Abstract

We propose and demonstrate a reconfigurable and tunable chip-scale comb filter and (de)interleaver on a silicon platform. The silicon-based photonic integrated device is formed by Sagnac loop mirrors (SLMs) with directional couplers replaced by multi-mode interference (MMI) assisted tunable Mach-Zehnder interferometer (MZI) couplers. The device can be regarded as a large SLM incorporating two small SLMs which form a Fabry–Perot (FP) cavity. By appropriately adjusting the micro-heaters in tunable MZI couplers and cavity, switchable operation between comb filter and (de)interleaver and extinction ratio and wavelength tunable operations of comb filter and (de)interleaver are achievable by thermo-optic tuning. Reconfigurable comb filter and (de)interleaver is demonstrated in the experiment. The central wavelength shifts of comb filter and (de)interleaver are demonstrated with wavelength tuning efficiencies of ~0.0224 nm/mW and ~0.0193 nm/mW, respectively. The 3-dB bandwidth of the comb filter is ~0.032 nm. The 3-dB and 20-dB bandwidths of the (de)interleaver passband are ~0.225 nm and ~0.326 nm. The obtained results indicate that the designed and fabricated device provides switchable comb filtering and interleaving functions together with extinction ratio and wavelength tunabilities. Reconfigurable and tunable silicon-based comb filter and (de)interleaver may find potential applications in robust wavelength-division multiplexing (WDM) optical communication systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers

Xinhong Jiang, Jiayang Wu, Yuxing Yang, Ting Pan, Junming Mao, Boyu Liu, Ruili Liu, Yong Zhang, Ciyuan Qiu, Christine Tremblay, and Yikai Su
Opt. Express 24(3) 2183-2188 (2016)

Compact tunable photonic comb filter on a silicon platform

Shuang Zheng, Nan Zhou, Yun Long, Zhengsen Ruan, Jing Du, Xiao Hu, Li Shen, Shuhui Li, and Jian Wang
Opt. Lett. 42(14) 2762-2765 (2017)

High bandwidth on-chip silicon photonic interleaver

Lian-Wee Luo, Salah Ibrahim, Arthur Nitkowski, Zhi Ding, Carl B. Poitras, S. J. Ben Yoo, and Michal Lipson
Opt. Express 18(22) 23079-23087 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, “Modulation and multiplexing in optical communication systems,” IEEE LEOS Newsl. 23, 4 (2009).
  2. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
    [Crossref] [PubMed]
  3. D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [Crossref]
  4. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, and P. M. Fauchet, “On-chip optical interconnect roadmap challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
    [Crossref]
  5. C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
    [Crossref] [PubMed]
  6. C. Gui and J. Wang, “Experimental performance evaluation of quadrature amplitude modulation signal transmission in a silicon microring,” Photon. Res. 4(5), 168–172 (2016).
    [Crossref]
  7. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [Crossref] [PubMed]
  8. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [Crossref] [PubMed]
  9. Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, and W. S. Zaoui, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
    [Crossref]
  10. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
    [Crossref] [PubMed]
  11. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, and P. Xie, “interleaver technology comparisons and applications requirements,” J. Lightwave Technol. 22(1), 281–289 (2004).
    [Crossref]
  12. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008).
    [Crossref] [PubMed]
  13. K. Jinguji, “Synthesis of coherent two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol. 14(8), 1882–1898 (1996).
    [Crossref]
  14. J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photonics Technol. Lett. 20(24), 2165–2167 (2008).
    [Crossref]
  15. X. Jiang, J. Wu, Y. Yang, T. Pan, J. Mao, B. Liu, R. Liu, Y. Zhang, C. Qiu, and Y. Su, “Compact silicon photonic interleaver using loop-mirror-based Michelson-Gires-Tournois interferometer,” in Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3. (2016).
  16. X. Jiang, Y. Yang, B. Liu, Y. Zhang, C. Qiu, and Y. Su, “Compact silicon photonic interleaver using an interfering loop containing a Fabry-Perot cavity formed by Sagnac loop,” in 42nd European Conference on Optical Communication (ECOC), 962 (2016).
  17. X. Jiang, Y. Yang, H. Zhang, J. Peng, Y. Zhang, C. Qiu, and Y. Su, “Design and experimental demonstration of a compact silicon photonic interleaver based on an interfering loop with wide spectral range,” J. Lightwave Technol. 35(17), 3765–3771 (2017).
    [Crossref]
  18. Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Polarization-independent, multifunctional all-fiber comb filter using variable ratio coupler-based Mach–Zehnder interferometer,” J. Lightwave Technol. 30(12), 1857–1862 (2012).
    [Crossref]
  19. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express 15(12), 7557–7563 (2007).
    [Crossref] [PubMed]
  20. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32(5), 533–535 (2007).
    [Crossref] [PubMed]
  21. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
    [Crossref] [PubMed]
  22. B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
    [Crossref]
  23. X. Sun, L. Zhou, J. Xie, Z. Zou, L. Lu, H. Zhu, X. Li, and J. Chen, “Tunable silicon Fabry-Perot comb filters formed by Sagnac loop mirrors,” Opt. Lett. 38(4), 567–569 (2013).
    [Crossref] [PubMed]
  24. X. Jiang, J. Wu, Y. Yang, T. Pan, J. Mao, B. Liu, R. Liu, Y. Zhang, C. Qiu, C. Tremblay, and Y. Su, “Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers,” Opt. Express 24(3), 2183–2188 (2016).
    [Crossref] [PubMed]
  25. S. Zheng, N. Zhou, Y. Long, Z. Ruan, J. Du, X. Hu, L. Shen, S. Li, and J. Wang, “Compact tunable photonic comb filter on a silicon platform,” Opt. Lett. 42(14), 2762–2765 (2017).
    [Crossref] [PubMed]
  26. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
    [Crossref]

