Abstract

Ultra-compact dynamically reconfigurable modulation of optical transmission has been widely studied by using subwavelength-spaced resonant metasurface structures containing reconfigurable optical materials. However, it has been difficult to achieve high transmissivity, large modulation depth, and broad bandwidth simultaneously with the conventional resonance-based metasurface schemes. Here, we propose a reconfigurable phase-transition diffractive grating, made of thick VO2 ridge waveguides, for achieving the above-mentioned three goals simultaneously in the near-infrared range. Based on the large dielectric-to-plasmonic transition characteristic of VO2 in the near-infrared range, diffraction directivity of dual-VO2 ridge waveguide is designed to be tuned by thermally driven phase transition of VO2 for transverse electrically polarized illumination. Then, the diffractive VO2 ridge waveguide grating composed of the periodically arranged dual VO2 ridge waveguides is designed with on-state efficiency around 0.3 and minimum modulation depth about 0.35 over a broad bandwidth of 550 nm (1100-1650 nm). The working principle and excellent modulation performance are thoroughly verified through numerical and experimental studies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface

Gaochao Zhou, Penghui Dai, Jingbo Wu, Biaobing Jin, Qiye Wen, Guanghao Zhu, Ze Shen, Caihong Zhang, Lin Kang, Weiwei Xu, Jian Chen, and Peiheng Wu
Opt. Express 25(15) 17322-17328 (2017)

VO2 based waveguide-mode plasmonic nano-gratings for optical switching

Yashna Sharma, Veeranjaneya A. Tiruveedhula, John F. Muth, and Anuj Dhawan
Opt. Express 23(5) 5822-5849 (2015)

VO2-hBN-graphene-based bi-functional metamaterial for mid-infrared bi-tunable asymmetric transmission and nearly perfect resonant absorption

Hodjat Hajian, Amir Ghobadi, Andriy E. Serebryannikov, Bayram Butun, Guy A. E. Vandenbosch, and Ekmel Ozbay
J. Opt. Soc. Am. B 36(6) 1607-1615 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. E. Saleh and M. C. Teich, Fundamentals of photonics (Wiley, 1991).
  2. U. Efron, Spatial light modulator technology: materials, devices, and applications (CRC, 1994).
  3. C. Argyropoulos, “Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene,” Opt. Express 23(18), 23787–23797 (2015).
    [Crossref] [PubMed]
  4. G. D. Liu, X. Zhai, S. X. Xia, Q. Lin, C. J. Zhao, and L. L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25(21), 26045–26054 (2017).
    [Crossref] [PubMed]
  5. S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7(1), 12323 (2016).
    [Crossref] [PubMed]
  6. A. Howes, W. Wang, I. Kravchenko, and J. Valentine, “Dynamic transmission control based on all-dielectric Huygens metasurfaces,” Optica 5(7), 787–792 (2018).
    [Crossref]
  7. J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
    [Crossref] [PubMed]
  8. X. Liu, J. H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
    [Crossref]
  9. P. P. Iyer, M. Pendharkar, and J. A. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater. 4(10), 1582–1588 (2016).
    [Crossref]
  10. M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
    [Crossref]
  11. M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
    [Crossref]
  12. N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
    [Crossref]
  13. N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2018).
    [Crossref]
  14. E. U. Donev, J. Y. Suh, F. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 201401 (2006).
    [Crossref]
  15. S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
    [Crossref] [PubMed]
  16. X. Liu, J. Liang, N. Li, and M. Wu, “Preparation of paraboloid-like VO2@ SiO2 nanostructured arrays for enhanced transmission,” Mater. Lett. 160, 585–588 (2015).
    [Crossref]
  17. İ. Karakurt, J. Boneberg, P. Leiderer, R. Lopez, A. Halabica, and R. F. Haglund, “Transmission increase upon switching of VO2 thin films on microstructured surfaces,” Appl. Phys. Lett. 91(9), 091907 (2007).
    [Crossref]
  18. J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
    [Crossref]
  19. H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid‐infrared Plasmonic Resonances in 2D VO2 Nanosquare Arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
    [Crossref]
  20. Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photon. 10(1), 60–65 (2016).
    [Crossref]
  21. B. Gholipour, A. Karvounis, J. Yin, C. Soci, K. F. MacDonald, and N. I. Zheludev, “Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces,” NPG Asia Mater. 10(6), 533–539 (2018).
    [Crossref]
  22. A. V. Pogrebnyakov, J. A. Bossard, J. P. Turpin, J. D. Musgraves, H. J. Shin, C. Rivero-Baleine, N. Podraza, K. A. Richardson, D. H. Werner, and T. S. Mayer, “Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material,” Opt. Mater. Express 8(8), 2264–2275 (2018).
    [Crossref]
  23. C. Choi, S.-J. Kim, J.-G. Yun, J. Sung, S.-Y. Lee, and B. Lee, “Deflection angle switching with a metasurface based on phase-change nanorods,” Chin. Opt. Lett. 16(5), 50009 (2018).
    [Crossref]
  24. E. Petronijevic and C. Sibilia, “All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials,” Opt. Express 24(26), 30411–30420 (2016).
    [Crossref] [PubMed]
  25. J. Tian, Q. Li, J. Lu, and M. Qiu, “Reconfigurable all-dielectric antenna-based metasurface driven by multipolar resonances,” Opt. Express 26(18), 23918–23925 (2018).
    [Crossref] [PubMed]
  26. Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
    [Crossref] [PubMed]
  27. I. H. Malitson and M. J. Dodge, “Refractive Index and Birefringence of Synthetic Sapphire,” J. Opt. Soc. Am. 62(11), 1405 (1972).
  28. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 9(12), 5056–5070 (1974).
    [Crossref]
  29. H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” New J. Phys. 6, 52–70 (2004).
    [Crossref]
  30. D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 20(8), 3292–3302 (1979).
    [Crossref]
  31. T. Huang, L. Yang, J. Qin, F. Huang, X. Zhu, P. Zhou, B. Peng, H. Duan, L. Deng, and L. Bi, “Study of the phase evolution, metal-insulator transition, and optical properties of vanadium oxide thin films,” Opt. Mater. Express 6(11), 3609–3621 (2016).
    [Crossref]
  32. M. Khorasaninejad and F. Capasso, “Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters,” Nano Lett. 15(10), 6709–6715 (2015).
    [Crossref] [PubMed]
  33. M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
    [Crossref] [PubMed]
  34. M. Khorasaninejad, W. Zhu, and K. B. Crozier, “Efficient polarization beam splitter pixels based on a dielectric metasurface,” Optica 2(4), 376–382 (2015).
    [Crossref]
  35. M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
    [Crossref]
  36. M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
    [Crossref] [PubMed]
  37. W. Cai and V. Shalaev, Optical metamaterials: fundamentals and applications (Springer Science & Business Media, 2009).
  38. J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
    [Crossref] [PubMed]
  39. N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution,” Nano Lett. 10(9), 3420–3425 (2010).
    [Crossref] [PubMed]
  40. P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
    [Crossref]
  41. Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas,” ACS Photonics 5(5), 1711–1717 (2018).
    [Crossref]

