Abstract

We proposed an approach to get multiple and adjustable optical Tamm states (OTSs) by constructing a structure consisting of a metal layer and one-dimensional photonic quasicrystals with preassigned bandgaps. In the structure, multiple OTSs excited simultaneously in each bandgap were observed. We explored the physics mechanism of the multiple OTSs by analyzing the electric field intensity distribution in the structure. Besides, the results also show that the thickness of the top layer gives one more degree of freedom in designing multiple OTSs. Finally, we demonstrated that one additional OTS can be obtained independently by adding another bandgap to the proposed structure.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiple optical Tamm states at a metal–dielectric mirror interface

Haichun Zhou, Guang Yang, Kai Wang, Hua Long, and Peixiang Lu
Opt. Lett. 35(24) 4112-4114 (2010)

Far-infrared Tamm polaritons in a microcavity with incorporated graphene sheet

J. M. S. S. Silva and M. I. Vasilevskiy
Opt. Mater. Express 9(1) 244-255 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58(23), 2436–2438 (1987).
    [Crossref] [PubMed]
  2. Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
    [Crossref]
  3. E. Maciá, “Exploiting aperiodic designs in nanophotonic devices,” Rep. Prog. Phys. 75(3), 036502 (2012).
    [Crossref] [PubMed]
  4. L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev. 6(2), 178–218 (2012).
    [Crossref]
  5. S. V. Gaponenko, Introduction to Nanophotonics (Cambridge University, 2010).
  6. L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
    [Crossref]
  7. A. M. Vyunishev, P. S. Pankin, S. E. Svyakhovskiy, I. V. Timofeev, and S. Y. Vetrov, “Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic bandgaps,” Opt. Lett. 42(18), 3602–3605 (2017).
    [Crossref] [PubMed]
  8. A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B Condens. Matter Mater. Phys. 72(23), 233102 (2005).
    [Crossref]
  9. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
    [Crossref]
  10. A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005).
    [Crossref]
  11. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
    [Crossref]
  12. I. A. Shelykh, M. Kaliteevskii, A. V. Kavokin, S. Brand, R. A. Abram, J. M. Chamberlain, and G. Malpuech, “Interface photonic states at the boundary between a metal and a dielectric Bragg mirror,” Phys. Status Solidi., A Appl. Mater. Sci. 204(2), 522–525 (2007).
    [Crossref]
  13. S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085416 (2009).
    [Crossref]
  14. Y. Gong, X. Liu, L. Wang, H. Lu, and G. Wang, “Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal,” Opt. Express 19(10), 9759–9769 (2011).
    [Crossref] [PubMed]
  15. G. Zheng, M. Qiu, F. Xian, Y. Chen, L. Xu, and J. Wang, “Multiple visible optical Tamm states supported by graphene-coated distributed Bragg reflectors,” Appl. Phys. Express 10(9), 092202 (2017).
    [Crossref]
  16. Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection,” ACS Photonics 5(3), 929–938 (2018).
    [Crossref]
  17. N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, ““Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sensor. Actuat B 265, 644–651 (2018).
  18. M. A. Kaliteevski, A. A. Lazarenko, N. D. Il’inskaya, Y. M. Zadiranov, M. E. Sasin, D. Zaitsev, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and A. Y. Egorov, “Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity,” Plasmonics 10(2), 281–284 (2015).
    [Crossref]
  19. M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8(1), 259–264 (2017).
    [Crossref] [PubMed]
  20. H. Zhou, G. Yang, K. Wang, H. Long, and P. Lu, “Multiple optical Tamm states at a metal-dielectric mirror interface,” Opt. Lett. 35(24), 4112–4114 (2010).
    [Crossref] [PubMed]
  21. X.-L. Zhang, J.-F. Song, J. Feng, and H.-B. Sun, “Spectral engineering by flexible tunings of optical Tamm states and Fabry-Perot cavity resonance,” Opt. Lett. 38(21), 4382–4385 (2013).
    [Crossref] [PubMed]
  22. M. K. Shukla and R. Das, “Tamm-plasmon polaritons in one-dimensional photonic quasi-crystals,” Opt. Lett. 43(3), 362–365 (2018).
    [Crossref] [PubMed]
  23. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  24. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
    [Crossref]
  25. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  26. S. S.-U. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
    [Crossref] [PubMed]
  27. H.-Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93(2), 819–830 (2003).
    [Crossref]

2018 (3)

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, ““Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sensor. Actuat B 265, 644–651 (2018).