2017 (2)

2016 (2)

2015 (2)

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
[Crossref] [PubMed]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2010 (1)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

2009 (2)

P. J. Winzer, “Modulation and multiplexing in optical communication systems,” IEEE LEOS Newsl. 23, 4 (2009).

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, and W. S. Zaoui, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

2008 (3)

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008).
[Crossref] [PubMed]

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photonics Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

2007 (4)

2006 (1)

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, and P. M. Fauchet, “On-chip optical interconnect roadmap challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[Crossref]

2004 (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, and P. Xie, “interleaver technology comparisons and applications requirements,” J. Lightwave Technol. 22(1), 281–289 (2004).
[Crossref]

2002 (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

2000 (1)

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

1996 (1)

K. Jinguji, “Synthesis of coherent two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol. 14(8), 1882–1898 (1996).
[Crossref]

Albonesi, D. H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, and P. M. Fauchet, “On-chip optical interconnect roadmap challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[Crossref]

Alloatti, L.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Asanovic, K.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Atabaki, A. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Avizienis, R. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Bergman, K.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

Biberman, A.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

Cao, S.

Cao, W. J.

Chen, G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, and P. M. Fauchet, “On-chip optical interconnect roadmap challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[Crossref]

Chen, H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, and P. M. Fauchet, “On-chip optical interconnect roadmap challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[Crossref]

Chen, J.

Chen, Y. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Chetrit, Y.

Ciftcioglu, B.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Cook, H. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Damask, J. N.

Doerr, C. R.

Dong, P.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
[Crossref] [PubMed]

Du, J.

Fang, Q.

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008).
[Crossref] [PubMed]

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photonics Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

Fauchet, P. M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, and P. M. Fauchet, “On-chip optical interconnect roadmap challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[Crossref]

Ferraro, M. S.

Georgas, M. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Gui, C.

Guiziou, L.

Harvey, G.

Haurylau, M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, and P. M. Fauchet, “On-chip optical interconnect roadmap challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[Crossref]

Hu, X.

Izhaky, N.

Jiang, X.

Jinguji, K.

K. Jinguji, “Synthesis of coherent two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol. 14(8), 1882–1898 (1996).
[Crossref]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Kang, Y.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, and W. S. Zaoui, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Kumar, R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Kwong, D. L.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photonics Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008).
[Crossref] [PubMed]

Lee, B. G.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

Lee, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Leu, J. C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Li, C.

Li, S.

Li, X.

Liao, L.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Lin, S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Liow, T. Y.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photonics Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

Lipson, M.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
[Crossref] [PubMed]

Litski, S.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, and W. S. Zaoui, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Liu, A.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Liu, B.

X. Jiang, J. Wu, Y. Yang, T. Pan, J. Mao, B. Liu, R. Liu, Y. Zhang, C. Qiu, C. Tremblay, and Y. Su, “Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers,” Opt. Express 24(3), 2183–2188 (2016).
[Crossref] [PubMed]

X. Jiang, Y. Yang, B. Liu, Y. Zhang, C. Qiu, and Y. Su, “Compact silicon photonic interleaver using an interfering loop containing a Fabry-Perot cavity formed by Sagnac loop,” in 42nd European Conference on Optical Communication (ECOC), 962 (2016).

Liu, H. D.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, and W. S. Zaoui, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Liu, R.

Lo, G. Q.

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008).
[Crossref] [PubMed]

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photonics Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

Long, Y.

Lu, L.

Luo, A. P.

Luo, Z. C.

Mao, J.

Miller, D. A.

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

Morse, M.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, and W. S. Zaoui, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Moss, B. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Nelson, N. A.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, and P. M. Fauchet, “On-chip optical interconnect roadmap challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[Crossref]

Nguyen, H.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Orcutt, J. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Ou, A. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Pan, T.

Paniccia, M.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Paniccia, M. J.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, and W. S. Zaoui, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Pavanello, F.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Peng, J.

Popovic, M. A.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Preble, S. F.

Pruessner, M. W.

Qiu, C.

Rabinovich, W. S.

Ram, R. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Ruan, Z.

Rubin, D.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Shainline, J. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Shen, L.

Song, J.

Song, J. F.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photonics Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

Stievater, T. H.

Stojanovic, V. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Su, Y.

Sun, C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Sun, X.

Tao, S. H.

