Abstract

We compare different excitation and collection configurations based on free-space optics and evanescently coupled tapered fibers for both lasing and fluorescence emission from dye-doped doped polymeric whispering gallery mode (WGM) micro-disk lasers. The focus of the comparison is on the lasing threshold and efficiency of light collection. With the aid of optical fibers, we localize the pump energy to the cavity-mode volume and reduce the necessary pump energy to achieve lasing by two orders of magnitude. When using fibers for detection, the collection efficiency is enhanced by four orders of magnitude compared to a free-space read-out perpendicular to the resonator plane. By enhancing the collection efficiency we are able to record a pronounced modulation of the dye fluorescence under continuous wave (cw) pumping conditions evoked by coupling to the WGMs. Alternatively to fibers as a collection tool, we present a read-out technique based on the detection of in-plane radiated light. We show that this method is especially beneficial in an aqueous environment as well as for size-reduced micro-lasers where radiation is strongly pronounced. Furthermore, we show that this technique allows for the assignment of transverse electric (TE) and transverse magnetic (TM) polarization to the observed fundamental modes in a water environment by performing polarization-dependent photoluminescence (PL) spectroscopy. We emphasize the importance of the polarization determination for sensing applications and verify expected differences in the bulk refractive index sensitivity for TE and TM WGMs experimentally.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance

Sarah Krämmer, Sanaz Rastjoo, Tobias Siegle, Sentayehu F. Wondimu, Carolin Klusmann, Christian Koos, and Heinz Kalt
Opt. Express 25(7) 7884-7894 (2017)

Enhancing the radiation efficiency of dye doped whispering gallery mode microresonators

Alexandre François, Kristopher J. Rowland, Shahraam Afshar, V., Matthew R. Henderson, and Tanya M. Monro
Opt. Express 21(19) 22566-22577 (2013)

Polarization characteristics of Whispering-Gallery-Mode fiber lasers based on evanescent-wave-coupled gain

