Abstract

A violet Scheimpflug lidar system employing a 1-W 407-nm multimode laser diode is developed for remote sensing of atmospheric aerosols. The laser beam of the laser diode that is transmitted into atmosphere has been investigated in detail and a cylindrical lens pair is designed to improve the geometrical transmission efficiency. A measurement scheme with automatic exposure as well as a generalized signal processing method are established to optimize the signal-to-noise ratio of lidar signals. The performance of the violet Scheimpflug lidar system has been evaluated during a six-day continuous measurement campaign on a near horizontal path. The maximum measurement distance can reach up to 7 km in sunny clean weathers and to about 2 km during haze with an aerosol extinction coefficient of about 0.9 km. The aerosol extinction coefficient retrieved by the Fernald method is promising and shows good correlation with particle concentrations measured by a local national pollution monitoring station. This work promotes the development of all-time Scheimpflug lidar systems operating at other wavelengths or multiple wavelengths for various atmospheric applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system

Liang Mei and Mikkel Brydegaard
Opt. Express 23(24) A1613-A1628 (2015)

Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols

Zheng Kong, Teng Ma, Ke Chen, Zhenfeng Gong, and Liang Mei
Appl. Opt. 58(31) 8612-8621 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Lenoble, L. Remer, and D. Tanre, Aerosol Remote Sensing (Springer, 2013).
  2. A. Comerón, C. Muñoz-Porcar, F. Rocadenbosch, A. Rodríguez-Gómez, and M. Sicard, “Current research in lidar technology used for the remote sensing of atmospheric aerosols,” Sensors (Basel) 17(12), 1450 (2017).
    [Crossref] [PubMed]
  3. M. R. Perrone, F. De Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
    [Crossref]
  4. A. Borovoi, Y. Balin, G. Kokhanenko, I. Penner, A. Konoshonkin, and N. Kustova, “Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar,” Opt. Express 22(20), 24566–24573 (2014).
    [Crossref] [PubMed]
  5. R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
    [Crossref]
  6. H. Baars, P. Seifert, R. Engelmann, and U. Wandinger, “Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements,” Atmos. Meas. Tech. 10(9), 3175–3201 (2017).
    [Crossref]
  7. E. Chemyakin, S. Burton, A. Kolgotin, D. Müller, C. Hostetler, and R. Ferrare, “Retrieval of aerosol parameters from multiwavelength lidar: investigation of the underlying inverse mathematical problem,” Appl. Opt. 55(9), 2188–2202 (2016).
    [Crossref] [PubMed]
  8. J. L. Guerrero-Rascado, R. Facundes da Costa, A. E. Bedoya, R. Guardani, L. Alados-Arboledas, A. E. Bastidas, and E. Landulfo, “Multispectral elastic scanning lidar for industrial flare research: characterizing the electronic subsystem and application,” Opt. Express 22(25), 31063–31077 (2014).
    [Crossref] [PubMed]
  9. G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
    [Crossref]
  10. S. Wu, X. Song, B. Liu, G. Dai, J. Liu, K. Zhang, S. Qin, D. Hua, F. Gao, and L. Liu, “Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement,” Opt. Express 23(26), 33870–33892 (2015).
    [Crossref] [PubMed]
  11. D. Althausen, D. Muller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zorner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17(11), 1469–1482 (2000).
    [Crossref]
  12. M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects,” Prog. Electromagn. Res. 147, 141–151 (2014).
    [Crossref]
  13. S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
    [Crossref]
  14. M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Y. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).
  15. L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photon. Rev. 9(6), 629–636 (2015).
    [Crossref]
  16. L. Mei, P. Guan, and Z. Kong, “Remote sensing of atmospheric NO2by employing the continuous-wave differential absorption lidar technique,” Opt. Express 25(20), A953–A962 (2017).
    [Crossref] [PubMed]
  17. L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
    [Crossref] [PubMed]
  18. L. Mei, P. Guan, Y. Yang, and Z. Kong, “Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique,” Opt. Express 25(16), A628–A638 (2017).
    [Crossref] [PubMed]
  19. L. Mei and P. Guan, “Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme,” Opt. Lett. 42(18), 3562–3565 (2017).
    [Crossref] [PubMed]
  20. M. Brydegaard, J. Larsson, S. Török, E. Malmqvist, G. Zhao, S. Jansson, M. Andersson, S. Svanberg, S. Åkesson, F. Laurell, and J. Bood, “Short-wave infrared atmospheric Scheimpflug lidar,” presented at the 28th International Laser Radar Conference, Bucharest, Romania, 2017.
  21. H. M. Merklinger, “Focusing the view camera,” http://www.trenholm.org/hmmerk/FVC161.pdf .
  22. F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
    [Crossref]
  23. P. Predeep, Optoelectronics - Devices and Applications, (InTech, 2011), Chap. 16.
  24. J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
    [Crossref]
  25. G. Y. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
    [Crossref]
  26. F. Gao, J. Li, H. Lin, and S. He, “Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system,” Opt. Express 25(21), 25515–25522 (2017).
    [Crossref] [PubMed]
  27. G. Zhao, E. Malmqvist, S. Török, P.-E. Bengtsson, S. Svanberg, J. Bood, and M. Brydegaard, “Dual-band continuous-wave lidar system employed for particle classification,” Photon. J. (to be published).
  28. H. Sun, Laser Diode Beam Basics, Manipulations and Characterizations (Springer, 2012).
  29. A. Laskin and V. Laskin, “Variable beam shaping with using the same field mapping refractive beam shaper,” Proc. SPIE 8236, 82360D (2012).
    [Crossref]
  30. L. Mei, L. S. Zhang, Z. Kong, and H. Li, “Noise modeling, evaluation and reduction for the atmospheric lidar technique employing an image sensor,” Opt. Commun. (to be published).
  31. M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectronics J. 37(5), 433–451 (2006).
    [Crossref]
  32. A. J. Cooper, “Improved photo response non-uniformity (PRNU) based source camera identification,” Forensic Sci. Int. 226(1-3), 132–141 (2013).
    [Crossref] [PubMed]
  33. R. W. Schafer, “What is a Savitzky-Golay filter?” IEEE Signal Process. Mag. 28(4), 111–117 (2011).
    [Crossref]
  34. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. V. Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. A. Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. aerosol backscatter algorithms,” Appl. Opt. 43(4), 977–989 (2004).
    [Crossref] [PubMed]
  35. C. Zhang, L. Sun, and L. Chen, “Retrieval and analysis of aerosol lidar ratio at several typical regions in China,” Chin. J. Lasers 40(5), 0513002 (2013).
    [Crossref]
  36. Z. M. Tao, Z. Z. Wang, S. J. Yang, H. H. Shan, X. M. Ma, H. Zhang, S. G. Zhao, D. Liu, C. B. Xie, and Y. J. Wang, “Profiling the PM2.5 mass concentration vertical distribution in the boundary layer,” Atmos. Meas. Tech. 9(3), 1369–1376 (2016).
    [Crossref]
  37. L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
    [Crossref]