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008).
[Crossref] [PubMed]

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photonics Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

Tremblay, C.

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Wade, M. T.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Wang, J.

Waterman, A. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Winzer, P. J.

P. J. Winzer, “Modulation and multiplexing in optical communication systems,” IEEE LEOS Newsl. 23, 4 (2009).

Wu, J.

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Xie, J.

Xie, P.

Xu, W. C.

Yang, Q.

Yang, Y.

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

Yu, M. B.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photonics Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008).
[Crossref] [PubMed]

Zadka, M.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, and W. S. Zaoui, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Zaoui, W. S.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, and W. S. Zaoui, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Zhang, H.

Zhang, J.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, and P. M. Fauchet, “On-chip optical interconnect roadmap challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[Crossref]

Zhang, Y.

Zheng, S.

Zhou, L.

Zhou, N.

Zhu, H.

Zou, Z.

IEEE J. Sel. Top. Quantum Electron. (1)

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, and P. M. Fauchet, “On-chip optical interconnect roadmap challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[Crossref]

IEEE LEOS Newsl. (1)

P. J. Winzer, “Modulation and multiplexing in optical communication systems,” IEEE LEOS Newsl. 23, 4 (2009).

IEEE Photonics Technol. Lett. (3)

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photonics Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

J. Lightwave Technol. (4)

Nat. Photonics (1)

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, and W. S. Zaoui, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Nature (3)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Photon. Res. (1)

Proc. IEEE (1)

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

Other (2)

X. Jiang, J. Wu, Y. Yang, T. Pan, J. Mao, B. Liu, R. Liu, Y. Zhang, C. Qiu, and Y. Su, “Compact silicon photonic interleaver using loop-mirror-based Michelson-Gires-Tournois interferometer,” in Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3. (2016).

X. Jiang, Y. Yang, B. Liu, Y. Zhang, C. Qiu, and Y. Su, “Compact silicon photonic interleaver using an interfering loop containing a Fabry-Perot cavity formed by Sagnac loop,” in 42nd European Conference on Optical Communication (ECOC), 962 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic illustration of reconfigurable and tunable comb filter and (de)interleaver formed by Sagnac loop mirrors (SLMs) with tunable Mach-Zehnder interferometer (MZI) couplers. Inset shows the details of tunable MZIs assisted by multi-mode interference (MMI) waveguides and micro-heaters. (b) Operation principle of reconfigurable comb filter and de-interleaver.
Fig. 2
Fig. 2 Simulation results of reconfigurable comb filter and (de)interleaver by adjusting the transmission coefficient t3 (coupling coefficient k3) of tunable MZI 3. Proper tuning of transmission coefficients (t1, t2) of tunable MZI 1 and MZI 2 is accompanied to achieve optimized extinction ratio for each tuning state of the MZI 3.
Fig. 3
Fig. 3 (a) Simulation results of extinction ratio tunable (de)interleaver by adjusting the tunable MZI 2. (b) Simulated transmission and reflection spectra of the (de)interleaver for both output ports (bar and cross)
Fig. 4
Fig. 4 Simulation results of wavelength tunable (a) comb filter and (b) (de)interleaver under different thermal tuning (Micro-Heater 4) induced refractive index differences.
Fig. 5
Fig. 5 Measured microphotograph of the fabricated device. Inset shows the enlarged microphotograph of grating coupler for fiber-chip-fiber vertical coupling.
Fig. 6
Fig. 6 Measured typical transmission spectra of reconfigurable (a) comb filter and (b) (de)interleaver.
Fig. 7
Fig. 7 Measured typical transmission spectrum of MZI versus heating power of micro-heater.
Fig. 8
Fig. 8 Measured transmission spectra of extinction ratio tunable (de)interleaver.
Fig. 9
Fig. 9 (a)(c) Measured transmission spectra of wavelength tunable (a) comb filter and (c) (de)interleaver. (b)(d) Measured central wavelength shift versus incremental heating power applied to Micro-Heater 4 and linear fit curves for (b) comb filter and (d) (de)interleaver

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R= a 4 2 t 3 2 r FP1 +j a 4 2 t 3 k 3 t FP1 a 4 2 k 3 2 r FP2 +j a 4 2 t 3 k 3 t FP2
T=j a 4 2 t 3 k 3 r FP1 + a 4 2 t 3 2 t FP1 +j a 4 2 t 3 k 3 r FP2 - a 4 2 k 3 2 t FP2
t FP1 = t FP2 = t FP = t s1 t s2 a 3 /( 1 r s1 r s2 a 3 2 )
r FP1 =2j a 1 ( t 1 k 1 + a 1 2 a 3 2 t 2 k 2 )/( 1 r s1 r s2 a 3 2 )
r FP2 =2j a 2 ( t 2 k 2 + a 2 2 a 3 2 t 1 k 1 )/( 1 r s1 r s2 a 3 2 )
t s1 =( t 1 2 k 1 2 ) a 1 , r s1 =2j t 1 k 1 a 1
t s2 =( t 2 2 k 2 2 ) a 2 , r s2 =2j t 2 k 2 a 2

Metrics