Yuan-Xian Zhang, Xiao-Yun Pu, Li Feng, De-Yu Han, and Yi-Tao Ren
Opt. Express 21(10) 12617-12628 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3(9), 1136–1162 (2015).
    [Crossref]
  2. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
    [Crossref]
  3. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
    [Crossref] [PubMed]
  4. T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
    [Crossref]
  5. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
    [Crossref] [PubMed]
  6. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
    [Crossref] [PubMed]
  7. R. Henriet, G. Lin, A. Coillet, M. Jacquot, L. Furfaro, L. Larger, and Y. K. Chembo, “Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor,” Opt. Lett. 40(7), 1567–1570 (2015).
    [Crossref] [PubMed]
  8. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007).
    [Crossref] [PubMed]
  9. J. Zhu, S. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
    [Crossref] [PubMed]
  10. C.-L. Zou, F.-J. Shu, F.-W. Sun, Z.-J. Gong, Z.-F. Han, and G.-C. Guo, “Theory of free space coupling to high-Q whispering gallery modes,” Opt. Express 21(8), 9982–9995 (2013).
    [Crossref] [PubMed]
  11. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997).
    [Crossref] [PubMed]
  12. T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
    [Crossref]
  13. U. Bog, T. Laue, T. Grossmann, T. Beck, T. Wienhold, B. Richter, M. Hirtz, H. Fuchs, H. Kalt, and T. Mappes, “On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink,” Lab Chip 13(14), 2701–2707 (2013).
    [Crossref] [PubMed]
  14. S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
    [Crossref] [PubMed]
  15. J. Wiersig and M. Hentschel, “Unidirectional light emission from high- Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
    [Crossref]
  16. Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
    [Crossref] [PubMed]
  17. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
    [Crossref]
  18. J. Wiersig and M. Hentschel, “Unidirectional light emission from high- Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
    [Crossref]
  19. X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012).
    [PubMed]
  20. C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
    [Crossref] [PubMed]
  21. A. François, K. J. Rowland, S. Afshar, V. M. R. Henderson, and T. M. Monro, “Enhancing the radiation efficiency of dye doped whispering gallery modemicroresonators,” Opt. Express 21(19), 22566–22577 (2013).
    [Crossref] [PubMed]
  22. T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
    [Crossref] [PubMed]
  23. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
    [Crossref] [PubMed]
  24. S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39(17), 5134–5137 (2014).
    [Crossref] [PubMed]
  25. Y. X. Zhang, X. Y. Pu, L. Feng, D. Y. Han, and Y. T. Ren, “Polarization characteristics of Whispering-Gallery-Mode fiber lasers based on evanescent-wave-coupled gain,” Opt. Express 21(10), 12617–12628 (2013).
    [Crossref] [PubMed]
  26. V. Duong Ta, R. Chen, L. Ma, Y. Jun Ying, and H. Dong Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
    [Crossref]
  27. Y. Zhi, J. Valenta, and A. Meldrum, “Structure of whispering gallery mode spectrum of microspheres coated with fluorescent silicon quantum dots,” J. Opt. Soc. Am. B 30(11), 3079–3085 (2013).
    [Crossref]
  28. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B-Optical Phys. 23(7), 1381–1389 (2006).
  29. I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B 24(3), 653–659 (2007).
    [Crossref]
  30. M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of Protein Orientation on the Silica Microsphere Surface Using Transverse Electric/Transverse Magnetic Whispering Gallery Modes,” Biophys. J. 92(12), 4466–4472 (2007).
    [Crossref] [PubMed]
  31. J.-W. Hoste, S. Werquin, T. Claes, and P. Bienstman, “Conformational analysis of proteins with a dual polarisation silicon microring,” Opt. Express 22(3), 2807–2820 (2014).
    [Crossref] [PubMed]
  32. T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
    [Crossref]
  33. T. Beck, M. Mai, T. Grossmann, T. Wienhold, M. Hauser, T. Mappes, and H. Kalt, “High-Q polymer resonators with spatially controlled photo-functionalization for biosensing applications,” Appl. Phys. Lett. 102(12), 121108 (2013).
    [Crossref]
  34. R. Symes, M. Sayer Robert, and P. Reid Jonathan, “Cavity enhanced droplet spectroscopy: Principles, perspectives and and prospects,” Phys. Chem. Chem. Phys. 6(3), 474–487 (2004).
    [Crossref]
  35. T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
    [Crossref]
  36. T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
    [Crossref] [PubMed]
  37. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  38. K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72(20), 205318 (2005).
    [Crossref]
  39. I. Chremmos, O. Schwelb, and N. Uzunoglu, eds., Photonic Microresonator Research and Applications (Springer, 2010).
  40. F. P. Schäfer, ed., Dye Lasers (Springer, 1990).
  41. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high- Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
    [Crossref]
  42. A. Flatae, T. Grossmann, T. Beck, S. Wiegele, and H. Kalt, “Strongly confining bare core CdTe quantum dots in polymeric microdisk resonators,” APL Mater. 2(1), 012107 (2014).
    [Crossref]
  43. R. Chen, H. D. Sun, H. D. Sun, and V. D. Ta, “Single Mode Lasing from Hybrid Hemispherical Microresonators,” Sci. Rep. 2(1), 244 (2012).
    [Crossref] [PubMed]
  44. B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78(23), 235306 (2008).
    [Crossref]
  45. E. M. Purcell, “Spontaneous Emission Probablities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).
  46. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
    [Crossref]
  47. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
    [Crossref] [PubMed]
  48. G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K. Y. Jen, “Modeling photobleaching of optical chromophores: Light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
    [Crossref]
  49. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [Crossref] [PubMed]
  50. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
    [Crossref] [PubMed]

2017 (2)

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[Crossref] [PubMed]

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

2015 (6)

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

J. Zhu, S. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref] [PubMed]

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3(9), 1136–1162 (2015).
[Crossref]

R. Henriet, G. Lin, A. Coillet, M. Jacquot, L. Furfaro, L. Larger, and Y. K. Chembo, “Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor,” Opt. Lett. 40(7), 1567–1570 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (10)

Y. X. Zhang, X. Y. Pu, L. Feng, D. Y. Han, and Y. T. Ren, “Polarization characteristics of Whispering-Gallery-Mode fiber lasers based on evanescent-wave-coupled gain,” Opt. Express 21(10), 12617–12628 (2013).
[Crossref] [PubMed]

V. Duong Ta, R. Chen, L. Ma, Y. Jun Ying, and H. Dong Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

Y. Zhi, J. Valenta, and A. Meldrum, “Structure of whispering gallery mode spectrum of microspheres coated with fluorescent silicon quantum dots,” J. Opt. Soc. Am. B 30(11), 3079–3085 (2013).
[Crossref]

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

A. François, K. J. Rowland, S. Afshar, V. M. R. Henderson, and T. M. Monro, “Enhancing the radiation efficiency of dye doped whispering gallery modemicroresonators,” Opt. Express 21(19), 22566–22577 (2013).
[Crossref] [PubMed]