2018 (9)

A. Howes, W. Wang, I. Kravchenko, and J. Valentine, “Dynamic transmission control based on all-dielectric Huygens metasurfaces,” Optica 5(7), 787–792 (2018).
[Crossref]

X. Liu, J. H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2018).
[Crossref]

B. Gholipour, A. Karvounis, J. Yin, C. Soci, K. F. MacDonald, and N. I. Zheludev, “Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces,” NPG Asia Mater. 10(6), 533–539 (2018).
[Crossref]

A. V. Pogrebnyakov, J. A. Bossard, J. P. Turpin, J. D. Musgraves, H. J. Shin, C. Rivero-Baleine, N. Podraza, K. A. Richardson, D. H. Werner, and T. S. Mayer, “Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material,” Opt. Mater. Express 8(8), 2264–2275 (2018).
[Crossref]

C. Choi, S.-J. Kim, J.-G. Yun, J. Sung, S.-Y. Lee, and B. Lee, “Deflection angle switching with a metasurface based on phase-change nanorods,” Chin. Opt. Lett. 16(5), 50009 (2018).
[Crossref]

J. Tian, Q. Li, J. Lu, and M. Qiu, “Reconfigurable all-dielectric antenna-based metasurface driven by multipolar resonances,” Opt. Express 26(18), 23918–23925 (2018).
[Crossref] [PubMed]

Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas,” ACS Photonics 5(5), 1711–1717 (2018).
[Crossref]

2017 (3)

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

G. D. Liu, X. Zhai, S. X. Xia, Q. Lin, C. J. Zhao, and L. L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25(21), 26045–26054 (2017).
[Crossref] [PubMed]

2016 (7)

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7(1), 12323 (2016).
[Crossref] [PubMed]

P. P. Iyer, M. Pendharkar, and J. A. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater. 4(10), 1582–1588 (2016).
[Crossref]

Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
[Crossref] [PubMed]

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photon. 10(1), 60–65 (2016).
[Crossref]

E. Petronijevic and C. Sibilia, “All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials,” Opt. Express 24(26), 30411–30420 (2016).
[Crossref] [PubMed]

