Abstract

This work designed an ITO/Ag/n-Si Schottky photodetector with broad wavelength detection and low dark current. The introduction of Ag interfacial layer and post rapid thermal annealing dramatically increase the barrier height of ITO/n-Si Schottky diode by 0.32 eV, leading to the 2300 × reduction of dark current. A well-behaved ITO/Ag (8 nm)/n-Si Schottky diode with a high rectification ratio ( ± 1 V) of 4 × 105 and low dark current (−1 V) of 9.2 nA was achieved. Such low dark current device spontaneously provides high sensitivity for visible/near infrared wavelength detection, in which substantial responsivity for wavelengths from 360 to 1650 nm was realized through both inter-band and internal photoemission. The design here provides an encouraging strategy for monolithically integrated pure Si photodetectors operating at long wavelength up to 1650 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola
Opt. Express 21(23) 28072-28082 (2013)

Metal-germanium-metal photodetector grown on silicon using low temperature RF-PECVD

Ghada Dushaq, Ammar Nayfeh, and Mahmoud Rasras
Opt. Express 25(25) 32110-32119 (2017)

GeSn lateral p-i-n photodetector on insulating substrate

Shengqiang Xu, Yi-Chiau Huang, Kwang Hong Lee, Wei Wang, Yuan Dong, Dian Lei, Saeid Masudy-Panah, Chuan Seng Tan, Xiao Gong, and Yee-Chia Yeo
Opt. Express 26(13) 17312-17321 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Diels, M. Steyaert, F. Tavernier, “Modelling, design and characterization of Schottky diodes in 28 nm bulk CMOS for 850/1310/1550 nm fully integrated optical receivers,” Solid-State Device Research Conference 2017 47th European. (IEEE, 2017), PP. 224–227.
  2. W. Wang, H. Peng, and S. Chen, “Highly transparent quantum-dot light-emitting diodes with sputtered indium-tin-oxide electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(9), 1838–1841 (2016).
    [Crossref]
  3. S. Choi, S. J. Kim, C. Fuentes-Hernandez, and B. Kippelen, “ITO-free large-area organic light-emitting diodes with an integrated metal grid,” Opt. Express 19(104), A793–A803 (2011).
    [Crossref] [PubMed]
  4. J. H. Yun, M. D. Kumar, Y. C. Park, H. S. Kim, and J. Kim, “High performing ITO/Ge heterojunction photodetector for broad wavelength detection,” J. Mater. Sci. Mater. Electron. 26(8), 6099–6106 (2015).
    [Crossref]
  5. J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
    [Crossref]
  6. H. Schmidt, H. Flügge, T. Winkler, T. Bülow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94(24), 243302 (2009).
    [Crossref]
  7. N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, and E. Ozbay, “High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts,” Appl. Phys. Lett. 82(14), 2344–2346 (2003).
    [Crossref]
  8. N. Biyikli, T. Kartaloglu, O. Aytur, I. Kimukin, and E. Ozbay, “High-speed visible-blind GaN-based indium–tin–oxide Schottky photodiodes,” Appl. Phys. Lett. 79(17), 2838–2840 (2001).
    [Crossref]
  9. H. S. Kim, M. D. Kumar, M. Patel, and J. Kim, “High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse,” Sens. Actuators A Phys. 252, 35–41 (2016).
    [Crossref]
  10. H. W. Du, J. Yang, Y. H. Li, F. Xu, J. Xu, and Z. Q. Ma, “Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering,” Appl. Phys. Lett. 106(9), 093508 (2015).
    [Crossref]
  11. J. H. Lee, K. Y. Woo, K. H. Kim, H. D. Kim, and T. G. Kim, “ITO/Ag/ITO multilayer-based transparent conductive electrodes for ultraviolet light-emitting diodes,” Opt. Lett. 38(23), 5055–5058 (2013).
    [Crossref] [PubMed]
  12. A. H. Ali, A. Shuhaimi, and Z. Hassan, “Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes,” Appl. Surf. Sci. 288, 599–603 (2014).
    [Crossref]
  13. Y. Liu, Y. Lv, Z. Tang, L. He, and X. Liu, “Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules,” Org. Electron. 30, 112–121 (2016).
    [Crossref]
  14. Z. Huang, Y. Mao, G. Lin, Y. Wang, C. Li, S. Chen, W. Huang, and J. Xu, “Impacts of ITO interlayer thickness on metal/n-Ge contacts,” Mater. Sci. Eng. B 224, 103–109 (2017).
    [Crossref]
  15. J. Borrel, L. Hutin, O. Rozeau, M. Jaud, S. Martinie, M. Gregoire, E. Dubois, and M. Vinetet, “Modeling of Fermi-level pinning alleviation with MIS contacts: N and pMOSFETs cointegration considerations—Part I,” IEEE Trans. Electron Device 63(9), 3413–3418 (2016).
    [Crossref]
  16. P. Broqvist, A. Alkauskas, and A. Pasquarello, “Defect levels of dangling bonds in silicon and germanium through hybrid functionals,” Phys. Rev. B 78(7), 075203 (2008).
    [Crossref]
  17. H. Kim, S. H. Hong, Y. C. Park, J. Lee, C. H. Jeon, and J. Kim, “Rapid thermal-treated transparent electrode for photodiode applications,” Mater. Lett. 115, 45–48 (2014).
    [Crossref]
  18. C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photonics Technol. Lett. 15(11), 1585–1587 (2003).
    [Crossref]