T. Beck, M. Mai, T. Grossmann, T. Wienhold, M. Hauser, T. Mappes, and H. Kalt, “High-Q polymer resonators with spatially controlled photo-functionalization for biosensing applications,” Appl. Phys. Lett. 102(12), 121108 (2013).
[Crossref]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[Crossref] [PubMed]

C.-L. Zou, F.-J. Shu, F.-W. Sun, Z.-J. Gong, Z.-F. Han, and G.-C. Guo, “Theory of free space coupling to high-Q whispering gallery modes,” Opt. Express 21(8), 9982–9995 (2013).
[Crossref] [PubMed]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

U. Bog, T. Laue, T. Grossmann, T. Beck, T. Wienhold, B. Richter, M. Hirtz, H. Fuchs, H. Kalt, and T. Mappes, “On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink,” Lab Chip 13(14), 2701–2707 (2013).
[Crossref] [PubMed]

2012 (2)

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012).
[PubMed]

R. Chen, H. D. Sun, H. D. Sun, and V. D. Ta, “Single Mode Lasing from Hybrid Hemispherical Microresonators,” Sci. Rep. 2(1), 244 (2012).
[Crossref] [PubMed]

2010 (3)

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

2008 (4)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78(23), 235306 (2008).
[Crossref]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K. Y. Jen, “Modeling photobleaching of optical chromophores: Light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

2007 (4)

2006 (3)

J. Wiersig and M. Hentschel, “Unidirectional light emission from high- Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
[Crossref]

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B-Optical Phys. 23(7), 1381–1389 (2006).

J. Wiersig and M. Hentschel, “Unidirectional light emission from high- Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
[Crossref]

2005 (3)

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[Crossref] [PubMed]

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72(20), 205318 (2005).
[Crossref]

2004 (2)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high- Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

R. Symes, M. Sayer Robert, and P. Reid Jonathan, “Cavity enhanced droplet spectroscopy: Principles, perspectives and and prospects,” Phys. Chem. Chem. Phys. 6(3), 474–487 (2004).
[Crossref]

2003 (2)

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

1998 (1)

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

1997 (1)

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous Emission Probablities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

Afshar, S.

Andreakou, P.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Arnold, S.

I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B 24(3), 653–659 (2007).
[Crossref]

M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of Protein Orientation on the Silica Microsphere Surface Using Transverse Electric/Transverse Magnetic Whispering Gallery Modes,” Biophys. J. 92(12), 4466–4472 (2007).
[Crossref] [PubMed]

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B-Optical Phys. 23(7), 1381–1389 (2006).

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

Bacher, A.

Beck, T.

A. Flatae, T. Grossmann, T. Beck, S. Wiegele, and H. Kalt, “Strongly confining bare core CdTe quantum dots in polymeric microdisk resonators,” APL Mater. 2(1), 012107 (2014).
[Crossref]

T. Beck, M. Mai, T. Grossmann, T. Wienhold, M. Hauser, T. Mappes, and H. Kalt, “High-Q polymer resonators with spatially controlled photo-functionalization for biosensing applications,” Appl. Phys. Lett. 102(12), 121108 (2013).
[Crossref]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

U. Bog, T. Laue, T. Grossmann, T. Beck, T. Wienhold, B. Richter, M. Hirtz, H. Fuchs, H. Kalt, and T. Mappes, “On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink,” Lab Chip 13(14), 2701–2707 (2013).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Becker, H.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Bienstman, P.

Birks, T. A.

Bog, U.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, T. Laue, T. Grossmann, T. Beck, T. Wienhold, B. Richter, M. Hirtz, H. Fuchs, H. Kalt, and T. Mappes, “On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink,” Lab Chip 13(14), 2701–2707 (2013).
[Crossref] [PubMed]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

Borselli, M.

Bradley, D. D. C.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Brambilla, G.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Capasso, F.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
[Crossref] [PubMed]

Carmon, T.

J. Zhu, S. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Chang, R. K.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

Chembo, Y. K.

Chen, R.

V. Duong Ta, R. Chen, L. Ma, Y. Jun Ying, and H. Dong Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

R. Chen, H. D. Sun, H. D. Sun, and V. D. Ta, “Single Mode Lasing from Hybrid Hemispherical Microresonators,” Sci. Rep. 2(1), 244 (2012).
[Crossref] [PubMed]

Chern, G. D.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

Cheung, G.

Cheung, K. C.

Christiansen, M. B.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Chrostowski, L.

Claes, T.

Clemmen, S.

Coillet, A.

Dale, P. S.

Dalton, L. R.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K. Y. Jen, “Modeling photobleaching of optical chromophores: Light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Diehl, L.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
[Crossref] [PubMed]

Ding, M.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Dong, C. H.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012).
[PubMed]

Dong, M.

