Abstract

We propose an array of randomly distributed lossy scatterers to achieve broadband backscattering reduction. The array efficiently combines absorption and diffusion functionalities by using three subarrays made of ferromagnetic or dielectric scatterers based on resistive octagonal rings. The subarrays have strong absorption in different frequency bands, whereas they have different reflection phases in a wide frequency band, resulting in −10 dB backscattering reduction in a wide frequency range (from 3.15 to 18 GHz). The results are verified by experiments. Our work provides a new way to reduce backscattering in a wider frequency range and at lower frequencies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coding metasurface for broadband microwave scattering reduction with optical transparency

Ke Chen, Li Cui, Yijun Feng, Junming Zhao, Tian Jiang, and Bo Zhu
Opt. Express 25(5) 5571-5579 (2017)

Broadband, polarization insensitive low-scattering metasurface based on lossy Pancharatnam-Berry phase particles

Lina Qiu, Gaobiao Xiao, Xianghong Kong, and Can Xiong
Opt. Express 27(15) 21226-21238 (2019)

Broadband low-scattering metasurface using a combination of phase cancellation and absorption mechanisms

Chen Ji, Cheng Huang, Xu Zhang, Jianing Yang, Jiakun Song, and Xiangang Luo
Opt. Express 27(16) 23368-23377 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
    [Crossref]
  2. Z. A. Awan, “Reflection and transmission properties of a metasurface composed of resonant loaded wire dipoles,” Appl. Opt. 55(15), 4219–4226 (2016).
    [Crossref] [PubMed]
  3. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  4. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  5. B. Desiatov, N. Mazurski, Y. Fainman, and U. Levy, “Polarization selective beam shaping using nanoscale dielectric metasurfaces,” Opt. Express 23(17), 22611–22618 (2015).
    [Crossref] [PubMed]
  6. K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
    [Crossref] [PubMed]
  7. L. Cui, W. J. Wang, G. W. Ding, K. Chen, J. M. Zhao, T. Jiang, and Y. J. Feng, “Polarization-dependent bi-functional metasurface for directive radiation and diffusion-like scattering,” AIP Adv. 7(11), 115214 (2017).
    [Crossref]
  8. J. Zhao, B. Sima, N. Jia, C. Wang, B. Zhu, T. Jiang, and Y. Feng, “Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements,” Opt. Express 24(24), 27849–27857 (2016).
    [Crossref] [PubMed]
  9. K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express 25(5), 5571–5579 (2017).
    [Crossref] [PubMed]
  10. P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
    [Crossref] [PubMed]
  11. J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
    [Crossref]
  12. B. Chambers, “Optimum design of a Salibury screen radar absorber,” Electron. Lett. 30(16), 1353–1354 (1994).
    [Crossref]
  13. X. Q. Chen, X. Chen, Z. Wu, Z. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, T. H. Zou, and Z. X. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
    [Crossref]
  14. L. J. Du Toit, “Design of Jauman absorbers,” IEEE Antennas Propag. Mag. 36(6), 17–25 (1994).
    [Crossref]
  15. T. Wang, P. Wang, Y. Wang, and L. Qiao, “A broadband far-field microwave absorber with a sandwich structure,” Mater. Des. 95, 486–489 (2016).
    [Crossref]
  16. F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
    [Crossref]
  17. T. T. Nguyen and S. Lim, “Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators,” Appl. Phys. Lett. 112(2), 021605 (2018).
    [Crossref]
  18. Y. Shang, Z. Shen, and S. Xiao, “On the design of single-layer circuit analog absorber using double-square-loop array,” IEEE Trans. Antenn. Propag. 61(12), 6022–6029 (2013).
    [Crossref]
  19. Y. Han, W. Che, C. Christopoulos, and Y. Chang, “Investigation of Thin and Broadband Capacitive Surface-Based Absorber by the Impedance Analysis Method,” IEEE Trans. Electromagn. Compat. 57(1), 22–26 (2015).
    [Crossref]
  20. Y. Han and W. Che, “Low-Profile Broadband Absorbers Based on Capacitive Surfaces,” IEEE Antennas Wirel. Propag. Lett. 16, 74–78 (2017).
    [Crossref]
  21. M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
    [Crossref]
  22. X. Nie, H. Wang, and J. Zou, “Inkjet printing of silver citrate conductive ink on PET substrate,” Appl. Surf. Sci. 261, 554–560 (2012).
    [Crossref]
  23. A. Ishikawa, T. Kato, N. Takeyasu, K. Fujimori, and K. Tsuruta, “Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials,” Appl. Phys. Lett. 111(18), 183102 (2017).
    [Crossref]
  24. K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
    [Crossref]
  25. T. Deng, Z. W. Li, and Z. N. Chen, “Ultrathin broadband absorber using frequency-selective surface and frequency-dispersive magnetic materials,” IEEE Trans. Antenn. Propag. 65(11), 5886–5894 (2017).
    [Crossref]