2017 (1)

Z. Huang, Y. Mao, G. Lin, Y. Wang, C. Li, S. Chen, W. Huang, and J. Xu, “Impacts of ITO interlayer thickness on metal/n-Ge contacts,” Mater. Sci. Eng. B 224, 103–109 (2017).
[Crossref]

2016 (4)

J. Borrel, L. Hutin, O. Rozeau, M. Jaud, S. Martinie, M. Gregoire, E. Dubois, and M. Vinetet, “Modeling of Fermi-level pinning alleviation with MIS contacts: N and pMOSFETs cointegration considerations—Part I,” IEEE Trans. Electron Device 63(9), 3413–3418 (2016).
[Crossref]

Y. Liu, Y. Lv, Z. Tang, L. He, and X. Liu, “Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules,” Org. Electron. 30, 112–121 (2016).
[Crossref]

W. Wang, H. Peng, and S. Chen, “Highly transparent quantum-dot light-emitting diodes with sputtered indium-tin-oxide electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(9), 1838–1841 (2016).
[Crossref]

H. S. Kim, M. D. Kumar, M. Patel, and J. Kim, “High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse,” Sens. Actuators A Phys. 252, 35–41 (2016).
[Crossref]

2015 (2)

H. W. Du, J. Yang, Y. H. Li, F. Xu, J. Xu, and Z. Q. Ma, “Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering,” Appl. Phys. Lett. 106(9), 093508 (2015).
[Crossref]

J. H. Yun, M. D. Kumar, Y. C. Park, H. S. Kim, and J. Kim, “High performing ITO/Ge heterojunction photodetector for broad wavelength detection,” J. Mater. Sci. Mater. Electron. 26(8), 6099–6106 (2015).
[Crossref]

2014 (2)

A. H. Ali, A. Shuhaimi, and Z. Hassan, “Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes,” Appl. Surf. Sci. 288, 599–603 (2014).
[Crossref]

H. Kim, S. H. Hong, Y. C. Park, J. Lee, C. H. Jeon, and J. Kim, “Rapid thermal-treated transparent electrode for photodiode applications,” Mater. Lett. 115, 45–48 (2014).
[Crossref]

2013 (1)

2012 (1)

J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
[Crossref]

2011 (1)

2009 (1)

H. Schmidt, H. Flügge, T. Winkler, T. Bülow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94(24), 243302 (2009).
[Crossref]

2008 (1)

P. Broqvist, A. Alkauskas, and A. Pasquarello, “Defect levels of dangling bonds in silicon and germanium through hybrid functionals,” Phys. Rev. B 78(7), 075203 (2008).
[Crossref]

2003 (2)

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photonics Technol. Lett. 15(11), 1585–1587 (2003).
[Crossref]

N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, and E. Ozbay, “High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts,” Appl. Phys. Lett. 82(14), 2344–2346 (2003).
[Crossref]

2001 (1)

N. Biyikli, T. Kartaloglu, O. Aytur, I. Kimukin, and E. Ozbay, “High-speed visible-blind GaN-based indium–tin–oxide Schottky photodiodes,” Appl. Phys. Lett. 79(17), 2838–2840 (2001).
[Crossref]

Ali, A. H.