J. Zhu, S. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref] [PubMed]

Dong Sun, H.

V. Duong Ta, R. Chen, L. Ma, Y. Jun Ying, and H. Dong Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

Donzella, V.

Duong Ta, V.

V. Duong Ta, R. Chen, L. Ma, Y. Jun Ying, and H. Dong Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

Edamura, T.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
[Crossref] [PubMed]

Eschenbaum, C.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Fan, X.

Farsi, A.

Feng, L.

Flatae, A.

A. Flatae, T. Grossmann, T. Beck, S. Wiegele, and H. Kalt, “Strongly confining bare core CdTe quantum dots in polymeric microdisk resonators,” APL Mater. 2(1), 012107 (2014).
[Crossref]

Flueckiger, J.

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

François, A.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

A. François, K. J. Rowland, S. Afshar, V. M. R. Henderson, and T. M. Monro, “Enhancing the radiation efficiency of dye doped whispering gallery modemicroresonators,” Opt. Express 21(19), 22566–22577 (2013).
[Crossref] [PubMed]

Friedmann, C.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

Fuchs, H.

U. Bog, T. Laue, T. Grossmann, T. Beck, T. Wienhold, B. Richter, M. Hirtz, H. Fuchs, H. Kalt, and T. Mappes, “On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink,” Lab Chip 13(14), 2701–2707 (2013).
[Crossref] [PubMed]

Fuchs, J.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Furfaro, L.

Gaeta, A. L.

Gayral, B.

B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78(23), 235306 (2008).
[Crossref]

Gérard, J. M.

B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78(23), 235306 (2008).
[Crossref]

Gohn-Kreuz, C.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Gong, Q.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012).
[PubMed]

Gong, Z.-J.

Grist, S. M.

Grivas, C.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Grossmann, T.

A. Flatae, T. Grossmann, T. Beck, S. Wiegele, and H. Kalt, “Strongly confining bare core CdTe quantum dots in polymeric microdisk resonators,” APL Mater. 2(1), 012107 (2014).
[Crossref]

T. Beck, M. Mai, T. Grossmann, T. Wienhold, M. Hauser, T. Mappes, and H. Kalt, “High-Q polymer resonators with spatially controlled photo-functionalization for biosensing applications,” Appl. Phys. Lett. 102(12), 121108 (2013).
[Crossref]

U. Bog, T. Laue, T. Grossmann, T. Beck, T. Wienhold, B. Richter, M. Hirtz, H. Fuchs, H. Kalt, and T. Mappes, “On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink,” Lab Chip 13(14), 2701–2707 (2013).
[Crossref] [PubMed]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Guo, G.-C.

Gupta, G.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K. Y. Jen, “Modeling photobleaching of optical chromophores: Light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Hall, J. M. M.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Han, D. Y.

Han, Z.-F.

Hauser, M.

T. Beck, M. Mai, T. Grossmann, T. Wienhold, M. Hauser, T. Mappes, and H. Kalt, “High-Q polymer resonators with spatially controlled photo-functionalization for biosensing applications,” Appl. Phys. Lett. 102(12), 121108 (2013).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

He, L.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012).
[PubMed]

Henderson, V. M. R.

Henriet, R.

Hentschel, M.

J. Wiersig and M. Hentschel, “Unidirectional light emission from high- Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
[Crossref]

J. Wiersig and M. Hentschel, “Unidirectional light emission from high- Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
[Crossref]

Hirtz, M.

U. Bog, T. Laue, T. Grossmann, T. Beck, T. Wienhold, B. Richter, M. Hirtz, H. Fuchs, H. Kalt, and T. Mappes, “On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink,” Lab Chip 13(14), 2701–2707 (2013).
[Crossref] [PubMed]

Holler, S.

Hoste, J.-W.

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

Jacques, F.

Jacquot, M.

Jen, A. K. Y.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K. Y. Jen, “Modeling photobleaching of optical chromophores: Light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Jiang, X. F.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012).
[PubMed]

Johnson, A. R.

Johnson, N. M.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

Johnson, T.

Jun Ying, Y.

V. Duong Ta, R. Chen, L. Ma, Y. Jun Ying, and H. Dong Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

Kalt, H.