2017 (9)

A. Comerón, C. Muñoz-Porcar, F. Rocadenbosch, A. Rodríguez-Gómez, and M. Sicard, “Current research in lidar technology used for the remote sensing of atmospheric aerosols,” Sensors (Basel) 17(12), 1450 (2017).
[Crossref] [PubMed]

H. Baars, P. Seifert, R. Engelmann, and U. Wandinger, “Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements,” Atmos. Meas. Tech. 10(9), 3175–3201 (2017).
[Crossref]

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Y. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

L. Mei, P. Guan, Y. Yang, and Z. Kong, “Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique,” Opt. Express 25(16), A628–A638 (2017).
[Crossref] [PubMed]

L. Mei and P. Guan, “Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme,” Opt. Lett. 42(18), 3562–3565 (2017).
[Crossref] [PubMed]

L. Mei, P. Guan, and Z. Kong, “Remote sensing of atmospheric NO2by employing the continuous-wave differential absorption lidar technique,” Opt. Express 25(20), A953–A962 (2017).
[Crossref] [PubMed]

F. Gao, J. Li, H. Lin, and S. He, “Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system,” Opt. Express 25(21), 25515–25522 (2017).
[Crossref] [PubMed]

2016 (3)

E. Chemyakin, S. Burton, A. Kolgotin, D. Müller, C. Hostetler, and R. Ferrare, “Retrieval of aerosol parameters from multiwavelength lidar: investigation of the underlying inverse mathematical problem,” Appl. Opt. 55(9), 2188–2202 (2016).
[Crossref] [PubMed]

