Abstract

Dual camera is becoming increasingly prevalent among smartphone camera schemes these days. This paper demonstrates a system prototype by using the color and monochrome cameras on one smartphone simultaneously for visible light communication. To achieve this, we propose a novel dual-modulation scheme. The baseband signal is firstly modulated by color ratio modulation-color shift keying (CRM-CSK) to broadcast color ratio information that can be distinguished by the color camera. Next to it, gray level modulation (GLM) is utilized to generate CRM symbols with gray levels that can be distinguished by the monochrome camera. Our experiment shows a significant improvement in the downlink data rate of the optical camera communication (OCC) using a single light source.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quadrichromatic LED based mobile phone camera visible light communication

H Chen, X Z Lai, P Chen, Y T Liu, M Y Yu, Z H Liu, and Z J Zhu
Opt. Express 26(13) 17132-17144 (2018)

Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera

Jin Shi, Jing He, Jing He, Rui Deng, Yiran Wei, Fengting Long, Yun Cheng, and Lin Chen
Opt. Express 25(14) 15905-15912 (2017)

RGB visible light communication using mobile-phone camera and multi-input multi-output

Kevin Liang, Chi-Wai Chow, and Yang Liu
Opt. Express 24(9) 9383-9388 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
    [Crossref]
  2. A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
    [Crossref]
  3. L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
    [Crossref]
  4. T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
    [Crossref]
  5. O. Ergul, E. Dinc, and O. B. Akan, “Communicate to illuminate: State-of-the-art and research challenges for visible light communications,” Phys. Commun. 17, 72–85 (2015).
    [Crossref]
  6. S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
    [Crossref]
  7. I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
    [Crossref]
  8. L. Zhang, D. Chitnis, H. Chun, S. Rajbhandari, G. Faulkner, D. O’Brien, and S. Collins, “A comparison of APD and SPAD based receivers for visible light communications,” J. Lightwave Technol. 36(12), 2435–2442 (2018).
    [Crossref]
  9. C. W. Chen, C. W. Chow, Y. Liu, and C. H. Yeh, “Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications,” Opt. Express 25(20), 24362–24367 (2017).
    [Crossref] [PubMed]
  10. J. Shi, J. He, J. He, R. Deng, Y. Wei, F. Long, Y. Cheng, and L. Chen, “Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera,” Opt. Express 25(14), 15905–15912 (2017).
    [Crossref] [PubMed]
  11. H. C. N. Premachandra, T. Yendo, and M. P. Tehrani, “High-speed-camera image processing based LED traffic light detection for road-to-vehicle visible light communication,” Intelligent Vehicles Symposium, 793–798 (2010).
    [Crossref]
  12. S. H. Chen and C. W. Chow, “Color-filter-free spatial visible light communication using RGB-LED and mobile-phone camera,” Opt. Express 22(25), 30713–30718 (2014).
    [Crossref] [PubMed]
  13. S. H. Chen and C. W. Chow, “Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera,” IEEE Photonics J. 6(6), 1–6 (2017).
  14. G. Corbellini, K. Aksit, S. Schmid, S. Mangold, and T. R. Gross, “Connecting networks of toys and smartphones with visible light communication,” IEEE Commun. Mag. 52(7), 72–78 (2014).
    [Crossref]
  15. C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
    [Crossref] [PubMed]
  16. H. Chen, X. Z. Lai, P. Chen, Y. T. Liu, M. Y. Yu, Z. H. Liu, and Z. J. Zhu, “Quadrichromatic LED based mobile phone camera visible light communication,” Opt. Express 26(13), 17132–17144 (2018).
    [Crossref] [PubMed]
  17. K. Liang, C. W. Chow, and Y. Liu, “RGB visible light communication using mobile-phone camera and multi-input multi-output,” Opt. Express 24(9), 9383–9388 (2016).
    [Crossref] [PubMed]
  18. Y. Liu, “Decoding mobile-phone image sensor rolling shutter effect for visible light communications,” Opt. Eng. 55(1), 016103 (2016).
    [Crossref]
  19. T. H. Do and M. Yoo, “Performance Analysis of Visible Light Communication Using CMOS Sensors,” Sensors (Basel) 16(3), 309 (2016).
    [Crossref] [PubMed]

2018 (2)

2017 (3)

2016 (3)

K. Liang, C. W. Chow, and Y. Liu, “RGB visible light communication using mobile-phone camera and multi-input multi-output,” Opt. Express 24(9), 9383–9388 (2016).
[Crossref] [PubMed]