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

A. Flatae, T. Grossmann, T. Beck, S. Wiegele, and H. Kalt, “Strongly confining bare core CdTe quantum dots in polymeric microdisk resonators,” APL Mater. 2(1), 012107 (2014).
[Crossref]

T. Beck, M. Mai, T. Grossmann, T. Wienhold, M. Hauser, T. Mappes, and H. Kalt, “High-Q polymer resonators with spatially controlled photo-functionalization for biosensing applications,” Appl. Phys. Lett. 102(12), 121108 (2013).
[Crossref]

U. Bog, T. Laue, T. Grossmann, T. Beck, T. Wienhold, B. Richter, M. Hirtz, H. Fuchs, H. Kalt, and T. Mappes, “On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink,” Lab Chip 13(14), 2701–2707 (2013).
[Crossref] [PubMed]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Kan, H.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
[Crossref] [PubMed]

Karl, M.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Keng, D.

M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of Protein Orientation on the Silica Microsphere Surface Using Transverse Electric/Transverse Magnetic Whispering Gallery Modes,” Biophys. J. 92(12), 4466–4472 (2007).
[Crossref] [PubMed]

Khan, M. H.

Khoshsima, M.

Kippenberg, T. J.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high- Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

Kirk, J. T.

Klinkhammer, S.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Klusmann, C.

Kneissl, M.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

Knight, J. C.

Koeber, S.

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Koos, C.

Kraemmer, S.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

Krämmer, S.

Krishna, S.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72(20), 205318 (2005).
[Crossref]

Kristensen, A.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Lagoudakis, P.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Lamont, M. R. E.

Larger, L.

Laue, T.

U. Bog, T. Laue, T. Grossmann, T. Beck, T. Wienhold, B. Richter, M. Hirtz, H. Fuchs, H. Kalt, and T. Mappes, “On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink,” Lab Chip 13(14), 2701–2707 (2013).
[Crossref] [PubMed]

Lemmer, U.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Levy, J. S.

Li, B. B.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012).
[PubMed]

Li, C.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Li, Y.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012).
[PubMed]

Liao, Y.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K. Y. Jen, “Modeling photobleaching of optical chromophores: Light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Lidzey, D. G.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Lin, G.

Lipson, M.

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Luo, J.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K. Y. Jen, “Modeling photobleaching of optical chromophores: Light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Ma, L.

V. Duong Ta, R. Chen, L. Ma, Y. Jun Ying, and H. Dong Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

Mai, M.

T. Beck, M. Mai, T. Grossmann, T. Wienhold, M. Hauser, T. Mappes, and H. Kalt, “High-Q polymer resonators with spatially controlled photo-functionalization for biosensing applications,” Appl. Phys. Lett. 102(12), 121108 (2013).
[Crossref]

Maleki, L.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

Manna, L.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Mappes, T.

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

T. Beck, M. Mai, T. Grossmann, T. Wienhold, M. Hauser, T. Mappes, and H. Kalt, “High-Q polymer resonators with spatially controlled photo-functionalization for biosensing applications,” Appl. Phys. Lett. 102(12), 121108 (2013).
[Crossref]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

U. Bog, T. Laue, T. Grossmann, T. Beck, T. Wienhold, B. Richter, M. Hirtz, H. Fuchs, H. Kalt, and T. Mappes, “On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink,” Lab Chip 13(14), 2701–2707 (2013).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Meldrum, A.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Y. Zhi, J. Valenta, and A. Meldrum, “Structure of whispering gallery mode spectrum of microspheres coated with fluorescent silicon quantum dots,” J. Opt. Soc. Am. B 30(11), 3079–3085 (2013).
[Crossref]

Monro, T. M.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

A. François, K. J. Rowland, S. Afshar, V. M. R. Henderson, and T. M. Monro, “Enhancing the radiation efficiency of dye doped whispering gallery modemicroresonators,” Opt. Express 21(19), 22566–22577 (2013).
[Crossref] [PubMed]

Nienhaus, G. U.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Noto, M.

M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of Protein Orientation on the Silica Microsphere Surface Using Transverse Electric/Transverse Magnetic Whispering Gallery Modes,” Biophys. J. 92(12), 4466–4472 (2007).
[Crossref] [PubMed]

Okawachi, Y.

Özdemir, S. K.

J. Zhu, S. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref] [PubMed]

Painter, O.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72(20), 205318 (2005).
[Crossref]

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[Crossref] [PubMed]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Peng, B.

J. Zhu, S. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref] [PubMed]

Pflügl, C.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
[Crossref] [PubMed]

Pu, X. Y.

Purcell, E. M.

E. M. Purcell, “Spontaneous Emission Probablities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

Qi, M.

Ramelow, S.

Rastjoo, S.

Ratner, D. M.

Reid Jonathan, P.