A. H. Ali, A. Shuhaimi, and Z. Hassan, “Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes,” Appl. Surf. Sci. 288, 599–603 (2014).
[Crossref]

Alkauskas, A.

P. Broqvist, A. Alkauskas, and A. Pasquarello, “Defect levels of dangling bonds in silicon and germanium through hybrid functionals,” Phys. Rev. B 78(7), 075203 (2008).
[Crossref]

Aytur, O.

N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, and E. Ozbay, “High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts,” Appl. Phys. Lett. 82(14), 2344–2346 (2003).
[Crossref]

N. Biyikli, T. Kartaloglu, O. Aytur, I. Kimukin, and E. Ozbay, “High-speed visible-blind GaN-based indium–tin–oxide Schottky photodiodes,” Appl. Phys. Lett. 79(17), 2838–2840 (2001).
[Crossref]

Biyikli, N.

N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, and E. Ozbay, “High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts,” Appl. Phys. Lett. 82(14), 2344–2346 (2003).
[Crossref]

N. Biyikli, T. Kartaloglu, O. Aytur, I. Kimukin, and E. Ozbay, “High-speed visible-blind GaN-based indium–tin–oxide Schottky photodiodes,” Appl. Phys. Lett. 79(17), 2838–2840 (2001).
[Crossref]

Borrel, J.

J. Borrel, L. Hutin, O. Rozeau, M. Jaud, S. Martinie, M. Gregoire, E. Dubois, and M. Vinetet, “Modeling of Fermi-level pinning alleviation with MIS contacts: N and pMOSFETs cointegration considerations—Part I,” IEEE Trans. Electron Device 63(9), 3413–3418 (2016).
[Crossref]

Broqvist, P.

P. Broqvist, A. Alkauskas, and A. Pasquarello, “Defect levels of dangling bonds in silicon and germanium through hybrid functionals,” Phys. Rev. B 78(7), 075203 (2008).
[Crossref]

Bülow, T.

H. Schmidt, H. Flügge, T. Winkler, T. Bülow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94(24), 243302 (2009).
[Crossref]

Chen, S.

Z. Huang, Y. Mao, G. Lin, Y. Wang, C. Li, S. Chen, W. Huang, and J. Xu, “Impacts of ITO interlayer thickness on metal/n-Ge contacts,” Mater. Sci. Eng. B 224, 103–109 (2017).
[Crossref]

W. Wang, H. Peng, and S. Chen, “Highly transparent quantum-dot light-emitting diodes with sputtered indium-tin-oxide electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(9), 1838–1841 (2016).
[Crossref]

Choi, B. I.

J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
[Crossref]

Choi, S.

Chui, C. O.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photonics Technol. Lett. 15(11), 1585–1587 (2003).
[Crossref]

Du, H. W.

H. W. Du, J. Yang, Y. H. Li, F. Xu, J. Xu, and Z. Q. Ma, “Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering,” Appl. Phys. Lett. 106(9), 093508 (2015).
[Crossref]

Dubois, E.

J. Borrel, L. Hutin, O. Rozeau, M. Jaud, S. Martinie, M. Gregoire, E. Dubois, and M. Vinetet, “Modeling of Fermi-level pinning alleviation with MIS contacts: N and pMOSFETs cointegration considerations—Part I,” IEEE Trans. Electron Device 63(9), 3413–3418 (2016).
[Crossref]

Flügge, H.

