Abstract

Guided-mode resonance (GMR) filters were implemented by combining a monolayer grating made of polyethylene terephthalate (PET) and a slab waveguide (dielectric film) made of quartz, PET, and Teflon. The terahertz (THz) GMRs were measured and simulated for films with thickness change from 0 to 500 µm. As the thickness increased, the transverse-electric (TE) mode such as TE0,1, TE1,1, TE2,1, and TE3,1 appeared sequentially. Because the magnitude and frequency of the GMRs depend on the films’ absorption and thickness, we applied GMRs in order to sense the film’s thickness of the film. When the GMR filter was measured, resonance depth and frequency changes according to the film thickness were much more sensitive than they were when only the film was measured using THz time-domain spectroscopy (THz-TDS).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of THz resonance using a multilayer slab waveguide for a guided-mode resonance filter

Sung Bo Lee, Hyeon Sang Bark, and Tae-In Jeon
Opt. Express 27(20) 29357-29366 (2019)

Tunable terahertz guided-mode resonance filter with a variable grating period

Hyeon Sang Bark and Tae-In Jeon
Opt. Express 26(22) 29353-29362 (2018)

Optical spectrometer based on continuously-chirped guided mode resonance filter

Yung-Jr Hung, Chia-Wei Kao, Tzu-Chieh Kao, Chia-Wei Huang, Jia-Jin Lin, and Chuan-Ci Yin
Opt. Express 26(21) 27515-27527 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. B. Mazulquim, K. J. Lee, J. W. Yoon, L. V. Muniz, B.-H. V. Borges, L. G. Neto, and R. Magnusson, “Efficient band-pass color filters enabled by resonant modes and plasmons near the Rayleigh anomaly,” Opt. Express 22(25), 30843–30851 (2014).
    [Crossref] [PubMed]
  2. Y. H. Ko and R. Magnusson, “Flat-top bandpass filters enabled by cascaded resonant gratings,” Opt. Lett. 41(20), 4704–4707 (2016).
    [Crossref] [PubMed]
  3. M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
    [Crossref] [PubMed]
  4. J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Vis. Exp. 97(97), e52159 (2015).
    [Crossref] [PubMed]
  5. J.-R. Lee, N. Sato, D. J. B. Bechstein, S. J. Osterfeld, J. Wang, A. W. Gani, D. A. Hall, and S. X. Wang, “Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors,” Sci. Rep. 7, 7607 (2017).
    [PubMed]
  6. H. S. Bark, G. J. Kim, and T.-I. Jeon, “Transmission characteristics of all-dielectric guided-mode resonance filter in the THz region,” Sci. Rep. 8(1), 13570 (2018).
    [Crossref] [PubMed]
  7. H. S. Bark and T.-I. Jeon, “Tunable terahertz guided-mode resonance filter with a variable grating period,” Opt. Express 26(22), 29353–29362 (2018).
    [Crossref] [PubMed]
  8. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [Crossref] [PubMed]
  9. M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
    [Crossref] [PubMed]
  10. H. S. Bark, J. Zha, E. S. Lee, and T.-I. Jeon, “Thin layer terahertz sensing using two-channel parallel-plate waveguides,” Opt. Express 22(14), 16738–16744 (2014).
    [Crossref] [PubMed]
  11. M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett. 97(7), 071106 (2010).
    [Crossref]
  12. J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett. 89(25), 251110 (2006).
    [Crossref]
  13. T.-T. Kim, H. J. Kim, M. Kenney, H. S. Park, H.-D. Kim, B. K. Min, and S. Zhang, “Amplitude modulation of anornalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2017).
  14. T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. Chung, Y. H. Lee, B. K. Min, and S. Zhang, “Electrically tunable slow light using grapheme metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
    [Crossref]
  15. L. Rayleigh, “On the dynamical theory of gratings,” Royal Soc. 79(532), 399–416 (1907).
    [Crossref]
  16. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  17. J. H. Barton, R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Progress In Electromagnetics Research B 41, 269–283 (2012).
    [Crossref]
  18. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [Crossref]
  19. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  20. T. Chang, X. Zhang, C. Yang, Z. Sun, and H.-L. Cui, “Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique,” Meas. Sci. Technol. 28(4), 045002 (2017).
    [Crossref]
  21. P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, I. Ederra, A. L. Reynolds, M. Holker, and P. de Maagt, “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Trans. Microw. Theory Tech. 51(4), 1062–1066 (2003).
    [Crossref]
  22. F. Sanjuan and J. O. Tocho, “Optical properties of silicon, sapphire, silica and glass in the Terahertz range,” in Latin America Optics and Photonics Conference LT4C.1. (2012).
    [Crossref]
  23. E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
    [Crossref]
  24. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
    [Crossref]