R. Symes, M. Sayer Robert, and P. Reid Jonathan, “Cavity enhanced droplet spectroscopy: Principles, perspectives and and prospects,” Phys. Chem. Chem. Phys. 6(3), 474–487 (2004).
[Crossref]

Ren, Y. T.

Reynolds, T.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Richter, B.

U. Bog, T. Laue, T. Grossmann, T. Beck, T. Wienhold, B. Richter, M. Hirtz, H. Fuchs, H. Kalt, and T. Mappes, “On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink,” Lab Chip 13(14), 2701–2707 (2013).
[Crossref] [PubMed]

Riesen, N.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Rokhsari, H.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Rowland, K. J.

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

Sayer Robert, M.

R. Symes, M. Sayer Robert, and P. Reid Jonathan, “Cavity enhanced droplet spectroscopy: Principles, perspectives and and prospects,” Phys. Chem. Chem. Phys. 6(3), 474–487 (2004).
[Crossref]

Scherer, A.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Schleede, S.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Schmidt, S.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Schmidt, S. A.

Seidel, D.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

Shen, H.

Shi, W.

Shu, F.-J.

Siegle, T.

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Skolnick, M. S.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Solomatine, I.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high- Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

Srinivasan, K.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72(20), 205318 (2005).
[Crossref]

Steier, W. H.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K. Y. Jen, “Modeling photobleaching of optical chromophores: Light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Stintz, A.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72(20), 205318 (2005).
[Crossref]

Stone, A. D.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

Sun, F. W.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012).
[PubMed]

Sun, F.-W.

Sun, H.

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3(9), 1136–1162 (2015).
[Crossref]

Sun, H. D.

R. Chen, H. D. Sun, H. D. Sun, and V. D. Ta, “Single Mode Lasing from Hybrid Hemispherical Microresonators,” Sci. Rep. 2(1), 244 (2012).
[Crossref] [PubMed]

R. Chen, H. D. Sun, H. D. Sun, and V. D. Ta, “Single Mode Lasing from Hybrid Hemispherical Microresonators,” Sci. Rep. 2(1), 244 (2012).
[Crossref] [PubMed]

Suter, J. D.

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Symes, R.

R. Symes, M. Sayer Robert, and P. Reid Jonathan, “Cavity enhanced droplet spectroscopy: Principles, perspectives and and prospects,” Phys. Chem. Chem. Phys. 6(3), 474–487 (2004).
[Crossref]

Ta, V. D.

R. Chen, H. D. Sun, H. D. Sun, and V. D. Ta, “Single Mode Lasing from Hybrid Hemispherical Microresonators,” Sci. Rep. 2(1), 244 (2012).
[Crossref] [PubMed]

Talebi Fard, S.

Teraoka, I.

I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B 24(3), 653–659 (2007).
[Crossref]

M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of Protein Orientation on the Silica Microsphere Surface Using Transverse Electric/Transverse Magnetic Whispering Gallery Modes,” Biophys. J. 92(12), 4466–4472 (2007).
[Crossref] [PubMed]

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B-Optical Phys. 23(7), 1381–1389 (2006).

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

Tomes, M.

J. Zhu, S. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref] [PubMed]

Tureci, H. E.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

Unterhinninghofen, J.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
[Crossref] [PubMed]

Vahala, K. J.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high- Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

Valenta, J.

Vannahme, C.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Virgili, T.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Vollmer, F.

Walker, S.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Wang, P.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Wang, Q. J.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
[Crossref] [PubMed]

Wang, Y.

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3(9), 1136–1162 (2015).
[Crossref]

Weinzierl, U.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Werquin, S.

White, I. M.

Whittaker, D. M.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Wiegele, S.

A. Flatae, T. Grossmann, T. Beck, S. Wiegele, and H. Kalt, “Strongly confining bare core CdTe quantum dots in polymeric microdisk resonators,” APL Mater. 2(1), 012107 (2014).
[Crossref]

Wienhold, T.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

U. Bog, T. Laue, T. Grossmann, T. Beck, T. Wienhold, B. Richter, M. Hirtz, H. Fuchs, H. Kalt, and T. Mappes, “On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink,” Lab Chip 13(14), 2701–2707 (2013).
[Crossref] [PubMed]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

T. Beck, M. Mai, T. Grossmann, T. Wienhold, M. Hauser, T. Mappes, and H. Kalt, “High-Q polymer resonators with spatially controlled photo-functionalization for biosensing applications,” Appl. Phys. Lett. 102(12), 121108 (2013).
[Crossref]

Wiersig, J.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
[Crossref] [PubMed]

J. Wiersig and M. Hentschel, “Unidirectional light emission from high- Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
[Crossref]

J. Wiersig and M. Hentschel, “Unidirectional light emission from high- Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
[Crossref]

Wondimu, S. F.