T. Huang, L. Yang, J. Qin, F. Huang, X. Zhu, P. Zhou, B. Peng, H. Duan, L. Deng, and L. Bi, “Study of the phase evolution, metal-insulator transition, and optical properties of vanadium oxide thin films,” Opt. Mater. Express 6(11), 3609–3621 (2016).
[Crossref]

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

2015 (8)

M. Khorasaninejad and F. Capasso, “Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters,” Nano Lett. 15(10), 6709–6715 (2015).
[Crossref] [PubMed]

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

M. Khorasaninejad, W. Zhu, and K. B. Crozier, “Efficient polarization beam splitter pixels based on a dielectric metasurface,” Optica 2(4), 376–382 (2015).
[Crossref]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

X. Liu, J. Liang, N. Li, and M. Wu, “Preparation of paraboloid-like VO2@ SiO2 nanostructured arrays for enhanced transmission,” Mater. Lett. 160, 585–588 (2015).
[Crossref]

C. Argyropoulos, “Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene,” Opt. Express 23(18), 23787–23797 (2015).
[Crossref] [PubMed]

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid‐infrared Plasmonic Resonances in 2D VO2 Nanosquare Arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

2014 (1)

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

2011 (1)

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
[Crossref]

2010 (1)

N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution,” Nano Lett. 10(9), 3420–3425 (2010).
[Crossref] [PubMed]

2007 (2)

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

İ. Karakurt, J. Boneberg, P. Leiderer, R. Lopez, A. Halabica, and R. F. Haglund, “Transmission increase upon switching of VO2 thin films on microstructured surfaces,” Appl. Phys. Lett. 91(9), 091907 (2007).
[Crossref]

2006 (2)

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

E. U. Donev, J. Y. Suh, F. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 201401 (2006).
[Crossref]

2004 (1)

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” New J. Phys. 6, 52–70 (2004).
[Crossref]

1979 (1)

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 20(8), 3292–3302 (1979).
[Crossref]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 9(12), 5056–5070 (1974).
[Crossref]

1972 (1)

I. H. Malitson and M. J. Dodge, “Refractive Index and Birefringence of Synthetic Sapphire,” J. Opt. Soc. Am. 62(11), 1405 (1972).

Adamczyk, L.

N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution,” Nano Lett. 10(9), 3420–3425 (2010).
[Crossref] [PubMed]

Aieta, F.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

Andreev, G. O.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Arbabi, A.

Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas,” ACS Photonics 5(5), 1711–1717 (2018).
[Crossref]

Arbabi, E.

Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas,” ACS Photonics 5(5), 1711–1717 (2018).
[Crossref]

Argyropoulos, C.

Aspnes, D. E.

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 20(8), 3292–3302 (1979).
[Crossref]

Atwater, H. A.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7(1), 12323 (2016).
[Crossref] [PubMed]

Averitt, R. D.

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

Balatsky, A. V.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Balke, N.

N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution,” Nano Lett. 10(9), 3420–3425 (2010).
[Crossref] [PubMed]

Basov, D. N.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Bi, L.

Boneberg, J.

İ. Karakurt, J. Boneberg, P. Leiderer, R. Lopez, A. Halabica, and R. F. Haglund, “Transmission increase upon switching of VO2 thin films on microstructured surfaces,” Appl. Phys. Lett. 91(9), 091907 (2007).
[Crossref]

Bossard, J. A.

Brar, V. W.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7(1), 12323 (2016).
[Crossref] [PubMed]

Brehm, M.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Brongersma, M. L.

X. Liu, J. H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Butakov, N. A.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2018).
[Crossref]

C.-Morales, R.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Cai, Z.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
[Crossref]

Capasso, F.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

M. Khorasaninejad and F. Capasso, “Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters,” Nano Lett. 15(10), 6709–6715 (2015).
[Crossref] [PubMed]

Chae, B.-G.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” New J. Phys. 6, 52–70 (2004).
[Crossref]

Chapler, B. C.

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

Chen, H.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Choi, C.

C. Choi, S.-J. Kim, J.-G. Yun, J. Sung, S.-Y. Lee, and B. Lee, “Deflection angle switching with a metasurface based on phase-change nanorods,” Chin. Opt. Lett. 16(5), 50009 (2018).
[Crossref]

Chorsi, H. T.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 9(12), 5056–5070 (1974).
[Crossref]

Conley, H. J.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Crozier, K. B.

Cui, Y.

X. Liu, J. H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

Del Valle Granda, J.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Delaunay, J. J.

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid‐infrared Plasmonic Resonances in 2D VO2 Nanosquare Arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

Deng, L.

Dodge, M. J.

I. H. Malitson and M. J. Dodge, “Refractive Index and Birefringence of Synthetic Sapphire,” J. Opt. Soc. Am. 62(11), 1405 (1972).