2018 (3)

H. S. Bark, G. J. Kim, and T.-I. Jeon, “Transmission characteristics of all-dielectric guided-mode resonance filter in the THz region,” Sci. Rep. 8(1), 13570 (2018).
[Crossref] [PubMed]

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. Chung, Y. H. Lee, B. K. Min, and S. Zhang, “Electrically tunable slow light using grapheme metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

H. S. Bark and T.-I. Jeon, “Tunable terahertz guided-mode resonance filter with a variable grating period,” Opt. Express 26(22), 29353–29362 (2018).
[Crossref] [PubMed]

2017 (4)

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref] [PubMed]

J.-R. Lee, N. Sato, D. J. B. Bechstein, S. J. Osterfeld, J. Wang, A. W. Gani, D. A. Hall, and S. X. Wang, “Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors,” Sci. Rep. 7, 7607 (2017).
[PubMed]

T. Chang, X. Zhang, C. Yang, Z. Sun, and H.-L. Cui, “Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique,” Meas. Sci. Technol. 28(4), 045002 (2017).
[Crossref]

T.-T. Kim, H. J. Kim, M. Kenney, H. S. Park, H.-D. Kim, B. K. Min, and S. Zhang, “Amplitude modulation of anornalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2017).

2016 (1)

2015 (1)

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Vis. Exp. 97(97), e52159 (2015).
[Crossref] [PubMed]

2014 (3)

2012 (2)

J. H. Barton, R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Progress In Electromagnetics Research B 41, 269–283 (2012).
[Crossref]

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

2010 (1)

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett. 97(7), 071106 (2010).
[Crossref]

2008 (1)

2007 (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

2006 (1)

J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett. 89(25), 251110 (2006).
[Crossref]

2003 (1)

P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, I. Ederra, A. L. Reynolds, M. Holker, and P. de Maagt, “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Trans. Microw. Theory Tech. 51(4), 1062–1066 (2003).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

1993 (1)

1990 (1)

1907 (1)

L. Rayleigh, “On the dynamical theory of gratings,” Royal Soc. 79(532), 399–416 (1907).
[Crossref]

Angeluts, A. A.

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

Bark, H. S.

Barton, J. H.

J. H. Barton, R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Progress In Electromagnetics Research B 41, 269–283 (2012).
[Crossref]

Bechstein, D. J. B.

J.-R. Lee, N. Sato, D. J. B. Bechstein, S. J. Osterfeld, J. Wang, A. W. Gani, D. A. Hall, and S. X. Wang, “Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors,” Sci. Rep. 7, 7607 (2017).
[PubMed]

Beigang, R.

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett. 97(7), 071106 (2010).
[Crossref]

Bolivar, P. H.

P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, I. Ederra, A. L. Reynolds, M. Holker, and P. de Maagt, “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Trans. Microw. Theory Tech. 51(4), 1062–1066 (2003).
[Crossref]

Borges, B.-H. V.

Brener, I.

Brucherseifer, M.

P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, I. Ederra, A. L. Reynolds, M. Holker, and P. de Maagt, “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Trans. Microw. Theory Tech. 51(4), 1062–1066 (2003).
[Crossref]

Chang, T.

T. Chang, X. Zhang, C. Yang, Z. Sun, and H.-L. Cui, “Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique,” Meas. Sci. Technol. 28(4), 045002 (2017).
[Crossref]

Chung, D.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. Chung, Y. H. Lee, B. K. Min, and S. Zhang, “Electrically tunable slow light using grapheme metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Cui, H.-L.

T. Chang, X. Zhang, C. Yang, Z. Sun, and H.-L. Cui, “Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique,” Meas. Sci. Technol. 28(4), 045002 (2017).
[Crossref]

de Maagt, P.

P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, I. Ederra, A. L. Reynolds, M. Holker, and P. de Maagt, “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Trans. Microw. Theory Tech. 51(4), 1062–1066 (2003).
[Crossref]

Doll, K. L.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Vis. Exp. 97(97), e52159 (2015).
[Crossref] [PubMed]

Ederra, I.

P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, I. Ederra, A. L. Reynolds, M. Holker, and P. de Maagt, “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Trans. Microw. Theory Tech. 51(4), 1062–1066 (2003).
[Crossref]

Fattinger, C.

Fedulova, E. V.

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

Gani, A. W.