M. K. Shukla and R. Das, “Tamm-plasmon polaritons in one-dimensional photonic quasi-crystals,” Opt. Lett. 43(3), 362–365 (2018).
[Crossref] [PubMed]

2017 (3)

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8(1), 259–264 (2017).
[Crossref] [PubMed]

G. Zheng, M. Qiu, F. Xian, Y. Chen, L. Xu, and J. Wang, “Multiple visible optical Tamm states supported by graphene-coated distributed Bragg reflectors,” Appl. Phys. Express 10(9), 092202 (2017).
[Crossref]

A. M. Vyunishev, P. S. Pankin, S. E. Svyakhovskiy, I. V. Timofeev, and S. Y. Vetrov, “Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic bandgaps,” Opt. Lett. 42(18), 3602–3605 (2017).
[Crossref] [PubMed]

2016 (1)

S. S.-U. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

2015 (1)

M. A. Kaliteevski, A. A. Lazarenko, N. D. Il’inskaya, Y. M. Zadiranov, M. E. Sasin, D. Zaitsev, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and A. Y. Egorov, “Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity,” Plasmonics 10(2), 281–284 (2015).
[Crossref]

2013 (2)

2012 (2)

E. Maciá, “Exploiting aperiodic designs in nanophotonic devices,” Rep. Prog. Phys. 75(3), 036502 (2012).
[Crossref] [PubMed]

L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev. 6(2), 178–218 (2012).
[Crossref]

2011 (1)

2010 (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

H. Zhou, G. Yang, K. Wang, H. Long, and P. Lu, “Multiple optical Tamm states at a metal-dielectric mirror interface,” Opt. Lett. 35(24), 4112–4114 (2010).
[Crossref] [PubMed]

2009 (1)

S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085416 (2009).
[Crossref]

2008 (1)

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

2007 (2)

I. A. Shelykh, M. Kaliteevskii, A. V. Kavokin, S. Brand, R. A. Abram, J. M. Chamberlain, and G. Malpuech, “Interface photonic states at the boundary between a metal and a dielectric Bragg mirror,” Phys. Status Solidi., A Appl. Mater. Sci. 204(2), 522–525 (2007).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

2005 (2)

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005).
[Crossref]

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B Condens. Matter Mater. Phys. 72(23), 233102 (2005).
[Crossref]

2004 (1)

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

2003 (1)

H.-Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93(2), 819–830 (2003).
[Crossref]

2000 (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

1987 (1)

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58(23), 2436–2438 (1987).
[Crossref] [PubMed]

Abram, R. A.

S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085416 (2009).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

I. A. Shelykh, M. Kaliteevskii, A. V. Kavokin, S. Brand, R. A. Abram, J. M. Chamberlain, and G. Malpuech, “Interface photonic states at the boundary between a metal and a dielectric Bragg mirror,” Phys. Status Solidi., A Appl. Mater. Sci. 204(2), 522–525 (2007).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Agrawal, A.

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

Ayzatsky, M. I.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Baumann, V.

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8(1), 259–264 (2017).
[Crossref] [PubMed]

Boriskin, V. N.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Boriskina, S. V.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev. 6(2), 178–218 (2012).
[Crossref]

Brand, S.

S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085416 (2009).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

I. A. Shelykh, M. Kaliteevskii, A. V. Kavokin, S. Brand, R. A. Abram, J. M. Chamberlain, and G. Malpuech, “Interface photonic states at the boundary between a metal and a dielectric Bragg mirror,” Phys. Status Solidi., A Appl. Mater. Sci. 204(2), 522–525 (2007).
[Crossref]

Brunkov, P. N.

M. A. Kaliteevski, A. A. Lazarenko, N. D. Il’inskaya, Y. M. Zadiranov, M. E. Sasin, D. Zaitsev, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and A. Y. Egorov, “Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity,” Plasmonics 10(2), 281–284 (2015).
[Crossref]

Chamberlain, J. M.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

I. A. Shelykh, M. Kaliteevskii, A. V. Kavokin, S. Brand, R. A. Abram, J. M. Chamberlain, and G. Malpuech, “Interface photonic states at the boundary between a metal and a dielectric Bragg mirror,” Phys. Status Solidi., A Appl. Mater. Sci. 204(2), 522–525 (2007).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Chen, G.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Chen, Y.