Donev, E. U.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

E. U. Donev, J. Y. Suh, F. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 201401 (2006).
[Crossref]

Duan, H.

Dudney, N. J.

N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution,” Nano Lett. 10(9), 3420–3425 (2010).
[Crossref] [PubMed]

Faraon, A.

Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas,” ACS Photonics 5(5), 1711–1717 (2018).
[Crossref]

Feldman, L. C.

E. U. Donev, J. Y. Suh, F. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 201401 (2006).
[Crossref]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Genevet, P.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

Geng, K.

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

Gholipour, B.

B. Gholipour, A. Karvounis, J. Yin, C. Soci, K. F. MacDonald, and N. I. Zheludev, “Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces,” NPG Asia Mater. 10(6), 533–539 (2018).
[Crossref]

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photon. 10(1), 60–65 (2016).
[Crossref]

Goldflam, M.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Goldflam, M. D.

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

Haglund, R. F.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

İ. Karakurt, J. Boneberg, P. Leiderer, R. Lopez, A. Halabica, and R. F. Haglund, “Transmission increase upon switching of VO2 thin films on microstructured surfaces,” Appl. Phys. Lett. 91(9), 091907 (2007).
[Crossref]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

E. U. Donev, J. Y. Suh, F. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 201401 (2006).
[Crossref]

Halabica, A.

İ. Karakurt, J. Boneberg, P. Leiderer, R. Lopez, A. Halabica, and R. F. Haglund, “Transmission increase upon switching of VO2 thin films on microstructured surfaces,” Appl. Phys. Lett. 91(9), 091907 (2007).
[Crossref]

Higgs, D.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Ho, P.-C.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Ho, Y. L.

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid‐infrared Plasmonic Resonances in 2D VO2 Nanosquare Arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

Holt, M. V.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
[Crossref]

Hon, P. W. C.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Hong, J.

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

Horie, Y.

Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas,” ACS Photonics 5(5), 1711–1717 (2018).
[Crossref]

Hottier, F.

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 20(8), 3292–3302 (1979).
[Crossref]

Howes, A.

Huang, F.

Huang, T.

Hwang, H. Y.

X. Liu, J. H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

Ivanov, I. N.

N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution,” Nano Lett. 10(9), 3420–3425 (2010).
[Crossref] [PubMed]

Iyer, P. P.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

P. P. Iyer, M. Pendharkar, and J. A. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater. 4(10), 1582–1588 (2016).
[Crossref]

Jang, M. S.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7(1), 12323 (2016).
[Crossref] [PubMed]

Jeong, S. J.

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

Jesse, S.

N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution,” Nano Lett. 10(9), 3420–3425 (2010).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 9(12), 5056–5070 (1974).
[Crossref]

Jokerst, N. M.

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

Kalcheim, Y.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Kalinin, S. V.

N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution,” Nano Lett. 10(9), 3420–3425 (2010).
[Crossref] [PubMed]

Kamali, S. M.

Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas,” ACS Photonics 5(5), 1711–1717 (2018).
[Crossref]

Kang, J. H.

X. Liu, J. H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Kang, K.-Y.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” New J. Phys. 6, 52–70 (2004).
[Crossref]

Kanhaiya, P.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

Kanki, T.

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid‐infrared Plasmonic Resonances in 2D VO2 Nanosquare Arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

Karakurt, I.

İ. Karakurt, J. Boneberg, P. Leiderer, R. Lopez, A. Halabica, and R. F. Haglund, “Transmission increase upon switching of VO2 thin films on microstructured surfaces,” Appl. Phys. Lett. 91(9), 091907 (2007).
[Crossref]

Karvounis, A.

B. Gholipour, A. Karvounis, J. Yin, C. Soci, K. F. MacDonald, and N. I. Zheludev, “Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces,” NPG Asia Mater. 10(6), 533–539 (2018).
[Crossref]

Kats, M. A.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

Keilmann, F.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kerbusch, J.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Khorasaninejad, M.

M. Khorasaninejad, W. Zhu, and K. B. Crozier, “Efficient polarization beam splitter pixels based on a dielectric metasurface,” Optica 2(4), 376–382 (2015).
[Crossref]

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

M. Khorasaninejad and F. Capasso, “Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters,” Nano Lett. 15(10), 6709–6715 (2015).
[Crossref] [PubMed]

Kim, B. J.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kim, B.-J.

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

Kim, G.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” New J. Phys. 6, 52–70 (2004).
[Crossref]

Kim, H. T.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
[Crossref]

Kim, H.-T.

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” New J. Phys. 6, 52–70 (2004).
[Crossref]

Kim, J.

