Abstract

We have demonstrated an ultra-power-efficient 2 × 2 Si Mach–Zehnder interferometer optical switch with III-V/Si hybrid metal-oxide-semiconductor (MOS) phase shifters. The efficient low-loss phase modulation enables low-crosstalk and broadband switching in conjunction with multimode interference couplers consisting of tapered input and output ports. Owing to the negligible gate leakage current in the hybrid MOS capacitor, the power consumption required for switching is 0.18 nW, approximately 107 times smaller than that of a Si thermo-optic phase shifter. We also demonstrated a switching time of less than 20 ns. The III-V/Si hybrid MOS phase shifter is promising for fabricating large-scale Si photonic integrated circuits that require efficient, low-loss, and high-speed optical phase control.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon slot fin waveguide on bonded double-SOI for a low-power accumulation modulator fabricated by an anisotropic wet etching technique

James Byers, Kapil Debnath, Hideo Arimoto, M. Khaled Husain, Moise Sotto, Zuo Li, Fayong Liu, Kouta Ibukuro, Ali Khokhar, Kian Kiang, Stuart A. Boden, David J. Thomson, Graham T. Reed, and Shinichi Saito
Opt. Express 26(25) 33180-33191 (2018)

Bias-free, low power and optically driven membrane InP switch on SOI for remotely configurable photonic packet switches

M. Tassaert, G. Roelkens, H. J. S. Dorren, D. Van Thourhout, and O. Raz
Opt. Express 19(26) B817-B824 (2011)

Compact and low power operation optical switch using silicon-germanium/silicon hetero-structure waveguide

Shigeaki Sekiguchi, Teruo Kurahashi, Lei Zhu, Kenichi Kawaguchi, and Ken Morito
Opt. Express 20(8) 8949-8958 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Ghiasi, “Large data centers interconnect bottlenecks,” Opt. Express 23(3), 2085–2090 (2015).
    [Crossref] [PubMed]
  2. K. Ishii, T. Inoue, and S. Namiki, “Toward exa-scale optical circuit switch interconnect networks for future datacenter/HPC,” in Next-Generation Optical Networks for Data Centers and Short-Reach Links IV, (International Society for Optics and Photonics, 2017), pp. 1013105.
  3. Po Dong, S. Xiang Liu, L. L. Chandrasekhar, R. Buhl, Aroca, and Young-Kai Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100<formula formulatype=“inline”><tex Notation=“TeX”> $^{+}$</tex></formula>Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
    [Crossref]
  4. L. Chen, C. Doerr, R. Aroca, S. Park, J. Geyer, T. Nielsen, C. Rasmussen, and B. Mikkelsen, “Silicon photonics for 100G-and-beyond coherent transmissions,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1B-1.
  5. Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), 67–72 (2012).
    [Crossref]
  6. A. Biberman, H. L. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
    [Crossref]
  7. Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Lit. Technol. 31(18), 3077–3084 (2013).
    [Crossref]
  8. X. Ma and G.-S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41(11), S16–S23 (2003).
  9. N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
    [Crossref]
  10. N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
    [Crossref]
  11. Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
    [Crossref]
  12. D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23(2), 1159–1175 (2015).
    [Crossref] [PubMed]
  13. B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Light. Tec hnol. 33(4), 768–777 (2015).
    [Crossref]
  14. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
    [Crossref]
  15. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Monolithic 50×50 MEMS silicon photonic switches with microsecond response time,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. M2K-2.
  16. T. J. Seok, N. Quack, S. Han, W. Zhang, R. S. Muller, and M. C. Wu, “64×64 low-loss and broadband digital silicon photonic MEMS switches,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.
    [Crossref]
  17. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
    [Crossref] [PubMed]
  18. L. Chen and Y.-K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
    [Crossref] [PubMed]
  19. J. Van Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–24029 (2009).
    [Crossref] [PubMed]
  20. M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
    [Crossref] [PubMed]
  21. B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
    [Crossref]
  22. N. Dupuis, “CMOS photonic nanosecond-scale switch fabrics,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. 1–3.
  23. N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach–Zehnder silicon photonic switches,” J. Lit. Technol. 33(17), 3597–3606 (2015).
    [Crossref]
  24. J.-H. Han, M. Takenaka, and S. Takagi, “Extremely high modulation efficiency III-V/Si hybrid MOS optical modulator fabricated by direct wafer bonding,” in Electron Devices Meeting (IEEE, 2016), pp. 25–5.
    [Crossref]
  25. J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
    [Crossref]
  26. D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
    [Crossref]
  27. Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. J. I. P. J. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
    [Crossref]
  28. J.-H. Han, M. Takenaka, and S. Takagi, “Study on void reduction in direct wafer bonding using Al2O3/HfO2 bonding interface for high-performance Si high-k MOS optical modulators,” Jpn. J. Appl. Phys. 55(4S), 04EC06 (2016).
    [Crossref]