2018 (3)

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

X. Q. Chen, X. Chen, Z. Wu, Z. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, T. H. Zou, and Z. X. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

T. T. Nguyen and S. Lim, “Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators,” Appl. Phys. Lett. 112(2), 021605 (2018).
[Crossref]

2017 (5)

L. Cui, W. J. Wang, G. W. Ding, K. Chen, J. M. Zhao, T. Jiang, and Y. J. Feng, “Polarization-dependent bi-functional metasurface for directive radiation and diffusion-like scattering,” AIP Adv. 7(11), 115214 (2017).
[Crossref]

K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express 25(5), 5571–5579 (2017).
[Crossref] [PubMed]

Y. Han and W. Che, “Low-Profile Broadband Absorbers Based on Capacitive Surfaces,” IEEE Antennas Wirel. Propag. Lett. 16, 74–78 (2017).
[Crossref]

A. Ishikawa, T. Kato, N. Takeyasu, K. Fujimori, and K. Tsuruta, “Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials,” Appl. Phys. Lett. 111(18), 183102 (2017).
[Crossref]

T. Deng, Z. W. Li, and Z. N. Chen, “Ultrathin broadband absorber using frequency-selective surface and frequency-dispersive magnetic materials,” IEEE Trans. Antenn. Propag. 65(11), 5886–5894 (2017).
[Crossref]

2016 (5)

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

J. Zhao, B. Sima, N. Jia, C. Wang, B. Zhu, T. Jiang, and Y. Feng, “Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements,” Opt. Express 24(24), 27849–27857 (2016).
[Crossref] [PubMed]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Z. A. Awan, “Reflection and transmission properties of a metasurface composed of resonant loaded wire dipoles,” Appl. Opt. 55(15), 4219–4226 (2016).
[Crossref] [PubMed]

T. Wang, P. Wang, Y. Wang, and L. Qiao, “A broadband far-field microwave absorber with a sandwich structure,” Mater. Des. 95, 486–489 (2016).
[Crossref]

2015 (2)

B. Desiatov, N. Mazurski, Y. Fainman, and U. Levy, “Polarization selective beam shaping using nanoscale dielectric metasurfaces,” Opt. Express 23(17), 22611–22618 (2015).
[Crossref] [PubMed]

Y. Han, W. Che, C. Christopoulos, and Y. Chang, “Investigation of Thin and Broadband Capacitive Surface-Based Absorber by the Impedance Analysis Method,” IEEE Trans. Electromagn. Compat. 57(1), 22–26 (2015).
[Crossref]

2014 (1)

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Shang, Z. Shen, and S. Xiao, “On the design of single-layer circuit analog absorber using double-square-loop array,” IEEE Trans. Antenn. Propag. 61(12), 6022–6029 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

2012 (1)

X. Nie, H. Wang, and J. Zou, “Inkjet printing of silver citrate conductive ink on PET substrate,” Appl. Surf. Sci. 261, 554–560 (2012).
[Crossref]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (1)

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

2002 (1)

M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

2000 (1)

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

1994 (2)

L. J. Du Toit, “Design of Jauman absorbers,” IEEE Antennas Propag. Mag. 36(6), 17–25 (1994).
[Crossref]

B. Chambers, “Optimum design of a Salibury screen radar absorber,” Electron. Lett. 30(16), 1353–1354 (1994).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Awan, Z. A.