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

Kim, S.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7(1), 12323 (2016).
[Crossref] [PubMed]

Kim, S.-J.

C. Choi, S.-J. Kim, J.-G. Yun, J. Sung, S.-Y. Lee, and B. Lee, “Deflection angle switching with a metasurface based on phase-change nanorods,” Chin. Opt. Lett. 16(5), 50009 (2018).
[Crossref]

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

Kim, Y.

N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution,” Nano Lett. 10(9), 3420–3425 (2010).
[Crossref] [PubMed]

Kivshar, Y. S.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Knight, M. W.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Komar, A.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Kravchenko, I.

Kruk, S.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Lee, B.

C. Choi, S.-J. Kim, J.-G. Yun, J. Sung, S.-Y. Lee, and B. Lee, “Deflection angle switching with a metasurface based on phase-change nanorods,” Chin. Opt. Lett. 16(5), 50009 (2018).
[Crossref]

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

Lee, K.

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

Lee, S.-Y.

C. Choi, S.-J. Kim, J.-G. Yun, J. Sung, S.-Y. Lee, and B. Lee, “Deflection angle switching with a metasurface based on phase-change nanorods,” Chin. Opt. Lett. 16(5), 50009 (2018).
[Crossref]

Lee, Y. W.

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

Leiderer, P.

İ. Karakurt, J. Boneberg, P. Leiderer, R. Lopez, A. Halabica, and R. F. Haglund, “Transmission increase upon switching of VO2 thin films on microstructured surfaces,” Appl. Phys. Lett. 91(9), 091907 (2007).
[Crossref]

Lewi, T.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2018).
[Crossref]

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Li, C. Y.

Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
[Crossref] [PubMed]

Li, N.

X. Liu, J. Liang, N. Li, and M. Wu, “Preparation of paraboloid-like VO2@ SiO2 nanostructured arrays for enhanced transmission,” Mater. Lett. 160, 585–588 (2015).
[Crossref]

Li, Q.

Li, Z.

Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
[Crossref] [PubMed]

Liang, J.

X. Liu, J. Liang, N. Li, and M. Wu, “Preparation of paraboloid-like VO2@ SiO2 nanostructured arrays for enhanced transmission,” Mater. Lett. 160, 585–588 (2015).
[Crossref]

Lim, Y.-S.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” New J. Phys. 6, 52–70 (2004).
[Crossref]

Lin, Q.

Liu, G. D.

Liu, M.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Liu, M. K.

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

Liu, X.

X. Liu, J. H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

X. Liu, J. Liang, N. Li, and M. Wu, “Preparation of paraboloid-like VO2@ SiO2 nanostructured arrays for enhanced transmission,” Mater. Lett. 160, 585–588 (2015).
[Crossref]

Lopez, R.

İ. Karakurt, J. Boneberg, P. Leiderer, R. Lopez, A. Halabica, and R. F. Haglund, “Transmission increase upon switching of VO2 thin films on microstructured surfaces,” Appl. Phys. Lett. 91(9), 091907 (2007).
[Crossref]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

E. U. Donev, J. Y. Suh, F. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 201401 (2006).
[Crossref]

Lu, J.

Lu, M.

Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
[Crossref] [PubMed]

MacDonald, K. F.

B. Gholipour, A. Karvounis, J. Yin, C. Soci, K. F. MacDonald, and N. I. Zheludev, “Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces,” NPG Asia Mater. 10(6), 533–539 (2018).
[Crossref]

Maeng, S.-L.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” New J. Phys. 6, 52–70 (2004).
[Crossref]

Malitson, I. H.

I. H. Malitson and M. J. Dodge, “Refractive Index and Birefringence of Synthetic Sapphire,” J. Opt. Soc. Am. 62(11), 1405 (1972).

Maple, M. B.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Markov, P.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Marvel, R. E.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Maser, J. M.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
[Crossref]

Matsui, H.

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid‐infrared Plasmonic Resonances in 2D VO2 Nanosquare Arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

Mauser, K. W.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7(1), 12323 (2016).
[Crossref] [PubMed]

Mayer, T. S.

McLeod, A. S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

Mikhailovsky, A. A.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2018).
[Crossref]

Miller, K. J.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Miroshnichenko, A. E.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Mun, S.-E.

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

Musgraves, J. D.

Nawrodt, R.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Neshev, D. N.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Pan, Q.

Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
[Crossref] [PubMed]

Park, J.

X. Liu, J. H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Park, K.

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

Pendharkar, M.

P. P. Iyer, M. Pendharkar, and J. A. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater. 4(10), 1582–1588 (2016).
[Crossref]

Peng, B.

Petronijevic, E.

Podraza, N.