H. Schmidt, H. Flügge, T. Winkler, T. Bülow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94(24), 243302 (2009).
[Crossref]

Fuentes-Hernandez, C.

Gregoire, M.

J. Borrel, L. Hutin, O. Rozeau, M. Jaud, S. Martinie, M. Gregoire, E. Dubois, and M. Vinetet, “Modeling of Fermi-level pinning alleviation with MIS contacts: N and pMOSFETs cointegration considerations—Part I,” IEEE Trans. Electron Device 63(9), 3413–3418 (2016).
[Crossref]

Hassan, Z.

A. H. Ali, A. Shuhaimi, and Z. Hassan, “Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes,” Appl. Surf. Sci. 288, 599–603 (2014).
[Crossref]

He, L.

Y. Liu, Y. Lv, Z. Tang, L. He, and X. Liu, “Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules,” Org. Electron. 30, 112–121 (2016).
[Crossref]

Hong, S. H.

H. Kim, S. H. Hong, Y. C. Park, J. Lee, C. H. Jeon, and J. Kim, “Rapid thermal-treated transparent electrode for photodiode applications,” Mater. Lett. 115, 45–48 (2014).
[Crossref]

Huang, W.

Z. Huang, Y. Mao, G. Lin, Y. Wang, C. Li, S. Chen, W. Huang, and J. Xu, “Impacts of ITO interlayer thickness on metal/n-Ge contacts,” Mater. Sci. Eng. B 224, 103–109 (2017).
[Crossref]

Huang, Z.

Z. Huang, Y. Mao, G. Lin, Y. Wang, C. Li, S. Chen, W. Huang, and J. Xu, “Impacts of ITO interlayer thickness on metal/n-Ge contacts,” Mater. Sci. Eng. B 224, 103–109 (2017).
[Crossref]

Hutin, L.

J. Borrel, L. Hutin, O. Rozeau, M. Jaud, S. Martinie, M. Gregoire, E. Dubois, and M. Vinetet, “Modeling of Fermi-level pinning alleviation with MIS contacts: N and pMOSFETs cointegration considerations—Part I,” IEEE Trans. Electron Device 63(9), 3413–3418 (2016).
[Crossref]

Jaud, M.

J. Borrel, L. Hutin, O. Rozeau, M. Jaud, S. Martinie, M. Gregoire, E. Dubois, and M. Vinetet, “Modeling of Fermi-level pinning alleviation with MIS contacts: N and pMOSFETs cointegration considerations—Part I,” IEEE Trans. Electron Device 63(9), 3413–3418 (2016).
[Crossref]

Jeon, C. H.

H. Kim, S. H. Hong, Y. C. Park, J. Lee, C. H. Jeon, and J. Kim, “Rapid thermal-treated transparent electrode for photodiode applications,” Mater. Lett. 115, 45–48 (2014).
[Crossref]

Jeong, C.

J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
[Crossref]

Kartaloglu, T.

N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, and E. Ozbay, “High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts,” Appl. Phys. Lett. 82(14), 2344–2346 (2003).
[Crossref]

N. Biyikli, T. Kartaloglu, O. Aytur, I. Kimukin, and E. Ozbay, “High-speed visible-blind GaN-based indium–tin–oxide Schottky photodiodes,” Appl. Phys. Lett. 79(17), 2838–2840 (2001).
[Crossref]

Kim, D. W.

J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
[Crossref]

Kim, H.

H. Kim, S. H. Hong, Y. C. Park, J. Lee, C. H. Jeon, and J. Kim, “Rapid thermal-treated transparent electrode for photodiode applications,” Mater. Lett. 115, 45–48 (2014).
[Crossref]

J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
[Crossref]

Kim, H. D.

Kim, H. S.

H. S. Kim, M. D. Kumar, M. Patel, and J. Kim, “High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse,” Sens. Actuators A Phys. 252, 35–41 (2016).
[Crossref]

J. H. Yun, M. D. Kumar, Y. C. Park, H. S. Kim, and J. Kim, “High performing ITO/Ge heterojunction photodetector for broad wavelength detection,” J. Mater. Sci. Mater. Electron. 26(8), 6099–6106 (2015).
[Crossref]

Kim, J.