Belov, P. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chambers, B.

B. Chambers, “Optimum design of a Salibury screen radar absorber,” Electron. Lett. 30(16), 1353–1354 (1994).
[Crossref]

Chang, Y.

Y. Han, W. Che, C. Christopoulos, and Y. Chang, “Investigation of Thin and Broadband Capacitive Surface-Based Absorber by the Impedance Analysis Method,” IEEE Trans. Electromagn. Compat. 57(1), 22–26 (2015).
[Crossref]

Che, W.

Y. Han and W. Che, “Low-Profile Broadband Absorbers Based on Capacitive Surfaces,” IEEE Antennas Wirel. Propag. Lett. 16, 74–78 (2017).
[Crossref]

Y. Han, W. Che, C. Christopoulos, and Y. Chang, “Investigation of Thin and Broadband Capacitive Surface-Based Absorber by the Impedance Analysis Method,” IEEE Trans. Electromagn. Compat. 57(1), 22–26 (2015).
[Crossref]

Chen, K.

K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express 25(5), 5571–5579 (2017).
[Crossref] [PubMed]

L. Cui, W. J. Wang, G. W. Ding, K. Chen, J. M. Zhao, T. Jiang, and Y. J. Feng, “Polarization-dependent bi-functional metasurface for directive radiation and diffusion-like scattering,” AIP Adv. 7(11), 115214 (2017).
[Crossref]

Chen, X.

X. Q. Chen, X. Chen, Z. Wu, Z. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, T. H. Zou, and Z. X. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Chen, X. Q.

X. Q. Chen, X. Chen, Z. Wu, Z. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, T. H. Zou, and Z. X. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Chen, Z. N.

T. Deng, Z. W. Li, and Z. N. Chen, “Ultrathin broadband absorber using frequency-selective surface and frequency-dispersive magnetic materials,” IEEE Trans. Antenn. Propag. 65(11), 5886–5894 (2017).
[Crossref]

Cheng, Q.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Christopoulos, C.

Y. Han, W. Che, C. Christopoulos, and Y. Chang, “Investigation of Thin and Broadband Capacitive Surface-Based Absorber by the Impedance Analysis Method,” IEEE Trans. Electromagn. Compat. 57(1), 22–26 (2015).
[Crossref]

Clerc, M.

M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

Costa, F.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

Cui, L.

L. Cui, W. J. Wang, G. W. Ding, K. Chen, J. M. Zhao, T. Jiang, and Y. J. Feng, “Polarization-dependent bi-functional metasurface for directive radiation and diffusion-like scattering,” AIP Adv. 7(11), 115214 (2017).
[Crossref]

K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express 25(5), 5571–5579 (2017).
[Crossref] [PubMed]

Cui, T. J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Deng, T.

T. Deng, Z. W. Li, and Z. N. Chen, “Ultrathin broadband absorber using frequency-selective surface and frequency-dispersive magnetic materials,” IEEE Trans. Antenn. Propag. 65(11), 5886–5894 (2017).
[Crossref]

Desiatov, B.

Ding, G. W.

L. Cui, W. J. Wang, G. W. Ding, K. Chen, J. M. Zhao, T. Jiang, and Y. J. Feng, “Polarization-dependent bi-functional metasurface for directive radiation and diffusion-like scattering,” AIP Adv. 7(11), 115214 (2017).
[Crossref]

Dong, D. S.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Du Toit, L. J.

L. J. Du Toit, “Design of Jauman absorbers,” IEEE Antennas Propag. Mag. 36(6), 17–25 (1994).
[Crossref]

Fainman, Y.

Feng, Y.

Feng, Y. J.

L. Cui, W. J. Wang, G. W. Ding, K. Chen, J. M. Zhao, T. Jiang, and Y. J. Feng, “Polarization-dependent bi-functional metasurface for directive radiation and diffusion-like scattering,” AIP Adv. 7(11), 115214 (2017).
[Crossref]

Fujimori, K.

A. Ishikawa, T. Kato, N. Takeyasu, K. Fujimori, and K. Tsuruta, “Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials,” Appl. Phys. Lett. 111(18), 183102 (2017).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Glybovski, S. B.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Han, Y.