Pogrebnyakov, A. V.

Qazilbash, M. M.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Qi, H.

Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
[Crossref] [PubMed]

Qin, J.

Qiu, M.

Rahmani, M.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Ramanathan, S.

Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
[Crossref] [PubMed]

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Ren, Z.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2018).
[Crossref]

Rensberg, J.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Richardson, K. A.

Rivero-Baleine, C.

Rogers, E. T.

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photon. 10(1), 60–65 (2016).
[Crossref]

Ronning, C.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Rousso, D.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

Royal, M.

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

Schafgans, A. A.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
[Crossref]

Schuller, I. K.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2018).
[Crossref]

Schuller, J. A.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2018).
[Crossref]

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

P. P. Iyer, M. Pendharkar, and J. A. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater. 4(10), 1582–1588 (2016).
[Crossref]

Schwarz, C.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Shi, N. N.

Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
[Crossref] [PubMed]

Shin, H. J.

Shpyrko, O. G.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
[Crossref]

Sibilia, C.

Smith, D. R.

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

Soci, C.

B. Gholipour, A. Karvounis, J. Yin, C. Soci, K. F. MacDonald, and N. I. Zheludev, “Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces,” NPG Asia Mater. 10(6), 533–539 (2018).
[Crossref]

Stein, A.

Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
[Crossref] [PubMed]

Sternbach, A. J.

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

Stinson, H. T.

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

Suh, J. Y.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

E. U. Donev, J. Y. Suh, F. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 201401 (2006).
[Crossref]

Sung, J.

C. Choi, S.-J. Kim, J.-G. Yun, J. Sung, S.-Y. Lee, and B. Lee, “Deflection angle switching with a metasurface based on phase-change nanorods,” Chin. Opt. Lett. 16(5), 50009 (2018).
[Crossref]

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

Tabata, H.

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid‐infrared Plasmonic Resonances in 2D VO2 Nanosquare Arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

Tanaka, H.

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid‐infrared Plasmonic Resonances in 2D VO2 Nanosquare Arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

Teng, J.

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photon. 10(1), 60–65 (2016).
[Crossref]

Theeten, J. B.

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 20(8), 3292–3302 (1979).
[Crossref]

Tian, J.

Tolstova, Y.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7(1), 12323 (2016).
[Crossref] [PubMed]

Trastoy, J.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Tripathi, A.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
[Crossref]

Tselev, A.

N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution,” Nano Lett. 10(9), 3420–3425 (2010).
[Crossref] [PubMed]

Turpin, J. P.

Urban, C.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2018).
[Crossref]

Valentine, J.

Valmianski, I.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2018).
[Crossref]

Villegas, F.

E. U. Donev, J. Y. Suh, F. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 201401 (2006).
[Crossref]

Wang, C. M.

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photon. 10(1), 60–65 (2016).
[Crossref]

Wang, L. L.

Wang, P. Y.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Wang, Q.

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photon. 10(1), 60–65 (2016).
[Crossref]

Wang, W.

Weiss, S. M.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Werner, D. H.

Wilson, S. D.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2018).
[Crossref]

Wu, M.

X. Liu, J. Liang, N. Li, and M. Wu, “Preparation of paraboloid-like VO2@ SiO2 nanostructured arrays for enhanced transmission,” Mater. Lett. 160, 585–588 (2015).
[Crossref]

Xia, S. X.

Xu, L.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Yang, L.

Yin, J.

B. Gholipour, A. Karvounis, J. Yin, C. Soci, K. F. MacDonald, and N. I. Zheludev, “Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces,” NPG Asia Mater. 10(6), 533–539 (2018).
[Crossref]

Youn, D.-H.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” New J. Phys. 6, 52–70 (2004).
[Crossref]

Yu, N.

Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
[Crossref] [PubMed]

Yuan, G.

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photon. 10(1), 60–65 (2016).
[Crossref]

Yuan, H.

X. Liu, J. H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

Yun, H.

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

Yun, J.-G.

C. Choi, S.-J. Kim, J.-G. Yun, J. Sung, S.-Y. Lee, and B. Lee, “Deflection angle switching with a metasurface based on phase-change nanorods,” Chin. Opt. Lett. 16(5), 50009 (2018).
[Crossref]

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

Yun, S. J.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Zarate, Y.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Zhai, X.

Zhang, G.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Zhang, J. D.

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

Zhang, S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Zhang, Z.

Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
[Crossref] [PubMed]

Zhao, C. J.

Zheludev, N. I.

B. Gholipour, A. Karvounis, J. Yin, C. Soci, K. F. MacDonald, and N. I. Zheludev, “Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces,” NPG Asia Mater. 10(6), 533–539 (2018).
[Crossref]

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photon. 10(1), 60–65 (2016).
[Crossref]

Zhou, P.