Y. Liu, “Decoding mobile-phone image sensor rolling shutter effect for visible light communications,” Opt. Eng. 55(1), 016103 (2016).
[Crossref]

T. H. Do and M. Yoo, “Performance Analysis of Visible Light Communication Using CMOS Sensors,” Sensors (Basel) 16(3), 309 (2016).
[Crossref] [PubMed]

2015 (3)

C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
[Crossref] [PubMed]

O. Ergul, E. Dinc, and O. B. Akan, “Communicate to illuminate: State-of-the-art and research challenges for visible light communications,” Phys. Commun. 17, 72–85 (2015).
[Crossref]

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

2014 (2)

S. H. Chen and C. W. Chow, “Color-filter-free spatial visible light communication using RGB-LED and mobile-phone camera,” Opt. Express 22(25), 30713–30718 (2014).
[Crossref] [PubMed]

G. Corbellini, K. Aksit, S. Schmid, S. Mangold, and T. R. Gross, “Connecting networks of toys and smartphones with visible light communication,” IEEE Commun. Mag. 52(7), 72–78 (2014).
[Crossref]

2013 (3)

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

2012 (1)

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

2003 (1)

T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
[Crossref]

Akan, O. B.

O. Ergul, E. Dinc, and O. B. Akan, “Communicate to illuminate: State-of-the-art and research challenges for visible light communications,” Phys. Commun. 17, 72–85 (2015).
[Crossref]

Aksit, K.

G. Corbellini, K. Aksit, S. Schmid, S. Mangold, and T. R. Gross, “Connecting networks of toys and smartphones with visible light communication,” IEEE Commun. Mag. 52(7), 72–78 (2014).
[Crossref]

Andoh, M.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Cameron, K.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Chen, C. W.

Chen, C. Y.

Chen, H.

Chen, L.

Chen, P.

Chen, S. H.

Chen, Z.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Cheng, Y.

Chitnis, D.

Chow, C. W.

Chun, H.

L. Zhang, D. Chitnis, H. Chun, S. Rajbhandari, G. Faulkner, D. O’Brien, and S. Collins, “A comparison of APD and SPAD based receivers for visible light communications,” J. Lightwave Technol. 36(12), 2435–2442 (2018).
[Crossref]

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Collins, S.

Corbellini, G.

G. Corbellini, K. Aksit, S. Schmid, S. Mangold, and T. R. Gross, “Connecting networks of toys and smartphones with visible light communication,” IEEE Commun. Mag. 52(7), 72–78 (2014).
[Crossref]

Dawson, M. D.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Deng, R.

Dinc, E.

O. Ergul, E. Dinc, and O. B. Akan, “Communicate to illuminate: State-of-the-art and research challenges for visible light communications,” Phys. Commun. 17, 72–85 (2015).
[Crossref]

Do, T. H.

T. H. Do and M. Yoo, “Performance Analysis of Visible Light Communication Using CMOS Sensors,” Sensors (Basel) 16(3), 309 (2016).
[Crossref] [PubMed]

Ergul, O.

O. Ergul, E. Dinc, and O. B. Akan, “Communicate to illuminate: State-of-the-art and research challenges for visible light communications,” Phys. Commun. 17, 72–85 (2015).
[Crossref]

Faulkner, G.

L. Zhang, D. Chitnis, H. Chun, S. Rajbhandari, G. Faulkner, D. O’Brien, and S. Collins, “A comparison of APD and SPAD based receivers for visible light communications,” J. Lightwave Technol. 36(12), 2435–2442 (2018).
[Crossref]

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Grobe, L.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Gross, T. R.

G. Corbellini, K. Aksit, S. Schmid, S. Mangold, and T. R. Gross, “Connecting networks of toys and smartphones with visible light communication,” IEEE Commun. Mag. 52(7), 72–78 (2014).
[Crossref]

Gu, E.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Haas, H.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Hartlieb, F.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

He, J.

Henderson, R.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Herrnsdorf, J.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Hilt, J.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Ijaz, M.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Ito, S.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Jalajakumari, A. V. N.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Jovicic, A.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Jungnickel, V.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Kagawa, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Kawahito, S.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Komine, T.

T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
[Crossref]

Kottke, C.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Lai, X. Z.

Langer, K.-D.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Lassak, F.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Li, J.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Liang, K.