J.-R. Lee, N. Sato, D. J. B. Bechstein, S. J. Osterfeld, J. Wang, A. W. Gani, D. A. Hall, and S. X. Wang, “Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors,” Sci. Rep. 7, 7607 (2017).
[PubMed]

Gimlin, S.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Vis. Exp. 97(97), e52159 (2015).
[Crossref] [PubMed]

Gonzalo, R.

P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, I. Ederra, A. L. Reynolds, M. Holker, and P. de Maagt, “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Trans. Microw. Theory Tech. 51(4), 1062–1066 (2003).
[Crossref]

Grischkowsky, D.

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett. 97(7), 071106 (2010).
[Crossref]

J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett. 89(25), 251110 (2006).
[Crossref]

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
[Crossref]

Ha, T.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. Chung, Y. H. Lee, B. K. Min, and S. Zhang, “Electrically tunable slow light using grapheme metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Hall, D. A.

J.-R. Lee, N. Sato, D. J. B. Bechstein, S. J. Osterfeld, J. Wang, A. W. Gani, D. A. Hall, and S. X. Wang, “Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors,” Sci. Rep. 7, 7607 (2017).
[PubMed]

Han, J.

Harsha, S. S.

J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett. 89(25), 251110 (2006).
[Crossref]

Hawkins, O. E.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Vis. Exp. 97(97), e52159 (2015).
[Crossref] [PubMed]

Holker, M.

P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, I. Ederra, A. L. Reynolds, M. Holker, and P. de Maagt, “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Trans. Microw. Theory Tech. 51(4), 1062–1066 (2003).
[Crossref]

Islam, M.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref] [PubMed]

Jeon, T.-I.

Keiding, S.

Kenney, M.

T.-T. Kim, H. J. Kim, M. Kenney, H. S. Park, H.-D. Kim, B. K. Min, and S. Zhang, “Amplitude modulation of anornalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2017).

Khaleque, T.

Kim, G. J.

H. S. Bark, G. J. Kim, and T.-I. Jeon, “Transmission characteristics of all-dielectric guided-mode resonance filter in the THz region,” Sci. Rep. 8(1), 13570 (2018).
[Crossref] [PubMed]

Kim, H. J.

T.-T. Kim, H. J. Kim, M. Kenney, H. S. Park, H.-D. Kim, B. K. Min, and S. Zhang, “Amplitude modulation of anornalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2017).

Kim, H.-D.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. Chung, Y. H. Lee, B. K. Min, and S. Zhang, “Electrically tunable slow light using grapheme metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

T.-T. Kim, H. J. Kim, M. Kenney, H. S. Park, H.-D. Kim, B. K. Min, and S. Zhang, “Amplitude modulation of anornalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2017).

Kim, T.-T.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. Chung, Y. H. Lee, B. K. Min, and S. Zhang, “Electrically tunable slow light using grapheme metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

T.-T. Kim, H. J. Kim, M. Kenney, H. S. Park, H.-D. Kim, B. K. Min, and S. Zhang, “Amplitude modulation of anornalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2017).

Kitai, M. S.

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

Ko, Y. H.

Kozikowski, C. L.

J. H. Barton, R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Progress In Electromagnetics Research B 41, 269–283 (2012).
[Crossref]

Kumar, G.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref] [PubMed]

Laman, N.

J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett. 89(25), 251110 (2006).
[Crossref]

Lee, E. S.

Lee, J.-R.

J.-R. Lee, N. Sato, D. J. B. Bechstein, S. J. Osterfeld, J. Wang, A. W. Gani, D. A. Hall, and S. X. Wang, “Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors,” Sci. Rep. 7, 7607 (2017).
[PubMed]

Lee, K. J.

Lee, Y. H.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. Chung, Y. H. Lee, B. K. Min, and S. Zhang, “Electrically tunable slow light using grapheme metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Lowe, D. B.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Vis. Exp. 97(97), e52159 (2015).
[Crossref] [PubMed]

Magnusson, R.

Mazulquim, D. B.

Melinger, J. S.

J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett. 89(25), 251110 (2006).
[Crossref]

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Min, B. K.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. Chung, Y. H. Lee, B. K. Min, and S. Zhang, “Electrically tunable slow light using grapheme metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

T.-T. Kim, H. J. Kim, M. Kenney, H. S. Park, H.-D. Kim, B. K. Min, and S. Zhang, “Amplitude modulation of anornalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2017).

Mohana-Sundaram, S.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Vis. Exp. 97(97), e52159 (2015).
[Crossref] [PubMed]

Muniz, L. V.

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Nazarov, M. M.

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

Neto, L. G.

O’Hara, J. F.

Oh, S. S.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. Chung, Y. H. Lee, B. K. Min, and S. Zhang, “Electrically tunable slow light using grapheme metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Osterfeld, S. J.