Zhou, Y.

Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
[Crossref] [PubMed]

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Zhu, W.

Zhu, X.

ACS Photonics (5)

X. Liu, J. H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. Del Valle Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband Electrically Tunable Dielectric Resonators Using Metal-Insulator Transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2018).
[Crossref]

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas,” ACS Photonics 5(5), 1711–1717 (2018).
[Crossref]

Adv. Funct. Mater. (1)

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. C.-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible Thermal Tuning of All‐Dielectric Metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Adv. Mater. (1)

Z. Li, Y. Zhou, H. Qi, Q. Pan, Z. Zhang, N. N. Shi, M. Lu, A. Stein, C. Y. Li, S. Ramanathan, and N. Yu, “Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics,” Adv. Mater. 28(41), 9117–9125 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid‐infrared Plasmonic Resonances in 2D VO2 Nanosquare Arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

P. P. Iyer, M. Pendharkar, and J. A. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater. 4(10), 1582–1588 (2016).
[Crossref]

Appl. Phys. Lett. (3)

M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, “Voltage switching of a VO2 memory metasurface using ionic gel,” Appl. Phys. Lett. 105(4), 041117 (2014).
[Crossref]

İ. Karakurt, J. Boneberg, P. Leiderer, R. Lopez, A. Halabica, and R. F. Haglund, “Transmission increase upon switching of VO2 thin films on microstructured surfaces,” Appl. Phys. Lett. 91(9), 091907 (2007).
[Crossref]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Chin. Opt. Lett. (1)

C. Choi, S.-J. Kim, J.-G. Yun, J. Sung, S.-Y. Lee, and B. Lee, “Deflection angle switching with a metasurface based on phase-change nanorods,” Chin. Opt. Lett. 16(5), 50009 (2018).
[Crossref]

J. Opt. Soc. Am. (1)

I. H. Malitson and M. J. Dodge, “Refractive Index and Birefringence of Synthetic Sapphire,” J. Opt. Soc. Am. 62(11), 1405 (1972).

Mater. Lett. (1)

X. Liu, J. Liang, N. Li, and M. Wu, “Preparation of paraboloid-like VO2@ SiO2 nanostructured arrays for enhanced transmission,” Mater. Lett. 160, 585–588 (2015).
[Crossref]

Nano Lett. (4)

M. Khorasaninejad and F. Capasso, “Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters,” Nano Lett. 15(10), 6709–6715 (2015).
[Crossref] [PubMed]

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution,” Nano Lett. 10(9), 3420–3425 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7(1), 12323 (2016).
[Crossref] [PubMed]

Nat. Photon. (1)

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photon. 10(1), 60–65 (2016).
[Crossref]

New J. Phys. (1)

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” New J. Phys. 6, 52–70 (2004).
[Crossref]

NPG Asia Mater. (1)

B. Gholipour, A. Karvounis, J. Yin, C. Soci, K. F. MacDonald, and N. I. Zheludev, “Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces,” NPG Asia Mater. 10(6), 533–539 (2018).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (2)

Optica (2)

Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. (3)

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 83(16), 165108 (2011).
[Crossref]

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 20(8), 3292–3302 (1979).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B Condens. Matter and Phys. Rev. B. Condens. Matter Mater. Phys. 9(12), 5056–5070 (1974).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

E. U. Donev, J. Y. Suh, F. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 201401 (2006).
[Crossref]

Sci. Rep. (2)

S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7(1), 43723 (2017).
[Crossref] [PubMed]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Science (1)

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Other (3)