Y. Han and W. Che, “Low-Profile Broadband Absorbers Based on Capacitive Surfaces,” IEEE Antennas Wirel. Propag. Lett. 16, 74–78 (2017).
[Crossref]

Y. Han, W. Che, C. Christopoulos, and Y. Chang, “Investigation of Thin and Broadband Capacitive Surface-Based Absorber by the Impedance Analysis Method,” IEEE Trans. Electromagn. Compat. 57(1), 22–26 (2015).
[Crossref]

Heng, L. Y.

X. Q. Chen, X. Chen, Z. Wu, Z. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, T. H. Zou, and Z. X. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Ishikawa, A.

A. Ishikawa, T. Kato, N. Takeyasu, K. Fujimori, and K. Tsuruta, “Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials,” Appl. Phys. Lett. 111(18), 183102 (2017).
[Crossref]

Jia, N.

Jia, S.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Jiang, T.

Kato, T.

A. Ishikawa, T. Kato, N. Takeyasu, K. Fujimori, and K. Tsuruta, “Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials,” Appl. Phys. Lett. 111(18), 183102 (2017).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kennedy, J.

M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Levy, U.

Li, Z. W.

T. Deng, Z. W. Li, and Z. N. Chen, “Ultrathin broadband absorber using frequency-selective surface and frequency-dispersive magnetic materials,” IEEE Trans. Antenn. Propag. 65(11), 5886–5894 (2017).
[Crossref]

Lim, S.

T. T. Nguyen and S. Lim, “Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators,” Appl. Phys. Lett. 112(2), 021605 (2018).
[Crossref]

Manara, G.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

Mazurski, N.

Monorchio, A.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

Nguyen, T. T.

T. T. Nguyen and S. Lim, “Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators,” Appl. Phys. Lett. 112(2), 021605 (2018).
[Crossref]

Nie, X.

X. Nie, H. Wang, and J. Zou, “Inkjet printing of silver citrate conductive ink on PET substrate,” Appl. Surf. Sci. 261, 554–560 (2012).
[Crossref]

Qiao, L.

T. Wang, P. Wang, Y. Wang, and L. Qiao, “A broadband far-field microwave absorber with a sandwich structure,” Mater. Des. 95, 486–489 (2016).
[Crossref]

Rozanov, K. N.

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Shang, Y.

Y. Shang, Z. Shen, and S. Xiao, “On the design of single-layer circuit analog absorber using double-square-loop array,” IEEE Trans. Antenn. Propag. 61(12), 6022–6029 (2013).
[Crossref]

Shen, Z.

Y. Shang, Z. Shen, and S. Xiao, “On the design of single-layer circuit analog absorber using double-square-loop array,” IEEE Trans. Antenn. Propag. 61(12), 6022–6029 (2013).
[Crossref]

Shi, W.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Sima, B.

Simovski, C. R.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Su, P.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Takeyasu, N.

A. Ishikawa, T. Kato, N. Takeyasu, K. Fujimori, and K. Tsuruta, “Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials,” Appl. Phys. Lett. 111(18), 183102 (2017).
[Crossref]

Tang, Z. X.

X. Q. Chen, X. Chen, Z. Wu, Z. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, T. H. Zou, and Z. X. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tretyakov, S. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Tsuruta, K.

A. Ishikawa, T. Kato, N. Takeyasu, K. Fujimori, and K. Tsuruta, “Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials,” Appl. Phys. Lett. 111(18), 183102 (2017).
[Crossref]

Wang, C.

Wang, H.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

X. Nie, H. Wang, and J. Zou, “Inkjet printing of silver citrate conductive ink on PET substrate,” Appl. Surf. Sci. 261, 554–560 (2012).
[Crossref]

Wang, K.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Wang, P.

T. Wang, P. Wang, Y. Wang, and L. Qiao, “A broadband far-field microwave absorber with a sandwich structure,” Mater. Des. 95, 486–489 (2016).
[Crossref]

Wang, S.

X. Q. Chen, X. Chen, Z. Wu, Z. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, T. H. Zou, and Z. X. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Wang, T.

