(2), 259–272 (1981).
[Crossref]

Klein, R.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

Kreysa, E.

A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15(3), 505–517 (1994).
[Crossref]

Monte, C.

Müller, R.

A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21(12), 14466–14473 (2013).
[Crossref] [PubMed]

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

Roberts, A.

A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15(3), 505–517 (1994).
[Crossref]

Steiger, A.

Thornagel, R.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

Ulm, G.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infr. Phys. 7(1), 37–55 (1967).
[Crossref]

von Bibra, M. L.

A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15(3), 505–517 (1994).
[Crossref]

Wüstefeld, G.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

High Temp - High Pressures (1)

C. Monte and J. Hollandt, “The measurement of directional spectral emissivity in the temperature range from 80 °C to 500 °C at the Physikalisch-Technische Bundesanstalt,” High Temp - High Pressures 39(2), 151–164 (2010).

Infr. Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infr. Phys. 7(1), 37–55 (1967).
[Crossref]

Int. J. Infrared Millim. Waves (2)

F. Keilmann, “Infrared high-pass filter with high contrast,” Int. J. Infrared Millim. Waves 2(2), 259–272 (1981).
[Crossref]

A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15(3), 505–517 (1994).
[Crossref]

Opt. Express (2)

Phys. Rev. Spec. Top. Accel. Beams (1)

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the Metrology Light Source as a primary radiation source standard,” Phys. Rev. Spec. Top. Accel. Beams 11(11), 110701 (2008).
[Crossref]

Other (2)

Q. M. C. Instruments, “Filter technology for the Terahertz (mm and sub-mm) spectral region,” http://www.terahertz.co.uk/index.php?option=com_content&view=article&id=113&Itemid=537 .

H.-P. Gemünd, E. Kreysa, R. Ruprecht, W. Bacher, and A. Roberts, “LIGA-fabricated freestanding meshes for FIR-application,” in Proceedings of Submillimetre and Far-Infrared Space Instrumentation, E. J. Rolfe and G. Pilbratt, ed. (European Space Agency,1996), pp. 85–88.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Pictures of the investigated samples, no. a, c and d show the sample mounted in the holder used within the comparison: a: LP 100, b: NG1, c. Quartz Disc B and 4: High Pass 3.
Fig. 2
Fig. 2 Measured spectral transmittances of all participants of the low-pass filter LP 100 in Spectral Range I (left) and Spectral Range II (right). Blue dots indicate THz laser measurement results.
Fig. 3
Fig. 3 Measured spectral transmittances of low-pass filter LP 100 in Spectral Range I (left) and Spectral Range II (right). Top: arithmetic mean of the participants. Bottom: deviation of the individual spectra from the arithmetic mean. Colors as in Fig. 2.
Fig. 4
Fig. 4 Measured spectral transmittances of all participants of the NG1 volume absorber in Spectral Range I (left) and Spectral Range II (right).
Fig. 5
Fig. 5 Measured spectral transmittances of volume absorber NG1 in Spectral Range I (left) and Spectral Range II (right). Top: arithmetic mean of the participants. Bottom: deviation of the individual spectra from the arithmetic mean. Colors as in Fig. 4.
Fig. 6
Fig. 6 Measured spectral transmittances of all participants of Quartz Disc B in Spectral Range I (left) and Spectral Range II (right). Blue dots indicate THz laser measurement results. Gray area on the left indicates spectral results with a resolution of 0.1 cm–1.
Fig. 7
Fig. 7 Measured spectral transmittances of Quartz Disc B in Spectral Range I (left) and Spectral Range II (right). Top: arithmetic mean of the participants. Bottom: deviation of the individual spectra from the arithmetic mean. Gray area on the top left indicates spectral results with a resolution of 0.1 cm–1. Colors as in Fig. 6.
Fig. 8
Fig. 8 Measured spectral transmittances of all participants of filter High Pass 3 in Spectral Range I (left) and Spectral Range II (right). Blue dots indicate THz laser measurement results.
Fig. 9
Fig. 9 Measured spectral transmittances of filter High Pass 3 in Spectral Range I (left) and Spectral Range II (right). Top: arithmetic mean of the participants. Bottom: deviation of the individual spectra from the arithmetic mean. Colors as in Fig. 8. One laser measurement is of the diagram and labelled accordingly.

Metrics