Lim, S. K.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Liu, Y.

Liu, Y. T.

Liu, Z. H.

Long, F.

Mangold, S.

G. Corbellini, K. Aksit, S. Schmid, S. Mangold, and T. R. Gross, “Connecting networks of toys and smartphones with visible light communication,” IEEE Commun. Mag. 52(7), 72–78 (2014).
[Crossref]

McKendry, J. J. D.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
[Crossref]

O’Brien, D.

L. Zhang, D. Chitnis, H. Chun, S. Rajbhandari, G. Faulkner, D. O’Brien, and S. Collins, “A comparison of APD and SPAD based receivers for visible light communications,” J. Lightwave Technol. 36(12), 2435–2442 (2018).
[Crossref]

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Paraskevopoulos, A.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Premachandra, H. C. N.

H. C. N. Premachandra, T. Yendo, and M. P. Tehrani, “High-speed-camera image processing based LED traffic light detection for road-to-vehicle visible light communication,” Intelligent Vehicles Symposium, 793–798 (2010).
[Crossref]

Rajagopal, S.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Rajbhandari, S.

L. Zhang, D. Chitnis, H. Chun, S. Rajbhandari, G. Faulkner, D. O’Brien, and S. Collins, “A comparison of APD and SPAD based receivers for visible light communications,” J. Lightwave Technol. 36(12), 2435–2442 (2018).
[Crossref]

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Richardson, T.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Roberts, R. D.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Schmid, S.

G. Corbellini, K. Aksit, S. Schmid, S. Mangold, and T. R. Gross, “Connecting networks of toys and smartphones with visible light communication,” IEEE Commun. Mag. 52(7), 72–78 (2014).
[Crossref]

Schulz, D.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Shi, J.

Takai, I.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Tehrani, M. P.

H. C. N. Premachandra, T. Yendo, and M. P. Tehrani, “High-speed-camera image processing based LED traffic light detection for road-to-vehicle visible light communication,” Intelligent Vehicles Symposium, 793–798 (2010).
[Crossref]

Tsonev, D.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Wei, Y.

Xie, E.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

Yasutomi, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Yeh, C. H.

Yendo, T.

H. C. N. Premachandra, T. Yendo, and M. P. Tehrani, “High-speed-camera image processing based LED traffic light detection for road-to-vehicle visible light communication,” Intelligent Vehicles Symposium, 793–798 (2010).
[Crossref]

Yoo, M.

T. H. Do and M. Yoo, “Performance Analysis of Visible Light Communication Using CMOS Sensors,” Sensors (Basel) 16(3), 309 (2016).
[Crossref] [PubMed]

Yu, M. Y.

Zhang, L.

Zhu, Z. J.

IEEE Commun. Mag. (4)

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

G. Corbellini, K. Aksit, S. Schmid, S. Mangold, and T. R. Gross, “Connecting networks of toys and smartphones with visible light communication,” IEEE Commun. Mag. 52(7), 72–78 (2014).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Sel. Areas Comm. 33(9), 1750–1757 (2015).
[Crossref]

IEEE Photonics J. (2)

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

S. H. Chen and C. W. Chow, “Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera,” IEEE Photonics J. 6(6), 1–6 (2017).

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
[Crossref]

J. Lightwave Technol. (1)

Opt. Eng. (1)

Y. Liu, “Decoding mobile-phone image sensor rolling shutter effect for visible light communications,” Opt. Eng. 55(1), 016103 (2016).
[Crossref]

Opt. Express (6)

Phys. Commun. (1)

O. Ergul, E. Dinc, and O. B. Akan, “Communicate to illuminate: State-of-the-art and research challenges for visible light communications,” Phys. Commun. 17, 72–85 (2015).
[Crossref]

Sensors (Basel) (1)

T. H. Do and M. Yoo, “Performance Analysis of Visible Light Communication Using CMOS Sensors,” Sensors (Basel) 16(3), 309 (2016).
[Crossref] [PubMed]

Other (1)