T. Wang, P. Wang, Y. Wang, and L. Qiao, “A broadband far-field microwave absorber with a sandwich structure,” Mater. Des. 95, 486–489 (2016).
[Crossref]

Wang, W. J.

L. Cui, W. J. Wang, G. W. Ding, K. Chen, J. M. Zhao, T. Jiang, and Y. J. Feng, “Polarization-dependent bi-functional metasurface for directive radiation and diffusion-like scattering,” AIP Adv. 7(11), 115214 (2017).
[Crossref]

Wang, Y.

T. Wang, P. Wang, Y. Wang, and L. Qiao, “A broadband far-field microwave absorber with a sandwich structure,” Mater. Des. 95, 486–489 (2016).
[Crossref]

Wang, Z. L.

X. Q. Chen, X. Chen, Z. Wu, Z. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, T. H. Zou, and Z. X. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Wu, Z.

X. Q. Chen, X. Chen, Z. Wu, Z. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, T. H. Zou, and Z. X. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Xiao, S.

Y. Shang, Z. Shen, and S. Xiao, “On the design of single-layer circuit analog absorber using double-square-loop array,” IEEE Trans. Antenn. Propag. 61(12), 6022–6029 (2013).
[Crossref]

Yang, J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zhang, C.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

Zhang, Z.

X. Q. Chen, X. Chen, Z. Wu, Z. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, T. H. Zou, and Z. X. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Zhao, J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express 25(5), 5571–5579 (2017).
[Crossref] [PubMed]

J. Zhao, B. Sima, N. Jia, C. Wang, B. Zhu, T. Jiang, and Y. Feng, “Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements,” Opt. Express 24(24), 27849–27857 (2016).
[Crossref] [PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Zhao, J. M.

L. Cui, W. J. Wang, G. W. Ding, K. Chen, J. M. Zhao, T. Jiang, and Y. J. Feng, “Polarization-dependent bi-functional metasurface for directive radiation and diffusion-like scattering,” AIP Adv. 7(11), 115214 (2017).
[Crossref]

Zhao, Y.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Zhu, B.

Zou, J.

X. Nie, H. Wang, and J. Zou, “Inkjet printing of silver citrate conductive ink on PET substrate,” Appl. Surf. Sci. 261, 554–560 (2012).
[Crossref]

Zou, T. H.

X. Q. Chen, X. Chen, Z. Wu, Z. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, T. H. Zou, and Z. X. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

AIP Adv. (1)

L. Cui, W. J. Wang, G. W. Ding, K. Chen, J. M. Zhao, T. Jiang, and Y. J. Feng, “Polarization-dependent bi-functional metasurface for directive radiation and diffusion-like scattering,” AIP Adv. 7(11), 115214 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

T. T. Nguyen and S. Lim, “Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators,” Appl. Phys. Lett. 112(2), 021605 (2018).
[Crossref]

A. Ishikawa, T. Kato, N. Takeyasu, K. Fujimori, and K. Tsuruta, “Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials,” Appl. Phys. Lett. 111(18), 183102 (2017).
[Crossref]

Appl. Surf. Sci. (1)

X. Nie, H. Wang, and J. Zou, “Inkjet printing of silver citrate conductive ink on PET substrate,” Appl. Surf. Sci. 261, 554–560 (2012).
[Crossref]

Electron. Lett. (1)

B. Chambers, “Optimum design of a Salibury screen radar absorber,” Electron. Lett. 30(16), 1353–1354 (1994).
[Crossref]

IEEE Antennas Propag. Mag. (1)

L. J. Du Toit, “Design of Jauman absorbers,” IEEE Antennas Propag. Mag. 36(6), 17–25 (1994).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

Y. Han and W. Che, “Low-Profile Broadband Absorbers Based on Capacitive Surfaces,” IEEE Antennas Wirel. Propag. Lett. 16, 74–78 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (4)

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

T. Deng, Z. W. Li, and Z. N. Chen, “Ultrathin broadband absorber using frequency-selective surface and frequency-dispersive magnetic materials,” IEEE Trans. Antenn. Propag. 65(11), 5886–5894 (2017).
[Crossref]