2017 (3)

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

2016 (3)

J.-H. Han, M. Takenaka, and S. Takagi, “Study on void reduction in direct wafer bonding using Al2O3/HfO2 bonding interface for high-performance Si high-k MOS optical modulators,” Jpn. J. Appl. Phys. 55(4S), 04EC06 (2016).
[Crossref]

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

2015 (4)

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23(2), 1159–1175 (2015).
[Crossref] [PubMed]

A. Ghiasi, “Large data centers interconnect bottlenecks,” Opt. Express 23(3), 2085–2090 (2015).
[Crossref] [PubMed]

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Light. Tec hnol. 33(4), 768–777 (2015).
[Crossref]

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach–Zehnder silicon photonic switches,” J. Lit. Technol. 33(17), 3597–3606 (2015).
[Crossref]

2014 (2)

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

Po Dong, S. Xiang Liu, L. L. Chandrasekhar, R. Buhl, Aroca, and Young-Kai Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100<formula formulatype=“inline”><tex Notation=“TeX”> $^{+}$</tex></formula>Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

2013 (1)

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Lit. Technol. 31(18), 3077–3084 (2013).
[Crossref]

2012 (3)

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), 67–72 (2012).
[Crossref]

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. J. I. P. J. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

L. Chen and Y.-K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
[Crossref] [PubMed]

2011 (2)

M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
[Crossref] [PubMed]

A. Biberman, H. L. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

2010 (2)

Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
[Crossref] [PubMed]

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

2009 (1)

2003 (1)

X. Ma and G.-S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41(11), S16–S23 (2003).

Aroca,

Po Dong, S. Xiang Liu, L. L. Chandrasekhar, R. Buhl, Aroca, and Young-Kai Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100<formula formulatype=“inline”><tex Notation=“TeX”> $^{+}$</tex></formula>Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Aroca, R.

L. Chen, C. Doerr, R. Aroca, S. Park, J. Geyer, T. Nielsen, C. Rasmussen, and B. Mikkelsen, “Silicon photonics for 100G-and-beyond coherent transmissions,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1B-1.

Assefa, S.

Baehr-Jones, T.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Baks, C. W.

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach–Zehnder silicon photonic switches,” J. Lit. Technol. 33(17), 3597–3606 (2015).
[Crossref]

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

Barwicz, T.

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

Bergman, K.

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23(2), 1159–1175 (2015).
[Crossref] [PubMed]

A. Biberman, H. L. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Biberman, A.

A. Biberman, H. L. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Bickford, J. R.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Light. Tec hnol. 33(4), 768–777 (2015).
[Crossref]

Boeuf, F.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

Budd, R.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Light. Tec hnol. 33(4), 768–777 (2015).
[Crossref]

Buhl, R.

Po Dong, S. Xiang Liu, L. L. Chandrasekhar, R. Buhl, Aroca, and Young-Kai Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100<formula formulatype=“inline”><tex Notation=“TeX”> $^{+}$</tex></formula>Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Bunandar, D.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Calhoun, D.

Chan, J.

A. Biberman, H. L. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Chandrasekhar, L. L.

Po Dong, S. Xiang Liu, L. L. Chandrasekhar, R. Buhl, Aroca, and Young-Kai Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100<formula formulatype=“inline”><tex Notation=“TeX”> $^{+}$</tex></formula>Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Chen, C.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Chen, L.

L. Chen and Y.-K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
[Crossref] [PubMed]

L. Chen, C. Doerr, R. Aroca, S. Park, J. Geyer, T. Nielsen, C. Rasmussen, and B. Mikkelsen, “Silicon photonics for 100G-and-beyond coherent transmissions,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1B-1.

Chen, Y.-K.

Cheng, Q.

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Lit. Technol. 31(18), 3077–3084 (2013).
[Crossref]

Doany, F. E.

Doerr, C.

L. Chen, C. Doerr, R. Aroca, S. Park, J. Geyer, T. Nielsen, C. Rasmussen, and B. Mikkelsen, “Silicon photonics for 100G-and-beyond coherent transmissions,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1B-1.