J.-R. Lee, N. Sato, D. J. B. Bechstein, S. J. Osterfeld, J. Wang, A. W. Gani, D. A. Hall, and S. X. Wang, “Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors,” Sci. Rep. 7, 7607 (2017).
[PubMed]

Pal, B. P.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref] [PubMed]

Park, H. S.

T.-T. Kim, H. J. Kim, M. Kenney, H. S. Park, H.-D. Kim, B. K. Min, and S. Zhang, “Amplitude modulation of anornalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2017).

Rao, S. J. M.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref] [PubMed]

Rayleigh, L.

L. Rayleigh, “On the dynamical theory of gratings,” Royal Soc. 79(532), 399–416 (1907).
[Crossref]

Reynolds, A. L.

P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, I. Ederra, A. L. Reynolds, M. Holker, and P. de Maagt, “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Trans. Microw. Theory Tech. 51(4), 1062–1066 (2003).
[Crossref]

Rivas, J. G.

P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, I. Ederra, A. L. Reynolds, M. Holker, and P. de Maagt, “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Trans. Microw. Theory Tech. 51(4), 1062–1066 (2003).
[Crossref]

Roy Chowdhury, D.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref] [PubMed]

Rumpf, R. C.

J. H. Barton, R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Progress In Electromagnetics Research B 41, 269–283 (2012).
[Crossref]

Sato, N.

J.-R. Lee, N. Sato, D. J. B. Bechstein, S. J. Osterfeld, J. Wang, A. W. Gani, D. A. Hall, and S. X. Wang, “Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors,” Sci. Rep. 7, 7607 (2017).
[PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shkurinov, A. P.

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

Singh, R.

Smirnova, E.

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Smith, R. W.

J. H. Barton, R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Progress In Electromagnetics Research B 41, 269–283 (2012).
[Crossref]

Sokolov, V. I.

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

Sun, Z.

T. Chang, X. Zhang, C. Yang, Z. Sun, and H.-L. Cui, “Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique,” Meas. Sci. Technol. 28(4), 045002 (2017).
[Crossref]

Taylor, A. J.

Theuer, M.

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett. 97(7), 071106 (2010).
[Crossref]

Uddin, M. J.

van Exter, M.

Wang, J.

J.-R. Lee, N. Sato, D. J. B. Bechstein, S. J. Osterfeld, J. Wang, A. W. Gani, D. A. Hall, and S. X. Wang, “Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors,” Sci. Rep. 7, 7607 (2017).
[PubMed]

Wang, S. S.

Wang, S. X.

J.-R. Lee, N. Sato, D. J. B. Bechstein, S. J. Osterfeld, J. Wang, A. W. Gani, D. A. Hall, and S. X. Wang, “Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors,” Sci. Rep. 7, 7607 (2017).
[PubMed]

Wawro Weidanz, D.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Vis. Exp. 97(97), e52159 (2015).
[Crossref] [PubMed]

Weidanz, J. A.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Vis. Exp. 97(97), e52159 (2015).
[Crossref] [PubMed]

Wichner, T.

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Vis. Exp. 97(97), e52159 (2015).
[Crossref] [PubMed]

Yang, C.

T. Chang, X. Zhang, C. Yang, Z. Sun, and H.-L. Cui, “Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique,” Meas. Sci. Technol. 28(4), 045002 (2017).
[Crossref]

Yoon, J. W.

Zellner, P. A.

J. H. Barton, R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Progress In Electromagnetics Research B 41, 269–283 (2012).
[Crossref]

Zha, J.

Zhang, S.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. Chung, Y. H. Lee, B. K. Min, and S. Zhang, “Electrically tunable slow light using grapheme metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

T.-T. Kim, H. J. Kim, M. Kenney, H. S. Park, H.-D. Kim, B. K. Min, and S. Zhang, “Amplitude modulation of anornalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2017).

Zhang, W.

Zhang, X.

T. Chang, X. Zhang, C. Yang, Z. Sun, and H.-L. Cui, “Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique,” Meas. Sci. Technol. 28(4), 045002 (2017).
[Crossref]

Zhao, R.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. Chung, Y. H. Lee, B. K. Min, and S. Zhang, “Electrically tunable slow light using grapheme metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

ACS Photonics (1)

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. Chung, Y. H. Lee, B. K. Min, and S. Zhang, “Electrically tunable slow light using grapheme metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Adv. Opt. Mater. (1)

T.-T. Kim, H. J. Kim, M. Kenney, H. S. Park, H.-D. Kim, B. K. Min, and S. Zhang, “Amplitude modulation of anornalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2017).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett. 97(7), 071106 (2010).
[Crossref]