Y. Shang, Z. Shen, and S. Xiao, “On the design of single-layer circuit analog absorber using double-square-loop array,” IEEE Trans. Antenn. Propag. 61(12), 6022–6029 (2013).
[Crossref]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

Y. Han, W. Che, C. Christopoulos, and Y. Chang, “Investigation of Thin and Broadband Capacitive Surface-Based Absorber by the Impedance Analysis Method,” IEEE Trans. Electromagn. Compat. 57(1), 22–26 (2015).
[Crossref]

IEEE Trans. Evol. Comput. (1)

M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

J. Phys. D Appl. Phys. (1)

X. Q. Chen, X. Chen, Z. Wu, Z. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, T. H. Zou, and Z. X. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Mater. Des. (1)

T. Wang, P. Wang, Y. Wang, and L. Qiao, “A broadband far-field microwave absorber with a sandwich structure,” Mater. Des. 95, 486–489 (2016).
[Crossref]

Opt. Express (3)

Phys. Rep. (1)

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Sci. Rep. (2)

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematics of an array composed of subarrays with different backscattering properties. EA, EB and EC stand for the scattering fields of basic scatterer. Ein is the incident field shoot on the entire array. The backscattering of the entire array is determined by the reflection coefficients r and the filling ratios of the subarrays. Diagrams showing how to achieve lower backscattering by varying the phases of the two reflection coefficients for subarrays with (b) lossless scatterers (|r| = 1) and (c) lossy scatterers (|r| = 0.5). Red dashed circle indicates the region of −10 dB BSR. When the green vector is within the green sector, the BSR of the entire array will be smaller than −10 dB. Panel (c) shows that greater BSR can be achieved in a wider phase range with lossy scatterers.
Fig. 2
Fig. 2 Schematics of (a) array of lossy scatterers and (b)–(d) blocks of subarrays. The scatterers have layered structures. Scatterer 1 (S1) is composed of a dielectric, a ferrite slab, and a metal ground. Scatterer 2 (S2) and scatterer 3 (S3) are composed of a resistive octagonal ring, a dielectric, and a metal ground, but they have different dimensions. A polylactic acid (PLA) mesh is used to form a dielectric whose permittivity can be tuned by varying the filling ratio of PLA. The subarrays of S1, S2, and S3 are divided into blocks, which are randomly distributed on the plane to obtain better phase interference between the subarrays. The geometric parameters of the scatterers are t = 6 mm a = 5.77 mm, b = 29 mm, R1 = 6.8 mm, R2 = 5.3 mm, R3 = 4.5 mm, R4 = 3.5 mm, and g = 1 mm. The conductivities of the rings in S2 and S3 are σ1 = 1400 S/m and σ2 = 2000 S/m, respectively. The block size takes p = 30 mm. The thickness of conductive ink is 0.02 mm.
Fig. 3
Fig. 3 Simulated reflection coefficients. (a) Amplitudes and (b) phases of the subarrays of three scatterers shown in Figs. 2(b)–2(d). (c) Calculated and simulated BSR of the entire array shown in Fig. 2(a).
Fig. 4
Fig. 4 Ratio of energy dissipated and simulated backscattering patterns [(b), (e), and (h) x-polarized incidence; (c), (f), and (i) y-polarized incidence] of the proposed structure and metal plate under normal incidence at 4 GHz [(b)–(d)], 12 GHz [(e)–(g)], and 16 GHz [(h)–(j)].
Fig. 5
Fig. 5 (a) Fabricated sample of lossy scatterer array and (b) BSR obtained by Eq. (3), full-wave simulation, and measurements of the sample.

Tables (1)

Tables Icon

Table 1 Comparison between our work and other designs

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E r =a E A +b E B +c E C
BSR= E r E in = a E A +b E B +c E C E in = p A r A + p B r B + p C r C
BSR=| n=1 N p i a i exp(j φ i ) |
fitness=max{ Δ 10dB }=max{ 2 fre q up fre q down fre q up +fre q down }
FoM= Δω/ ω 0 t/ λ L = Δfc f 0 f L t

Metrics