Dupuis, N.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Light. Tec hnol. 33(4), 768–777 (2015).
[Crossref]

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach–Zehnder silicon photonic switches,” J. Lit. Technol. 33(17), 3597–3606 (2015).
[Crossref]

N. Dupuis, “CMOS photonic nanosecond-scale switch fabrics,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. 1–3.

Englund, D.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Fedeli, J. M.

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Fujikata, J.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

Gan, F. J. I. P. J.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. J. I. P. J. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Geyer, J.

L. Chen, C. Doerr, R. Aroca, S. Park, J. Geyer, T. Nielsen, C. Rasmussen, and B. Mikkelsen, “Silicon photonics for 100G-and-beyond coherent transmissions,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1B-1.

Ghiasi, A.

Gill, D. M.

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach–Zehnder silicon photonic switches,” J. Lit. Technol. 33(17), 3597–3606 (2015).
[Crossref]

Green, W. M.

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach–Zehnder silicon photonic switches,” J. Lit. Technol. 33(17), 3597–3606 (2015).
[Crossref]

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
[Crossref] [PubMed]

J. Van Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–24029 (2009).
[Crossref] [PubMed]

Han, J.-H.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

J.-H. Han, M. Takenaka, and S. Takagi, “Study on void reduction in direct wafer bonding using Al2O3/HfO2 bonding interface for high-performance Si high-k MOS optical modulators,” Jpn. J. Appl. Phys. 55(4S), 04EC06 (2016).
[Crossref]

Han, S.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Monolithic 50×50 MEMS silicon photonic switches with microsecond response time,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. M2K-2.

T. J. Seok, N. Quack, S. Han, W. Zhang, R. S. Muller, and M. C. Wu, “64×64 low-loss and broadband digital silicon photonic MEMS switches,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.
[Crossref]

Harris, N. C.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Hasama, T.

Hendry, R.

Hochberg, M.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Hu, Y.

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Ishikawa, H.

Jahnes, C. V.

Kash, J. A.

Kawashima, H.

Khater, M. H.

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

Kiewra, E.

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

Kintaka, K.

Kuchta, D. M.

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach–Zehnder silicon photonic switches,” J. Lit. Technol. 33(17), 3597–3606 (2015).
[Crossref]

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

Kuo, G.-S.

X. Ma and G.-S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41(11), S16–S23 (2003).

Lahini, Y.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Larochelle, H.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Lee, B. G.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Light. Tec hnol. 33(4), 768–777 (2015).
[Crossref]

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach–Zehnder silicon photonic switches,” J. Lit. Technol. 33(17), 3597–3606 (2015).
[Crossref]

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
[Crossref] [PubMed]

Li, L.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. J. I. P. J. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Li, Q.

Lipson, M.

A. Biberman, H. L. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Lira, H. L.

A. Biberman, H. L. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Lloyd, S.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Ma, X.

X. Ma and G.-S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41(11), S16–S23 (2003).

Mikkelsen, B.

L. Chen, C. Doerr, R. Aroca, S. Park, J. Geyer, T. Nielsen, C. Rasmussen, and B. Mikkelsen, “Silicon photonics for 100G-and-beyond coherent transmissions,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1B-1.

Mower, J.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Muller, R. S.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, W. Zhang, R. S. Muller, and M. C. Wu, “64×64 low-loss and broadband digital silicon photonic MEMS switches,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.
[Crossref]

Nielsen, T.

L. Chen, C. Doerr, R. Aroca, S. Park, J. Geyer, T. Nielsen, C. Rasmussen, and B. Mikkelsen, “Silicon photonics for 100G-and-beyond coherent transmissions,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1B-1.

Nikolova, D.

Ophir, N.

A. Biberman, H. L. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Orcutt, J. S.

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach–Zehnder silicon photonic switches,” J. Lit. Technol. 33(17), 3597–3606 (2015).
[Crossref]

Padmaraju, K.

A. Biberman, H. L. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Pang, A.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. J. I. P. J. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Pant, M.

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Park, S.

L. Chen, C. Doerr, R. Aroca, S. Park, J. Geyer, T. Nielsen, C. Rasmussen, and B. Mikkelsen, “Silicon photonics for 100G-and-beyond coherent transmissions,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1B-1.

Penty, R. V.