H. S. Kim, M. D. Kumar, M. Patel, and J. Kim, “High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse,” Sens. Actuators A Phys. 252, 35–41 (2016).
[Crossref]

J. H. Yun, M. D. Kumar, Y. C. Park, H. S. Kim, and J. Kim, “High performing ITO/Ge heterojunction photodetector for broad wavelength detection,” J. Mater. Sci. Mater. Electron. 26(8), 6099–6106 (2015).
[Crossref]

H. Kim, S. H. Hong, Y. C. Park, J. Lee, C. H. Jeon, and J. Kim, “Rapid thermal-treated transparent electrode for photodiode applications,” Mater. Lett. 115, 45–48 (2014).
[Crossref]

J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
[Crossref]

Kim, K. H.

Kim, M.

J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
[Crossref]

Kim, S. J.

Kim, T. G.

Kimukin, I.

N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, and E. Ozbay, “High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts,” Appl. Phys. Lett. 82(14), 2344–2346 (2003).
[Crossref]

N. Biyikli, T. Kartaloglu, O. Aytur, I. Kimukin, and E. Ozbay, “High-speed visible-blind GaN-based indium–tin–oxide Schottky photodiodes,” Appl. Phys. Lett. 79(17), 2838–2840 (2001).
[Crossref]

Kippelen, B.

Kowalsky, W.

H. Schmidt, H. Flügge, T. Winkler, T. Bülow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94(24), 243302 (2009).
[Crossref]

Kumar, M. D.

H. S. Kim, M. D. Kumar, M. Patel, and J. Kim, “High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse,” Sens. Actuators A Phys. 252, 35–41 (2016).
[Crossref]

J. H. Yun, M. D. Kumar, Y. C. Park, H. S. Kim, and J. Kim, “High performing ITO/Ge heterojunction photodetector for broad wavelength detection,” J. Mater. Sci. Mater. Electron. 26(8), 6099–6106 (2015).
[Crossref]

Lee, E.

J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
[Crossref]

Lee, J.

H. Kim, S. H. Hong, Y. C. Park, J. Lee, C. H. Jeon, and J. Kim, “Rapid thermal-treated transparent electrode for photodiode applications,” Mater. Lett. 115, 45–48 (2014).
[Crossref]

Lee, J. H.

Lee, S.

J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
[Crossref]

Li, C.

Z. Huang, Y. Mao, G. Lin, Y. Wang, C. Li, S. Chen, W. Huang, and J. Xu, “Impacts of ITO interlayer thickness on metal/n-Ge contacts,” Mater. Sci. Eng. B 224, 103–109 (2017).
[Crossref]

Li, Y. H.

H. W. Du, J. Yang, Y. H. Li, F. Xu, J. Xu, and Z. Q. Ma, “Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering,” Appl. Phys. Lett. 106(9), 093508 (2015).
[Crossref]

Lin, G.

Z. Huang, Y. Mao, G. Lin, Y. Wang, C. Li, S. Chen, W. Huang, and J. Xu, “Impacts of ITO interlayer thickness on metal/n-Ge contacts,” Mater. Sci. Eng. B 224, 103–109 (2017).
[Crossref]

Liu, X.

Y. Liu, Y. Lv, Z. Tang, L. He, and X. Liu, “Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules,” Org. Electron. 30, 112–121 (2016).
[Crossref]

Liu, Y.

Y. Liu, Y. Lv, Z. Tang, L. He, and X. Liu, “Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules,” Org. Electron. 30, 112–121 (2016).
[Crossref]

Lv, Y.

Y. Liu, Y. Lv, Z. Tang, L. He, and X. Liu, “Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules,” Org. Electron. 30, 112–121 (2016).
[Crossref]

Ma, Z. Q.

H. W. Du, J. Yang, Y. H. Li, F. Xu, J. Xu, and Z. Q. Ma, “Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering,” Appl. Phys. Lett. 106(9), 093508 (2015).
[Crossref]

Mao, Y.