G. Zheng, M. Qiu, F. Xian, Y. Chen, L. Xu, and J. Wang, “Multiple visible optical Tamm states supported by graphene-coated distributed Bragg reflectors,” Appl. Phys. Express 10(9), 092202 (2017).
[Crossref]

Dal Negro, L.

L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev. 6(2), 178–218 (2012).
[Crossref]

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Das, R.

Duan, X.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Egorov, A. Y.

M. A. Kaliteevski, A. A. Lazarenko, N. D. Il’inskaya, Y. M. Zadiranov, M. E. Sasin, D. Zaitsev, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and A. Y. Egorov, “Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity,” Plasmonics 10(2), 281–284 (2015).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Feng, J.

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gong, Y.

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Gutowski, J.

S. S.-U. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Haavisto, J.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Höfling, S.

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8(1), 259–264 (2017).
[Crossref] [PubMed]

Hommel, D.

S. S.-U. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Iguchi, K.

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58(23), 2436–2438 (1987).
[Crossref] [PubMed]

Il’inskaya, N. D.

M. A. Kaliteevski, A. A. Lazarenko, N. D. Il’inskaya, Y. M. Zadiranov, M. E. Sasin, D. Zaitsev, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and A. Y. Egorov, “Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity,” Plasmonics 10(2), 281–284 (2015).
[Crossref]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Kaliteevski, M. A.

M. A. Kaliteevski, A. A. Lazarenko, N. D. Il’inskaya, Y. M. Zadiranov, M. E. Sasin, D. Zaitsev, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and A. Y. Egorov, “Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity,” Plasmonics 10(2), 281–284 (2015).
[Crossref]

S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085416 (2009).
[Crossref]

Kaliteevskii, M.

I. A. Shelykh, M. Kaliteevskii, A. V. Kavokin, S. Brand, R. A. Abram, J. M. Chamberlain, and G. Malpuech, “Interface photonic states at the boundary between a metal and a dielectric Bragg mirror,” Phys. Status Solidi., A Appl. Mater. Sci. 204(2), 522–525 (2007).
[Crossref]

Kalitteevski, M. A.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Kavokin, A.

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005).
[Crossref]

Kavokin, A. V.

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8(1), 259–264 (2017).
[Crossref] [PubMed]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

I. A. Shelykh, M. Kaliteevskii, A. V. Kavokin, S. Brand, R. A. Abram, J. M. Chamberlain, and G. Malpuech, “Interface photonic states at the boundary between a metal and a dielectric Bragg mirror,” Phys. Status Solidi., A Appl. Mater. Sci. 204(2), 522–525 (2007).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B Condens. Matter Mater. Phys. 72(23), 233102 (2005).
[Crossref]

Kimerling, L. C.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Klaas, M.

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8(1), 259–264 (2017).
[Crossref] [PubMed]

Klein, T.

S. S.-U. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Klembt, S.

S. S.-U. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Kohmoto, M.

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58(23), 2436–2438 (1987).
[Crossref] [PubMed]

Lazarenko, A. A.

M. A. Kaliteevski, A. A. Lazarenko, N. D. Il’inskaya, Y. M. Zadiranov, M. E. Sasin, D. Zaitsev, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and A. Y. Egorov, “Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity,” Plasmonics 10(2), 281–284 (2015).
[Crossref]

LeBlanc, J.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Lee, H.-Y.

H.-Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93(2), 819–830 (2003).
[Crossref]

Li, J.

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, ““Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sensor. Actuat B 265, 644–651 (2018).

Li, N.

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, ““Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sensor. Actuat B 265, 644–651 (2018).

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

Long, H.

Lu, H.

Lu, P.

Lundt, N.

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8(1), 259–264 (2017).
[Crossref] [PubMed]

Luo, L.

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, ““Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sensor. Actuat B 265, 644–651 (2018).

Machekhin, Y. P.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Maciá, E.

E. Maciá, “Exploiting aperiodic designs in nanophotonic devices,” Rep. Prog. Phys. 75(3), 036502 (2012).
[Crossref] [PubMed]

Malpuech, G.

I. A. Shelykh, M. Kaliteevskii, A. V. Kavokin, S. Brand, R. A. Abram, J. M. Chamberlain, and G. Malpuech, “Interface photonic states at the boundary between a metal and a dielectric Bragg mirror,” Phys. Status Solidi., A Appl. Mater. Sci. 204(2), 522–525 (2007).
[Crossref]

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005).
[Crossref]

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B Condens. Matter Mater. Phys. 72(23), 233102 (2005).
[Crossref]

Mazlin, V. A.