H. C. N. Premachandra, T. Yendo, and M. P. Tehrani, “High-speed-camera image processing based LED traffic light detection for road-to-vehicle visible light communication,” Intelligent Vehicles Symposium, 793–798 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 System configuration of using the dual-camera on the smartphones as the visible light communication receiver. (a) System prototype. (b) Imaging process of the RGB camera and monochrome camera.
Fig. 2
Fig. 2 CRM and GLM dual-modulation scheme for the RGB LED transmitter.
Fig. 3
Fig. 3 Data frame structure to handle the “processing time” and illumination support.
Fig. 4
Fig. 4 Experiment platform.
Fig. 5
Fig. 5 Normalize SPD of the RGB LED and the spectrum response of the dual-camera.
Fig. 6
Fig. 6 (a) Optimum layout of four, eight and sixteen CRM-CSK constellations in two-dimensional color ratio space. (b) Optimum layout of two and four GLM constellations in one-dimensional gray-level space.
Fig. 7
Fig. 7 Gray-level tuning reference for the monochrome camera.
Fig. 8
Fig. 8 Diagram of receiving visible light signal using the dual-camera on one smartphone (a) Demodulation procedure. (b) Algorithm.
Fig. 9
Fig. 9 (a) BER curves of different modulation level under different illuminate level. (b) Average BER of 4, 8 and 16-CRM-CSK under different illuminate level in the transmission experiment. (c) Average BER of 2 and 4-GLM under different illuminate level in the transmission experiment.
Fig. 10
Fig. 10 (a) In captured RGB image, higher luminance may lead to charge overflow. (b) In captured gray-scale image, higher luminance can result in higher contrast ratio, which mitigate the “blooming effect” caused by uneven light.

Tables (3)

Tables Icon

Table 1 System parameters.

Tables Icon

Table 2 Data rate of different modulation level

Tables Icon

Table 3 Date rate comparison of existing single-LED OCC system

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P i = [ p i , 1 p i , 2 p i , j ] T ,
p i , j = [ r i , j g i , j b i , j ] ,
I R G B = [ P 1 P 2 P N ] = [ p 1 , 1 p 2 , 1 p N , 1 p 1 , 2 p 2 , 2 p N , 2 p i , j p 1 , K p 2 , K p N , K ] ,
S L E D = [ R ( λ ) G ( λ ) B ( λ ) ] , R R G B = [ r ( λ ) g ( λ ) b ( λ ) ] ,
p i , j = 255 × 0 σ d t 380 n m 780 n m η ( i , j , d ) δ R R G B I ( ϕ ) k D i m m i n g S L E D 1 d λ .
k D i m m i n g = [ k R k G k B ] T .
g i , j = 255 × 0 σ d t 380 n m 780 n m η ( i , j , d ) δ R M ( λ ) I ( ϕ ) k D i m m i n g S L E D 1 d λ ,
I G r a y = [ G 1 G 2 G N ] = [ g 1 , 1 g 2 , 1 g N , 1 g 1 , 2 g 2 , 2 g N , 2 g i , j g 1 , K g 2 , K g N , K ] ,
C = p i , j p i , j 1 = [ r i , j r i , j + g i , j + b i , j g i , j r i , j + g i , j + b i , j b i , j r i , j + g i , j + b i , j ] .
arg max { k 1 , k 2 , , k n } min C i C j 2 , ( i j ; C i , C j C R M ) .
C R M = { C 1 , C 2 , ... C n } , k C R M = { k 1 , k 2 , , k n } .
arg max { ϕ 1 , ϕ 2 , ... , ϕ m } min G i G j 1 , ( i j ; G i , G j ( G L M { 0 } ) ) ,
G L M = { G 1 , G 2 , G m } , k G L M ( C k ) = { ϕ 1 , ϕ 2 , ... , ϕ m } .
t R G B = [ I R G B ] : , K / 2 = [ p 1 , K / 2 p 2 , K / 2 p N , K / 2 ] t G r a y = [ I G r a y ] : , K / 2 = [ g 1 , K / 2 g 2 , K / 2 g N , K / 2 ] ,
[ t R G B ' ] i = [ t R G B ] i + 1 1 [ t R G B ] i 1 , ( 1 i N 1 ) [ t R G B ' ] i = [ t G r a y ] i + 1 [ t G r a y ] i , ( 1 i N 1 ) ,
e m a x ( R G B ) = f i n d p e a k s ( t R G B ' ) , e m i n ( R G B ) = f i n d p e a k s ( t R G B ' ) e m a x ( G r a y ) = f i n d p e a k s ( t G r a y ' ) , e m i n ( R G B ) = f i n d p e a k s ( t G r a y ' ) .
arg min C C R M i = s t a r t e n d C p K / 2 , i 2
arg min G G L M ( C ) i = s t a r t e n d G g K / 2 , i 2

Metrics