Z. Huang, Y. Mao, G. Lin, Y. Wang, C. Li, S. Chen, W. Huang, and J. Xu, “Impacts of ITO interlayer thickness on metal/n-Ge contacts,” Mater. Sci. Eng. B 224, 103–109 (2017).
[Crossref]

Martinie, S.

J. Borrel, L. Hutin, O. Rozeau, M. Jaud, S. Martinie, M. Gregoire, E. Dubois, and M. Vinetet, “Modeling of Fermi-level pinning alleviation with MIS contacts: N and pMOSFETs cointegration considerations—Part I,” IEEE Trans. Electron Device 63(9), 3413–3418 (2016).
[Crossref]

Okyay, A. K.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photonics Technol. Lett. 15(11), 1585–1587 (2003).
[Crossref]

Ozbay, E.

N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, and E. Ozbay, “High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts,” Appl. Phys. Lett. 82(14), 2344–2346 (2003).
[Crossref]

N. Biyikli, T. Kartaloglu, O. Aytur, I. Kimukin, and E. Ozbay, “High-speed visible-blind GaN-based indium–tin–oxide Schottky photodiodes,” Appl. Phys. Lett. 79(17), 2838–2840 (2001).
[Crossref]

Park, Y. C.

J. H. Yun, M. D. Kumar, Y. C. Park, H. S. Kim, and J. Kim, “High performing ITO/Ge heterojunction photodetector for broad wavelength detection,” J. Mater. Sci. Mater. Electron. 26(8), 6099–6106 (2015).
[Crossref]

H. Kim, S. H. Hong, Y. C. Park, J. Lee, C. H. Jeon, and J. Kim, “Rapid thermal-treated transparent electrode for photodiode applications,” Mater. Lett. 115, 45–48 (2014).
[Crossref]

Pasquarello, A.

P. Broqvist, A. Alkauskas, and A. Pasquarello, “Defect levels of dangling bonds in silicon and germanium through hybrid functionals,” Phys. Rev. B 78(7), 075203 (2008).
[Crossref]

Patel, M.

H. S. Kim, M. D. Kumar, M. Patel, and J. Kim, “High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse,” Sens. Actuators A Phys. 252, 35–41 (2016).
[Crossref]

Peng, H.

W. Wang, H. Peng, and S. Chen, “Highly transparent quantum-dot light-emitting diodes with sputtered indium-tin-oxide electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(9), 1838–1841 (2016).
[Crossref]

Riedl, T.

H. Schmidt, H. Flügge, T. Winkler, T. Bülow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94(24), 243302 (2009).
[Crossref]

Rozeau, O.

J. Borrel, L. Hutin, O. Rozeau, M. Jaud, S. Martinie, M. Gregoire, E. Dubois, and M. Vinetet, “Modeling of Fermi-level pinning alleviation with MIS contacts: N and pMOSFETs cointegration considerations—Part I,” IEEE Trans. Electron Device 63(9), 3413–3418 (2016).
[Crossref]

Saraswat, K. C.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photonics Technol. Lett. 15(11), 1585–1587 (2003).
[Crossref]

Schmidt, H.

H. Schmidt, H. Flügge, T. Winkler, T. Bülow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94(24), 243302 (2009).
[Crossref]

Shuhaimi, A.

A. H. Ali, A. Shuhaimi, and Z. Hassan, “Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes,” Appl. Surf. Sci. 288, 599–603 (2014).
[Crossref]

Song, K.

J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
[Crossref]

Tang, Z.

Y. Liu, Y. Lv, Z. Tang, L. He, and X. Liu, “Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules,” Org. Electron. 30, 112–121 (2016).
[Crossref]

Vinetet, M.

J. Borrel, L. Hutin, O. Rozeau, M. Jaud, S. Martinie, M. Gregoire, E. Dubois, and M. Vinetet, “Modeling of Fermi-level pinning alleviation with MIS contacts: N and pMOSFETs cointegration considerations—Part I,” IEEE Trans. Electron Device 63(9), 3413–3418 (2016).
[Crossref]

Wang, W.