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Xiao, S.

Xiao, Y. F.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012).
[PubMed]

Yamanishi, M.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
[Crossref] [PubMed]

Yan, C.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
[Crossref] [PubMed]

Yang, L.

J. Zhu, S. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref] [PubMed]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012).
[PubMed]

Yang, S.

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3(9), 1136–1162 (2015).
[Crossref]

Yilmaz, H.

J. Zhu, S. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref] [PubMed]

Yu, N.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
[Crossref] [PubMed]

Zhang, Y. X.

Zhi, Y.

Zhu, H.

Zhu, J.

J. Zhu, S. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref] [PubMed]

Zou, C. L.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012).
[PubMed]

Zou, C.-L.

Adv. Mater. (1)

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012).
[PubMed]

Adv. Opt. Mater. (1)

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3(9), 1136–1162 (2015).
[Crossref]

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

APL Mater. (1)

A. Flatae, T. Grossmann, T. Beck, S. Wiegele, and H. Kalt, “Strongly confining bare core CdTe quantum dots in polymeric microdisk resonators,” APL Mater. 2(1), 012107 (2014).
[Crossref]

Appl. Phys. Lett. (6)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high- Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

T. Beck, M. Mai, T. Grossmann, T. Wienhold, M. Hauser, T. Mappes, and H. Kalt, “High-Q polymer resonators with spatially controlled photo-functionalization for biosensing applications,” Appl. Phys. Lett. 102(12), 121108 (2013).
[Crossref]

Biophys. J. (1)

M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of Protein Orientation on the Silica Microsphere Surface Using Transverse Electric/Transverse Magnetic Whispering Gallery Modes,” Biophys. J. 92(12), 4466–4472 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Opt. Soc. Am. B-Optical Phys. (1)

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B-Optical Phys. 23(7), 1381–1389 (2006).

J. Phys. Chem. C (1)

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K. Y. Jen, “Modeling photobleaching of optical chromophores: Light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Lab Chip (2)

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, T. Laue, T. Grossmann, T. Beck, T. Wienhold, B. Richter, M. Hirtz, H. Fuchs, H. Kalt, and T. Mappes, “On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink,” Lab Chip 13(14), 2701–2707 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

V. Duong Ta, R. Chen, L. Ma, Y. Jun Ying, and H. Dong Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Light Sci. Appl. (1)

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

Nat. Commun. (1)

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Nature (1)

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Opt. Express (11)

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[Crossref] [PubMed]

J.-W. Hoste, S. Werquin, T. Claes, and P. Bienstman, “Conformational analysis of proteins with a dual polarisation silicon microring,” Opt. Express 22(3), 2807–2820 (2014).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[Crossref] [PubMed]

C.-L. Zou, F.-J. Shu, F.-W. Sun, Z.-J. Gong, Z.-F. Han, and G.-C. Guo, “Theory of free space coupling to high-Q whispering gallery modes,” Opt. Express 21(8), 9982–9995 (2013).
[Crossref] [PubMed]

Y. X. Zhang, X. Y. Pu, L. Feng, D. Y. Han, and Y. T. Ren, “Polarization characteristics of Whispering-Gallery-Mode fiber lasers based on evanescent-wave-coupled gain,” Opt. Express 21(10), 12617–12628 (2013).
[Crossref] [PubMed]

A. François, K. J. Rowland, S. Afshar, V. M. R. Henderson, and T. M. Monro, “Enhancing the radiation efficiency of dye doped whispering gallery modemicroresonators,” Opt. Express 21(19), 22566–22577 (2013).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Chem. Chem. Phys. (1)

R. Symes, M. Sayer Robert, and P. Reid Jonathan, “Cavity enhanced droplet spectroscopy: Principles, perspectives and and prospects,” Phys. Chem. Chem. Phys. 6(3), 474–487 (2004).
[Crossref]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous Emission Probablities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (2)

J. Wiersig and M. Hentschel, “Unidirectional light emission from high- Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
[Crossref]

J. Wiersig and M. Hentschel, “Unidirectional light emission from high- Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
[Crossref]

Phys. Rev. B (2)

B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78(23), 235306 (2008).
[Crossref]

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72(20), 205318 (2005).
[Crossref]

Phys. Rev. Lett. (2)

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. U.S.A. 107(52), 22407–22412 (2010).
[Crossref] [PubMed]

Sci. Rep. (2)