G. Y. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Z. M. Tao, Z. Z. Wang, S. J. Yang, H. H. Shan, X. M. Ma, H. Zhang, S. G. Zhao, D. Liu, C. B. Xie, and Y. J. Wang, “Profiling the PM2.5 mass concentration vertical distribution in the boundary layer,” Atmos. Meas. Tech. 9(3), 1369–1376 (2016).
[Crossref]

2015 (3)

2014 (6)

A. Borovoi, Y. Balin, G. Kokhanenko, I. Penner, A. Konoshonkin, and N. Kustova, “Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar,” Opt. Express 22(20), 24566–24573 (2014).
[Crossref] [PubMed]

J. L. Guerrero-Rascado, R. Facundes da Costa, A. E. Bedoya, R. Guardani, L. Alados-Arboledas, A. E. Bastidas, and E. Landulfo, “Multispectral elastic scanning lidar for industrial flare research: characterizing the electronic subsystem and application,” Opt. Express 22(25), 31063–31077 (2014).
[Crossref] [PubMed]

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

M. R. Perrone, F. De Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
[Crossref]

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects,” Prog. Electromagn. Res. 147, 141–151 (2014).
[Crossref]

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

2013 (2)

C. Zhang, L. Sun, and L. Chen, “Retrieval and analysis of aerosol lidar ratio at several typical regions in China,” Chin. J. Lasers 40(5), 0513002 (2013).
[Crossref]

A. J. Cooper, “Improved photo response non-uniformity (PRNU) based source camera identification,” Forensic Sci. Int. 226(1-3), 132–141 (2013).
[Crossref] [PubMed]

2012 (2)

A. Laskin and V. Laskin, “Variable beam shaping with using the same field mapping refractive beam shaper,” Proc. SPIE 8236, 82360D (2012).
[Crossref]

R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
[Crossref]

2011 (1)

R. W. Schafer, “What is a Savitzky-Golay filter?” IEEE Signal Process. Mag. 28(4), 111–117 (2011).
[Crossref]

2006 (1)

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectronics J. 37(5), 433–451 (2006).
[Crossref]

2004 (2)

2000 (1)

D. Althausen, D. Muller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zorner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17(11), 1469–1482 (2000).
[Crossref]

Alados-Arboledas, L.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

J. L. Guerrero-Rascado, R. Facundes da Costa, A. E. Bedoya, R. Guardani, L. Alados-Arboledas, A. E. Bastidas, and E. Landulfo, “Multispectral elastic scanning lidar for industrial flare research: characterizing the electronic subsystem and application,” Opt. Express 22(25), 31063–31077 (2014).
[Crossref] [PubMed]

Althausen, D.

D. Althausen, D. Muller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zorner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17(11), 1469–1482 (2000).
[Crossref]

Amiridis, V.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
[Crossref]

C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. V. Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. A. Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. aerosol backscatter algorithms,” Appl. Opt. 43(4), 977–989 (2004).
[Crossref] [PubMed]

Amodeo, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Ansmann, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. V. Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. A. Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. aerosol backscatter algorithms,” Appl. Opt. 43(4), 977–989 (2004).
[Crossref] [PubMed]

D. Althausen, D. Muller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zorner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17(11), 1469–1482 (2000).
[Crossref]

Apituley, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Baars, H.

H. Baars, P. Seifert, R. Engelmann, and U. Wandinger, “Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements,” Atmos. Meas. Tech. 10(9), 3175–3201 (2017).
[Crossref]

Balin, Y.

Bastidas, A. E.

Bedoya, A. E.

Bengtsson, P.-E.

G. Zhao, E. Malmqvist, S. Török, P.-E. Bengtsson, S. Svanberg, J. Bood, and M. Brydegaard, “Dual-band continuous-wave lidar system employed for particle classification,” Photon. J. (to be published).

Bianco, G.

G. Y. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Bigas, M.

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectronics J. 37(5), 433–451 (2006).
[Crossref]

Blais, F.

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
[Crossref]

Bo, Y.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Böckmann, C.

Bood, J.

G. Zhao, E. Malmqvist, S. Török, P.-E. Bengtsson, S. Svanberg, J. Bood, and M. Brydegaard, “Dual-band continuous-wave lidar system employed for particle classification,” Photon. J. (to be published).

Borovoi, A.

Boselli, A.

Bosenberg, J.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Bösenberg, J.

Brydegaard, M.