W. Wang, H. Peng, and S. Chen, “Highly transparent quantum-dot light-emitting diodes with sputtered indium-tin-oxide electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(9), 1838–1841 (2016).
[Crossref]

Wang, Y.

Z. Huang, Y. Mao, G. Lin, Y. Wang, C. Li, S. Chen, W. Huang, and J. Xu, “Impacts of ITO interlayer thickness on metal/n-Ge contacts,” Mater. Sci. Eng. B 224, 103–109 (2017).
[Crossref]

Winkler, T.

H. Schmidt, H. Flügge, T. Winkler, T. Bülow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94(24), 243302 (2009).
[Crossref]

Woo, K. Y.

Xu, F.

H. W. Du, J. Yang, Y. H. Li, F. Xu, J. Xu, and Z. Q. Ma, “Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering,” Appl. Phys. Lett. 106(9), 093508 (2015).
[Crossref]

Xu, J.

Z. Huang, Y. Mao, G. Lin, Y. Wang, C. Li, S. Chen, W. Huang, and J. Xu, “Impacts of ITO interlayer thickness on metal/n-Ge contacts,” Mater. Sci. Eng. B 224, 103–109 (2017).
[Crossref]

H. W. Du, J. Yang, Y. H. Li, F. Xu, J. Xu, and Z. Q. Ma, “Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering,” Appl. Phys. Lett. 106(9), 093508 (2015).
[Crossref]

Yang, J.

H. W. Du, J. Yang, Y. H. Li, F. Xu, J. Xu, and Z. Q. Ma, “Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering,” Appl. Phys. Lett. 106(9), 093508 (2015).
[Crossref]

Yi, J.

J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
[Crossref]

Yun, J. H.

J. H. Yun, M. D. Kumar, Y. C. Park, H. S. Kim, and J. Kim, “High performing ITO/Ge heterojunction photodetector for broad wavelength detection,” J. Mater. Sci. Mater. Electron. 26(8), 6099–6106 (2015).
[Crossref]

J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
[Crossref]

Appl. Phys. Lett. (5)

J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D. W. Kim, J. H. Yun, B. I. Choi, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett. 101(14), 143904 (2012).
[Crossref]

H. Schmidt, H. Flügge, T. Winkler, T. Bülow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94(24), 243302 (2009).
[Crossref]

N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, and E. Ozbay, “High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts,” Appl. Phys. Lett. 82(14), 2344–2346 (2003).
[Crossref]

N. Biyikli, T. Kartaloglu, O. Aytur, I. Kimukin, and E. Ozbay, “High-speed visible-blind GaN-based indium–tin–oxide Schottky photodiodes,” Appl. Phys. Lett. 79(17), 2838–2840 (2001).
[Crossref]

H. W. Du, J. Yang, Y. H. Li, F. Xu, J. Xu, and Z. Q. Ma, “Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering,” Appl. Phys. Lett. 106(9), 093508 (2015).
[Crossref]

Appl. Surf. Sci. (1)

A. H. Ali, A. Shuhaimi, and Z. Hassan, “Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes,” Appl. Surf. Sci. 288, 599–603 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photonics Technol. Lett. 15(11), 1585–1587 (2003).
[Crossref]

IEEE Trans. Electron Device (1)

J. Borrel, L. Hutin, O. Rozeau, M. Jaud, S. Martinie, M. Gregoire, E. Dubois, and M. Vinetet, “Modeling of Fermi-level pinning alleviation with MIS contacts: N and pMOSFETs cointegration considerations—Part I,” IEEE Trans. Electron Device 63(9), 3413–3418 (2016).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

W. Wang, H. Peng, and S. Chen, “Highly transparent quantum-dot light-emitting diodes with sputtered indium-tin-oxide electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(9), 1838–1841 (2016).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

J. H. Yun, M. D. Kumar, Y. C. Park, H. S. Kim, and J. Kim, “High performing ITO/Ge heterojunction photodetector for broad wavelength detection,” J. Mater. Sci. Mater. Electron. 26(8), 6099–6106 (2015).
[Crossref]