J. Zhu, S. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref] [PubMed]

R. Chen, H. D. Sun, H. D. Sun, and V. D. Ta, “Single Mode Lasing from Hybrid Hemispherical Microresonators,” Sci. Rep. 2(1), 244 (2012).
[Crossref] [PubMed]

Other (2)

I. Chremmos, O. Schwelb, and N. Uzunoglu, eds., Photonic Microresonator Research and Applications (Springer, 2010).

F. P. Schäfer, ed., Dye Lasers (Springer, 1990).

Supplementary Material (1)

NameDescription
» Visualization 1       Polymeric micro-disk laser evanescently excited via a tapered glass fiber with a pulsed laser at 532 nm and a repetition rate of 2 Hz. The lasing emission is blocked with a filter. Scattered excitation light is visible at the resonator rim.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Excitation (grey color) and collection (red color) methods for active micro-cavities: Excitation is either performed in a free-space configuration or by evanescent field coupling using tapered fibers. Resulting WGM emission is collected with either a microscope or aligned tapered fibers and guided to a detector consisting of a grating spectrometer equipped with a CCD camera.
Fig. 2
Fig. 2 Free-space excitation of a micro-laser and free-space collection of the WGM emission perpendicular to the resonator plane. Imperfections at the resonator rim and corresponding alignment with respect to the spectrometer entrance slit greatly enhance the SNR as in case (a) compared to the case of a resonator without imperfections and missing alignment (b).
Fig. 3
Fig. 3 (a): Typical PL spectrum of a PM597-doped micro-cavity excited above lasing threshold with fundamental and higher-order modes (recorded with method I). The lasing threshold is determined from the integrated PL intensity of the lasing mode arising at the lowest pump energy (marked in red color). (b): Using fiber excitation and collection results in a significant decrease of the lasing threshold and increase of the collection efficiency; note the dimension on the x-axis changed to pJ (c). Input-output curves for the different measurement configurations demonstrating significant differences in the resulting collection efficiencies (d).
Fig. 4
Fig. 4 Transmission spectrum of a tapered glass fiber aligned to the rim of a dye-doped micro-disk. Sharp dips corresponding to the WGM resonances are observed. Q factors as high as 6.5·104 have been determined from the resonance linewidths.
Fig. 5
Fig. 5 Fluorescence emission of dye-doped micro-disks under cw excitation: Method I in (a), IV in (b) and III in (c). Whereas in case (a) the expected WGM-modulation is not visible due to the large non-modulated spontaneous dye emission, in (b) and (c) a clear WGM-modulated dye emission with the expected free-spectral range is observed.
Fig. 6
Fig. 6 Input-output curves for micro-lasers with diameters of D = 50 µm (a) and D = 20 µm (b) recorded in aqueous environment. In-plane (red color) collection efficiencies are enhanced compared to the collection from the top (black color). As method IV is radiation-based, it is even more advantageous for smaller sized resonators (b) with enhanced radiation losses.
Fig. 7
Fig. 7 (a): PL spectrum of a micro-laser in aqueous environment. Fundamental modes separated by the FSR are visible. From polarization-dependent PL spectroscopy we find a 180°-periodic intensity dependence for adjacent modes (b). From the phase shift of 90° and the polarizer’s orientation we can identify TE and TM lasing peaks.
Fig. 8
Fig. 8 Simulated and experimentally determined BRIS of micro-resonators with D = 20 µm in method IV. Both simulated and experimental data have been fitted with straight lines. The uncertainties of the BRIS values correspond to the uncertainties of the slope of the linear regression for the plot “ Δλover Δn”. For the linear fits to the data the 95% Confidence Level is shown.

Tables (3)

Tables Icon

Table 1 Averaged lasing thresholds and collection efficiencies for PM597-doped micro-lasers, investigated with different excitation and collection schemes

Tables Icon

Table 2 Averaged lasing thresholds and collection efficiencies for PM597-doped micro-lasers in aqueous environment recorded method I and IV.

Tables Icon

Table 3 Measured and simulated BRIS for fundamental TE and TM modes of differently sized resonators. The values are determined at the wavelength where the linear wavelength regressions have the smallest uncertainty. Although the absolute values differ, simulation and measurements show the same trends for the dependencies on radius and polarization.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P th,cal = γh c 0 τ F λ P σ a 2 ( λ P ) n t d ,
F th,cal = γh c 0 τ F λ P σ a 2 ( λ P ) n t d τ L 30 μJ cm 2 .
F th,exp = E th A res 25 μJ cm 2 .
E mode = E th C mode C abs 4.2pJ

Metrics