M. A. Kaliteevski, A. A. Lazarenko, N. D. Il’inskaya, Y. M. Zadiranov, M. E. Sasin, D. Zaitsev, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and A. Y. Egorov, “Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity,” Plasmonics 10(2), 281–284 (2015).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Michel, J.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Mikhrin, V. S.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Nahata, A.

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

Pankin, P. S.

Pavlov, S. I.

M. A. Kaliteevski, A. A. Lazarenko, N. D. Il’inskaya, Y. M. Zadiranov, M. E. Sasin, D. Zaitsev, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and A. Y. Egorov, “Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity,” Plasmonics 10(2), 281–284 (2015).
[Crossref]

Qiu, M.

G. Zheng, M. Qiu, F. Xian, Y. Chen, L. Xu, and J. Wang, “Multiple visible optical Tamm states supported by graphene-coated distributed Bragg reflectors,” Appl. Phys. Express 10(9), 092202 (2017).
[Crossref]

Rahman, S. S.-U.

S. S.-U. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Sasin, M. E.

M. A. Kaliteevski, A. A. Lazarenko, N. D. Il’inskaya, Y. M. Zadiranov, M. E. Sasin, D. Zaitsev, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and A. Y. Egorov, “Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity,” Plasmonics 10(2), 281–284 (2015).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Schneider, C.

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8(1), 259–264 (2017).
[Crossref] [PubMed]

Sebald, K.

S. S.-U. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Seisyan, R. P.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Semenov, A.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Shelykh, I.

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005).
[Crossref]

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

I. A. Shelykh, M. Kaliteevskii, A. V. Kavokin, S. Brand, R. A. Abram, J. M. Chamberlain, and G. Malpuech, “Interface photonic states at the boundary between a metal and a dielectric Bragg mirror,” Phys. Status Solidi., A Appl. Mater. Sci. 204(2), 522–525 (2007).
[Crossref]

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B Condens. Matter Mater. Phys. 72(23), 233102 (2005).
[Crossref]

Shukla, M. K.

Sigg, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Song, J.-F.

Stolfi, M.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Sun, H.-B.

Sun, P.

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, ““Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sensor. Actuat B 265, 644–651 (2018).

Sutherland, B.

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58(23), 2436–2438 (1987).
[Crossref] [PubMed]

Svyakhovskiy, S. E.

Tang, T.

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, ““Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sensor. Actuat B 265, 644–651 (2018).

Timofeev, I. V.

Tong, J. K.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Tsurimaki, Y.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Vardeny, Z. V.

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

Vasil’ev, A. P.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Vetrov, S. Y.

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Vyunishev, A. M.

Wang, G.

Wang, J.

G. Zheng, M. Qiu, F. Xian, Y. Chen, L. Xu, and J. Wang, “Multiple visible optical Tamm states supported by graphene-coated distributed Bragg reflectors,” Appl. Phys. Express 10(9), 092202 (2017).
[Crossref]

Wang, K.

Wang, L.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wurdack, M.

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8(1), 259–264 (2017).
[Crossref] [PubMed]

Xian, F.

G. Zheng, M. Qiu, F. Xian, Y. Chen, L. Xu, and J. Wang, “Multiple visible optical Tamm states supported by graphene-coated distributed Bragg reflectors,” Appl. Phys. Express 10(9), 092202 (2017).
[Crossref]

Xu, L.

G. Zheng, M. Qiu, F. Xian, Y. Chen, L. Xu, and J. Wang, “Multiple visible optical Tamm states supported by graphene-coated distributed Bragg reflectors,” Appl. Phys. Express 10(9), 092202 (2017).
[Crossref]

Yang, G.

Yao, J.

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, ““Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sensor. Actuat B 265, 644–651 (2018).

Yao, T.

H.-Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93(2), 819–830 (2003).
[Crossref]

Yi, Y.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Zadiranov, Y. M.

M. A. Kaliteevski, A. A. Lazarenko, N. D. Il’inskaya, Y. M. Zadiranov, M. E. Sasin, D. Zaitsev, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and A. Y. Egorov, “Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity,” Plasmonics 10(2), 281–284 (2015).
[Crossref]

Zaitsev, D.