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Lit. Technol. 31(18), 3077–3084 (2013).
[Crossref]

Pepeljugoski, P.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Light. Tec hnol. 33(4), 768–777 (2015).
[Crossref]

Po Dong,

Po Dong, S. Xiang Liu, L. L. Chandrasekhar, R. Buhl, Aroca, and Young-Kai Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100<formula formulatype=“inline”><tex Notation=“TeX”> $^{+}$</tex></formula>Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Prabhu, M.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Qiu, C.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. J. I. P. J. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Quack, N.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, W. Zhang, R. S. Muller, and M. C. Wu, “64×64 low-loss and broadband digital silicon photonic MEMS switches,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Monolithic 50×50 MEMS silicon photonic switches with microsecond response time,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. M2K-2.

Rasmussen, C.

L. Chen, C. Doerr, R. Aroca, S. Park, J. Geyer, T. Nielsen, C. Rasmussen, and B. Mikkelsen, “Silicon photonics for 100G-and-beyond coherent transmissions,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1B-1.

Reed, G. T.

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Reinholm, C.

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

Rimolo-Donadio, R.

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

Rumley, S.

Rylyakov, A. V.

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach–Zehnder silicon photonic switches,” J. Lit. Technol. 33(17), 3597–3606 (2015).
[Crossref]

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

Samadi, P.

Schares, L.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Light. Tec hnol. 33(4), 768–777 (2015).
[Crossref]

Schow, C. L.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Light. Tec hnol. 33(4), 768–777 (2015).
[Crossref]

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach–Zehnder silicon photonic switches,” J. Lit. Technol. 33(17), 3597–3606 (2015).
[Crossref]

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
[Crossref] [PubMed]

Seok, T. J.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, W. Zhang, R. S. Muller, and M. C. Wu, “64×64 low-loss and broadband digital silicon photonic MEMS switches,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Monolithic 50×50 MEMS silicon photonic switches with microsecond response time,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. M2K-2.

Shank, S. M.

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

Shen, Y.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Sheng, Z.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. J. I. P. J. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Shoji, Y.

Skirlo, S.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Soljacic, M.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Steinbrecher, G. R.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Suda, S.

Sun, X.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Takagi, S.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

J.-H. Han, M. Takenaka, and S. Takagi, “Study on void reduction in direct wafer bonding using Al2O3/HfO2 bonding interface for high-performance Si high-k MOS optical modulators,” Jpn. J. Appl. Phys. 55(4S), 04EC06 (2016).
[Crossref]

Takahashi, S.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

Takenaka, M.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

J.-H. Han, M. Takenaka, and S. Takagi, “Study on void reduction in direct wafer bonding using Al2O3/HfO2 bonding interface for high-performance Si high-k MOS optical modulators,” Jpn. J. Appl. Phys. 55(4S), 04EC06 (2016).
[Crossref]

Thomson, D. J.

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Van Campenhout, J.

Vlasov, Y. A.

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), 67–72 (2012).
[Crossref]

M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
[Crossref] [PubMed]

J. Van Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–24029 (2009).
[Crossref] [PubMed]

Wang, X.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. J. I. P. J. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Wang, Z.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. J. I. P. J. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

White, I. H.

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Lit. Technol. 31(18), 3077–3084 (2013).
[Crossref]

Wonfor, A.

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Lit. Technol. 31(18), 3077–3084 (2013).
[Crossref]

Wong, F. N.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Wu, A.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. J. I. P. J. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Wu, M. C.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Monolithic 50×50 MEMS silicon photonic switches with microsecond response time,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. M2K-2.

T. J. Seok, N. Quack, S. Han, W. Zhang, R. S. Muller, and M. C. Wu, “64×64 low-loss and broadband digital silicon photonic MEMS switches,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.
[Crossref]

Xiang Liu, S.

Po Dong, S. Xiang Liu, L. L. Chandrasekhar, R. Buhl, Aroca, and Young-Kai Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100<formula formulatype=“inline”><tex Notation=“TeX”> $^{+}$</tex></formula>Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Yang, M.

Yoo, B.-W.

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Monolithic 50×50 MEMS silicon photonic switches with microsecond response time,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. M2K-2.

Young-Kai Chen,

Po Dong, S. Xiang Liu, L. L. Chandrasekhar, R. Buhl, Aroca, and Young-Kai Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100<formula formulatype=“inline”><tex Notation=“TeX”> $^{+}$</tex></formula>Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Zhang, W.