W. Cai and V. Shalaev, Optical metamaterials: fundamentals and applications (Springer Science & Business Media, 2009).

B. E. Saleh and M. C. Teich, Fundamentals of photonics (Wiley, 1991).

U. Efron, Spatial light modulator technology: materials, devices, and applications (CRC, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Three-dimensional atomic force micrograph of a VO2 surface. The size of scanned area is 2 μm by 2 μm. (b) Measured temperature-dependent resistance of a VO2 film with hysteric insulator-to-metal phase transition. (c) Dielectric function spectra both at the insulating and metallic phases in the near-infrared range.
Fig. 2
Fig. 2 (a) Dispersion relations of plane wave in the homogeneous air, the homogeneous insulating VO2, the homogeneous metallic VO2, the fundamental TE mode in the 100 nm-wide insulating VRW, and the fundamental TE mode in the 300 nm-wide insulating VRW. The right inset image depicts normalized EZ field profile of transverse electric mode guided in the 300 nm-wide insulating VRW at the wavelength of 1400 nm. (b) Schematic image illustrating a VRW and two different types of waves around it (guided light wave and detour light wave) that interfere with each other after transmission process. (c) VRW thickness (t) conditions of destructive interference between detour light and guided light in the insulating VRW over the broad NIR range. The legends denote corresponding width of the insulating VRW. The dashed line denotes t value of 340 nm.
Fig. 3
Fig. 3 (a) Schematic illustration of the isolated dual VRW unitcell for TE-polarized normal illumination. w, t, d, and p are 300 nm, 340 nm, 450 nm, and 2200 nm, respectively. (b) Spatial Ez field distribution of the numerically solved fundamental TE eigenmode of the dual VRW described in part (a) whose w and d values are 300 nm and 450 nm, respectively. The guided eigenmode is calculated at the wavelength of 1400 nm. Transmissivity plot of the dual VRW unitcell described according to radiation angle and wavelength at (c) the insulating and (d) metallic phases, respectively. The white and white dashed lines in (c) and (d) denote theoretical constructive and destructive diffraction conditions of the grating with period of 2.2 μm, respectively. Normalized transmitted electric field intensity distributions at (e) the insulating and (f) metallic phases, respectively. The wavelength is set to be 1500 nm in common.
Fig. 4
Fig. 4 Numerically calculated transmissivity spectra of the diffraction grating modulator in the (a) insulating and (b) metallic phases. The inset picture in (a) describes the scheme of the dual VRW based diffraction grating (period = 2.2 μm). Numerically calculated reflectivity spectra of the diffraction grating modulator in the (c) insulating and (d) metallic phases, respectively. The legends in (a)-(d) describe the corresponding diffraction orders. (e) Simulation results of the 0th order transmissivity depending on the filling factor (f) of the metallic VO2 during continuous phase transition. The legends denote corresponding f of the metallic VO2. Here, f = 0 and f = 1 imply the insulating and metallic phases, respectively. The intermediate f values between them correspond to the intermediate temperatures of the mixed phases where the two distinct phases coexist. (f) Numerically calculated modulation depth spectrum.
Fig. 5
Fig. 5 Scanning electron micrographs of the fabricated VRW grating of (a) oblique and (b) top views. The inset image of (b) shows cross-sectional view of the FIB cut VRW grating with local Pt layer coated on it.
Fig. 6
Fig. 6 (a) Custom-built temperature-controlled micro-spectroscopy setup scheme for the 0th order transmission measurement. The measured 0th order transmissivity spectra in (b) heating and (c) cooling processes, respectively. (d) Linear curve fitting analysis of the measured 0th order transmissivity. The legends describe measured data and fitted linear line at the insulating and metallic phases. (e) Measured modulation depth and linearly fitted line.
Fig. 7
Fig. 7 (a) Scheme of the dual VRW unit cell excited by the two horizontal magnetic dipoles right above the end facets of two VRW structures (left Figure). The right Figure of angular power spectrum shows nearly forward scattering of the unit cell induced by the corresponding excitation. (b) Theoretical calculation results of the single and double aperture Fraunhofer diffraction intensities with the similarly located minima and maxima. The inset images denote the two Fraunhofer diffraction configurations. The double aperture is constructed by symmetrically blocking the central part of the single aperture by 3p/4 (1.65 μm) wide perfect electric conductor plates between them described in Fig. 3(a). The whole width of single and double apertures is same with the unit cell width, p (2.2 μm).
Fig. 8
Fig. 8 (a) Broadband absorptivity spectra of the VRW grating modulator from simulations. (b) Spatial distributions of electric field intensity and stream line of Poynting vector near the grating structure at the insulating (right) and metallic (left) phases, respectively. The wavelength is 1600 nm in common.
Fig. 9
Fig. 9 Spatial distributions of electric field intensity near the grating structure at the three leaky mode resonances at the (a)-(c) insulating and (d)-(f) metallic phases. The resonance wavelength is (a) and (d) 1044 nm, (b) and (e) 1075 nm, (c) and (f) 1094 nm.
Fig. 10
Fig. 10 The 0th order forward transmissivity spectra of the VRW grating modulator for various Cr mask thicknesses at the (a) insulating and (b) metallic phases, respectively. The effect of VRW thickness on the 0th order forward transmissivity spectra of the VRW grating modulator at the (c) insulating and (d) metallic phases, respectively. The legends in (a) and (b) denote the thickness of Cr mask, while the legends in (c) and (d) denote the thickness of VRWs of the VRW grating modulator. The spectra in (a)-(d) are numerically calculated.

Tables (1)

Tables Icon

Table 1 Comparison of transmissivity modulation mechanism and performance with the recent representative studies

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t ( λ , w ) λ 2 [ n e f f ( λ , w ) 1 ]

Metrics