M. A. Kaliteevski, A. A. Lazarenko, N. D. Il’inskaya, Y. M. Zadiranov, M. E. Sasin, D. Zaitsev, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and A. Y. Egorov, “Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity,” Plasmonics 10(2), 281–284 (2015).
[Crossref]

Zhang, X.-L.

Zheng, G.

G. Zheng, M. Qiu, F. Xian, Y. Chen, L. Xu, and J. Wang, “Multiple visible optical Tamm states supported by graphene-coated distributed Bragg reflectors,” Appl. Phys. Express 10(9), 092202 (2017).
[Crossref]

Zhou, H.

ACS Photonics (1)

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Appl. Phys. Express (1)

G. Zheng, M. Qiu, F. Xian, Y. Chen, L. Xu, and J. Wang, “Multiple visible optical Tamm states supported by graphene-coated distributed Bragg reflectors,” Appl. Phys. Express 10(9), 092202 (2017).
[Crossref]

Appl. Phys. Lett. (3)

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

J. Appl. Phys. (2)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

H.-Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93(2), 819–830 (2003).
[Crossref]

Laser Photonics Rev. (1)

L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev. 6(2), 178–218 (2012).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8(1), 259–264 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. B Condens. Matter Mater. Phys. (3)

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B Condens. Matter Mater. Phys. 72(23), 233102 (2005).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085416 (2009).
[Crossref]

Phys. Rev. Lett. (1)

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58(23), 2436–2438 (1987).
[Crossref] [PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

I. A. Shelykh, M. Kaliteevskii, A. V. Kavokin, S. Brand, R. A. Abram, J. M. Chamberlain, and G. Malpuech, “Interface photonic states at the boundary between a metal and a dielectric Bragg mirror,” Phys. Status Solidi., A Appl. Mater. Sci. 204(2), 522–525 (2007).
[Crossref]

Plasmonics (1)

M. A. Kaliteevski, A. A. Lazarenko, N. D. Il’inskaya, Y. M. Zadiranov, M. E. Sasin, D. Zaitsev, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and A. Y. Egorov, “Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity,” Plasmonics 10(2), 281–284 (2015).
[Crossref]

Rep. Prog. Phys. (1)

E. Maciá, “Exploiting aperiodic designs in nanophotonic devices,” Rep. Prog. Phys. 75(3), 036502 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

S. S.-U. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Sensor. Actuat B (1)

N. Li, T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, ““Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state,” Sensor. Actuat B 265, 644–651 (2018).

Other (2)

S. V. Gaponenko, Introduction to Nanophotonics (Cambridge University, 2010).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Fourier transformation of the index distribution of the PQC structure with K1 = 40.90 μm−1 and K2 = 34.09 μm−1. (b) Reflectivity map of the PQC and the OTSs, and the central wavelengths of the bandgaps locate at 1000 nm and 1200 nm. Normalized electric field intensity (|E|2) of the proposed structure for (c) λOTS1 = 1036.8 nm and (d) λOTS2 = 1237 nm at normal incidence.
Fig. 2
Fig. 2 Reflectivity spectra of the metal-PQC structure (Au layer thickness of 30 nm) as a function of the wavelength and the incident angle for (a) λOTS1 and (b) λOTS2. Reflectivity spectra of the metal-PQC structure as a function of the wavelength and the thickness of the gold film for (c) λOTS1 and (d) λOTS2 at normal incidence.
Fig. 3
Fig. 3 (a) Bandgaps of the PQC structure for TE and TM polarizations at an incident angle of 80°. (b) OTSs of the Au-PQC structure at different incident angle for TE and TM polarizations.
Fig. 4
Fig. 4 (a) OTSs with respect to the incident wavelength and the thickness of the top layer. The thickness of the top layer (Dtop) ranges from 0 to 3000 nm. The colored vertical lines indicate different Dtop. (b) Multiple OTSs for different thickness of the top layer. The colored lines correspond to the colored vertical lines in (a).
Fig. 5
Fig. 5 A three-bandgap structure derived from Eq. (1) with K1 = 40.90 μm−1, K2 = 34.09 μm−1 and K3 = 29.22 μm−1. (a) Index distribution. (b) Three OTSs generated in the Au-PQC structure.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n( z )= n A + n B 2 + n A n B 2 sgn[ i A i sin( K i z+ φ i ) ]
λ m,i = 2π( n A + n B ) m K i
r m r PQC =1

Metrics