T. J. Seok, N. Quack, S. Han, W. Zhang, R. S. Muller, and M. C. Wu, “64×64 low-loss and broadband digital silicon photonic MEMS switches,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.
[Crossref]

Zhao, S.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Zou, S.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. J. I. P. J. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

IEEE Commun. Mag. (2)

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), 67–72 (2012).
[Crossref]

X. Ma and G.-S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41(11), S16–S23 (2003).

IEEE J. Sel. Top. Quantum Electron. (1)

Po Dong, S. Xiang Liu, L. L. Chandrasekhar, R. Buhl, Aroca, and Young-Kai Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100<formula formulatype=“inline”><tex Notation=“TeX”> $^{+}$</tex></formula>Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

IEEE Photonics J. (1)

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. J. I. P. J. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

A. Biberman, H. L. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

J. Light. Tec hnol. (1)

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Light. Tec hnol. 33(4), 768–777 (2015).
[Crossref]

J. Lit. Technol. (3)

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Lit. Technol. 31(18), 3077–3084 (2013).
[Crossref]

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach–Zehnder silicon photonic switches,” J. Lit. Technol. 33(17), 3597–3606 (2015).
[Crossref]

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lit. Technol. 32(4), 743–751 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

J.-H. Han, M. Takenaka, and S. Takagi, “Study on void reduction in direct wafer bonding using Al2O3/HfO2 bonding interface for high-performance Si high-k MOS optical modulators,” Jpn. J. Appl. Phys. 55(4S), 04EC06 (2016).
[Crossref]

Nanophotonics (1)

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Nat. Photonics (3)

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Opt. Express (6)

Optica (1)

Other (6)

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Monolithic 50×50 MEMS silicon photonic switches with microsecond response time,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. M2K-2.

T. J. Seok, N. Quack, S. Han, W. Zhang, R. S. Muller, and M. C. Wu, “64×64 low-loss and broadband digital silicon photonic MEMS switches,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.
[Crossref]

K. Ishii, T. Inoue, and S. Namiki, “Toward exa-scale optical circuit switch interconnect networks for future datacenter/HPC,” in Next-Generation Optical Networks for Data Centers and Short-Reach Links IV, (International Society for Optics and Photonics, 2017), pp. 1013105.

L. Chen, C. Doerr, R. Aroca, S. Park, J. Geyer, T. Nielsen, C. Rasmussen, and B. Mikkelsen, “Silicon photonics for 100G-and-beyond coherent transmissions,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1B-1.

N. Dupuis, “CMOS photonic nanosecond-scale switch fabrics,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. 1–3.

J.-H. Han, M. Takenaka, and S. Takagi, “Extremely high modulation efficiency III-V/Si hybrid MOS optical modulator fabricated by direct wafer bonding,” in Electron Devices Meeting (IEEE, 2016), pp. 25–5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic of 2 × 2 Si optical switch with III-V/Si hybrid MOS phase shifters. (b) Schematic cross-section of III-V/Si hybrid MOS phase shifter. (c) Electron distribution in the accumulation state with Vg of 1.6 V. (d) Fundamental TE optical mode of III-V/Si hybrid MOS phase shifter.
Fig. 2
Fig. 2 (a) Layout and (b) simulated splitting ratio of 3-dB 2 × 2 MMI coupler with tapered input and output ports based on Si rib waveguides.
Fig. 3
Fig. 3 Layout of Si and III-V tapers between Si waveguide and III-V/Si hybrid MOS phase shifter.
Fig. 4
Fig. 4 Fabrication procedure of the 2 × 2 Si MZI optical switch with III-V/Si hybrid MOS phase shifters.
Fig. 5
Fig. 5 (a) Plan-view microscope image of 2 × 2 Si MZI optical switch, (b) SEM image of III-V taper on top of Si waveguide, and (c) cross-sectional TEM image of III-V/Si hybrid MOS phase shifter.
Fig. 6
Fig. 6 C-V curve of III-V/Si hybrid MOS phase shifter.
Fig. 7
Fig. 7 (a). Transmission spectra of asymmetric MZI at different Vg, and (b) phase shift as a function of Vg.
Fig. 8
Fig. 8 (a) Switching characteristics of 2 × 2 Si MZI optical switch with III-V/Si hybrid MOS phase shifters. (b) to (e) IR camera images of output ports in cross and bar states when the optical signal is injected to port 1 or port 2.
Fig. 9
Fig. 9 Measured transmission spectra of 2 × 2 Si MZI optical switch in the cross and bar states with the optical signal input from (a) port 1 and (b) port 2.
Fig. 10
Fig. 10 (a) I–V curve of the III-V/Si hybrid MOS capacitor and (b) relationship between power consumption and phase shift of the III-V/Si hybrid MOS phase shifter.
Fig. 11
Fig. 11 (a) Pseudorandom driving electrical signal and optical output waveform, (b) rising and (c) falling edge of the 2 × 2 Si MZI optical switch.

Metrics