J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett. 89(25), 251110 (2006).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, I. Ederra, A. L. Reynolds, M. Holker, and P. de Maagt, “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Trans. Microw. Theory Tech. 51(4), 1062–1066 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Vis. Exp. (1)

J. A. Weidanz, K. L. Doll, S. Mohana-Sundaram, T. Wichner, D. B. Lowe, S. Gimlin, D. Wawro Weidanz, R. Magnusson, and O. E. Hawkins, “Detection of human leukocyte antigen biomarkers in breast cancer utilizing label-free biosensor technology,” J. Vis. Exp. 97(97), e52159 (2015).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

T. Chang, X. Zhang, C. Yang, Z. Sun, and H.-L. Cui, “Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique,” Meas. Sci. Technol. 28(4), 045002 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Proc. IEEE (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Proc. SPIE (1)

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

Progress In Electromagnetics Research B (1)

J. H. Barton, R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, “All-dielectric frequency selective surfaces with few number of periods,” Progress In Electromagnetics Research B 41, 269–283 (2012).
[Crossref]

Royal Soc. (1)

L. Rayleigh, “On the dynamical theory of gratings,” Royal Soc. 79(532), 399–416 (1907).
[Crossref]

Sci. Rep. (3)

J.-R. Lee, N. Sato, D. J. B. Bechstein, S. J. Osterfeld, J. Wang, A. W. Gani, D. A. Hall, and S. X. Wang, “Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors,” Sci. Rep. 7, 7607 (2017).
[PubMed]

H. S. Bark, G. J. Kim, and T.-I. Jeon, “Transmission characteristics of all-dielectric guided-mode resonance filter in the THz region,” Sci. Rep. 8(1), 13570 (2018).
[Crossref] [PubMed]

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Other (1)

F. Sanjuan and J. O. Tocho, “Optical properties of silicon, sapphire, silica and glass in the Terahertz range,” in Latin America Optics and Photonics Conference LT4C.1. (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of combination of monolayer grating and dielectric film (slab waveguide) to make GMR filter. The THz beam, polarized in the same direction as the grating, is incident on the GMR filter, forming TE mode resonances. (b) Cross section of combined GMR filter. The grating has thickness (D1) of 75 µm, period (Λ) of 510 µm, and filling factor ( F×Λ) of 32%. The grating used in the measurement is made of PET.
Fig. 2
Fig. 2 Resonance region according to thickness of film (slab waveguide) for quartz (green), PET (blue), and Teflon (red). Structure of PET grating is shown in Fig. 1.
Fig. 3
Fig. 3 (a) Simulated transmittance of TE mode at frequency of 0.552 THz according to quartz (slab waveguide) thickness, where simulation considered identical gratings, as shown in Fig. 1. Field distribution of each TE mode resonance: (b) TE0,1 mode; (c) TE1,1 mode; (d) TE2,1 mode; (e) TE3,1 mode. The black dashed line is the outline of the structure, with the two unit cells illustrated.
Fig. 4
Fig. 4 Transmittance characteristics determined using only monolayer grating, which has value of thickness (D1) of 75 µm, refractive index of 1.75, and filling factor of 32%. (a) 2-D image of simulation for different grating thicknesses. (b) Measured transmittance for three different grating thicknesses. (c) 2-D image of simulation for different refractive indexes. (d) 2-D image of simulation for different filling factors. Vertical color bars indicate the intensity of the electric field.
Fig. 5
Fig. 5 2-D image of simulation and 3-D image of measurement for resonance frequency shift according to thickness changes of films (slab waveguides) for GMR filter: (a) Simulation of quartz; (b) Measurement of quartz; (c) Simulation of PET; (d) Measurement of PET; (e) Simulation of Teflon; (f) Measurement of Teflon. The green dots in (a), (c), and (e) indicate measured resonance frequencies. The green dotted lines represent the resonance range in Fig. 2 (b). The vertical color bars indicate the intensity of the electric field.
Fig. 6
Fig. 6 (a) Measured resonance frequency for TE0,1 mode with different film thicknesses (slab waveguide). The dots and dashed lines indicate measured data and simulation fitting, respectively. (b) Measured resonance depth for TE0,1 mode with different film thicknesses. The dots indicate measured data.
Fig. 7
Fig. 7 (a) Transmittance of dielectric thin films without the PET grating. The inset figure shows the phase difference near 0.5 THz. The reference (black line) indicates measurement without film. (b) Transmittance of GMR filter consisting of PET grating and dielectric thin films.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε inc | ε inc sin θ inc m c F×Λ |< ε avg

Metrics