Mater. Lett. (1)

H. Kim, S. H. Hong, Y. C. Park, J. Lee, C. H. Jeon, and J. Kim, “Rapid thermal-treated transparent electrode for photodiode applications,” Mater. Lett. 115, 45–48 (2014).
[Crossref]

Mater. Sci. Eng. B (1)

Z. Huang, Y. Mao, G. Lin, Y. Wang, C. Li, S. Chen, W. Huang, and J. Xu, “Impacts of ITO interlayer thickness on metal/n-Ge contacts,” Mater. Sci. Eng. B 224, 103–109 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Org. Electron. (1)

Y. Liu, Y. Lv, Z. Tang, L. He, and X. Liu, “Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules,” Org. Electron. 30, 112–121 (2016).
[Crossref]

Phys. Rev. B (1)

P. Broqvist, A. Alkauskas, and A. Pasquarello, “Defect levels of dangling bonds in silicon and germanium through hybrid functionals,” Phys. Rev. B 78(7), 075203 (2008).
[Crossref]

Sens. Actuators A Phys. (1)

H. S. Kim, M. D. Kumar, M. Patel, and J. Kim, “High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse,” Sens. Actuators A Phys. 252, 35–41 (2016).
[Crossref]

Other (1)

W. Diels, M. Steyaert, F. Tavernier, “Modelling, design and characterization of Schottky diodes in 28 nm bulk CMOS for 850/1310/1550 nm fully integrated optical receivers,” Solid-State Device Research Conference 2017 47th European. (IEEE, 2017), PP. 224–227.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Resistivity of ITO/Ag films, (b) transmission of ITO/Ag/ITO films as a function of Ag thickness. (c) The typical 5 × 5 um2 AFM images of ITO (110 nm) and ITO (110 nm)/Ag (8 nm) deposited on n-Si. (d) RMS roughness of ITO/Ag films on Si as a function of Ag thickness.
Fig. 2
Fig. 2 (a) Room temperature J–V characteristics in linear scale for ITO/Ag/n-Si diodes. (b) The corresponding J–V data in 0.03~0.1 eV for ITO/Ag/n-Si diodes. (c) J–V characteristics in semi-log for ITO/Ag/n-Si diodes. (d) Temperature dependence J–V data for ITO/Ag (8 nm)/n-Si diode. The corresponding linear scale J–V data (e) in 0.03~0.1 eV and (f) in 0.8~1 eV for ITO/Ag (8 nm)/n-Si diode. (g) Ln (J/T2) vs 1000/T for ITO/Ag/n-Si diodes. (h) The extracted effective SBHs for varying interlayer thickness for ITO/Ag/n-Si diodes.
Fig. 3
Fig. 3 Room temperature J–V characteristics for ITO/Ag/n-Si-300°C. (b) Comparison of J–V characteristics for ITO/n-Si and ITO/Ag (8 nm)/n-Si-300°C. (c) Ln (J/T2) vs. 1000/T for ITO/Ag(8 nm)/n-Si-300°C.
Fig. 4
Fig. 4 (a) Responsivity of ITO/n-Si and ITO/Ag (8 nm)/n-Si-300°C measured at zero bias voltage from 360 to 1100 nm. (b) Ag thickness dependence of responsivity, normalized photocurrent-to-dark current ratio of ITO/Ag/n-Si-300°C at bias of −0.2 V.
Fig. 5
Fig. 5 (a) The Energy band diagram illustration of internal and inter-band photoemission. Experimental photocurrents and dark currents for (b) ITO/n-Si and (c) ITO/Ag (8 nm)/n-Si-300°C with 1310 nm wavelength. (d) Responsivity of ITO/Ag(8 nm)/n-Si-300°C measured at zero bias voltage in the range of wavelengths from 360 to 1900 nm.

Tables (1)

Tables Icon

Table 1 Extracted SBH for ITO/n-Si and ITO/Ag (8nm)/n-Si-300°C

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NPDR= I photo I dark P in = R I dark

Metrics