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Y. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

G. Y. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photon. Rev. 9(6), 629–636 (2015).
[Crossref]

L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
[Crossref] [PubMed]

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects,” Prog. Electromagn. Res. 147, 141–151 (2014).
[Crossref]

G. Zhao, E. Malmqvist, S. Török, P.-E. Bengtsson, S. Svanberg, J. Bood, and M. Brydegaard, “Dual-band continuous-wave lidar system employed for particle classification,” Photon. J. (to be published).

Burton, S.

Cabruja, E.

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectronics J. 37(5), 433–451 (2006).
[Crossref]

Chemyakin, E.

Chen, J. C.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Chen, L.

C. Zhang, L. Sun, and L. Chen, “Retrieval and analysis of aerosol lidar ratio at several typical regions in China,” Chin. J. Lasers 40(5), 0513002 (2013).
[Crossref]

Chen, Z. Y.

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

Chen, Z. Z.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Chu, B. L.

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

Clauder, E.

D. Althausen, D. Muller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zorner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17(11), 1469–1482 (2000).
[Crossref]

Comeron, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Comerón, A.

A. Comerón, C. Muñoz-Porcar, F. Rocadenbosch, A. Rodríguez-Gómez, and M. Sicard, “Current research in lidar technology used for the remote sensing of atmospheric aerosols,” Sensors (Basel) 17(12), 1450 (2017).
[Crossref] [PubMed]

Cooper, A. J.

A. J. Cooper, “Improved photo response non-uniformity (PRNU) based source camera identification,” Forensic Sci. Int. 226(1-3), 132–141 (2013).
[Crossref] [PubMed]

Cui, D. F.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

D’Amico, G.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Dai, G.

De Tomasi, F.

Delaval, A.

Dong, Y. S.

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

Duan, Z.

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Engelmann, R.

H. Baars, P. Seifert, R. Engelmann, and U. Wandinger, “Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements,” Atmos. Meas. Tech. 10(9), 3175–3201 (2017).
[Crossref]

Facundes da Costa, R.

Fan, G. Q.

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

Feng, H. Q.

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Feng, X. Q.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Ferrare, R.

Forest, J.

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectronics J. 37(5), 433–451 (2006).
[Crossref]

Freudenthaler, V.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Frioud, M.

Gao, F.

Gebru, A.

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects,” Prog. Electromagn. Res. 147, 141–151 (2014).
[Crossref]

Gobbi, G. P.

M. R. Perrone, F. De Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
[Crossref]

Grigorov, I. V.

Guan, P.

Guardani, R.

Guerrero-Rascado, J. L.

Guo, C.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Guo, Y. D.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Hågård, A.

Hansson, L. A.

G. Y. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

He, S.

Horvat, M.

Hostetler, C.

Hua, D.

Hube, H.

D. Althausen, D. Muller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zorner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17(11), 1469–1482 (2000).
[Crossref]

Iarlori, M.

Jansson, S.

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Y. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

Jiang, D. L.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Karageorgos, E. T.

R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
[Crossref]

Kazadzis, S.

R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
[Crossref]

Kokhanenko, G.

Kokkalis, P.

R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
[Crossref]

Kolgotin, A.

Komguem, L.

Kong, Z.

Konoshonkin, A.

Kreipl, S.

Kustova, N.

Landulfo, E.

Larchevêque, G.

Larsson, J.

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Y. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

Laskin, A.

A. Laskin and V. Laskin, “Variable beam shaping with using the same field mapping refractive beam shaper,” Proc. SPIE 8236, 82360D (2012).
[Crossref]

Laskin, V.

A. Laskin and V. Laskin, “Variable beam shaping with using the same field mapping refractive beam shaper,” Proc. SPIE 8236, 82360D (2012).
[Crossref]

Lei, W. Q.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Li, H.

L. Mei, L. S. Zhang, Z. Kong, and H. Li, “Noise modeling, evaluation and reduction for the atmospheric lidar technique employing an image sensor,” Opt. Commun. (to be published).

Li, J.

F. Gao, J. Li, H. Lin, and S. He, “Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system,” Opt. Express 25(21), 25515–25522 (2017).
[Crossref] [PubMed]

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Li, W. S.

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Li, Y. Y.

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Lin, H.

Lin, Y. Y.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Linne, H.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Liu, B.

Liu, D.

Z. M. Tao, Z. Z. Wang, S. J. Yang, H. H. Shan, X. M. Ma, H. Zhang, S. G. Zhao, D. Liu, C. B. Xie, and Y. J. Wang, “Profiling the PM2.5 mass concentration vertical distribution in the boundary layer,” Atmos. Meas. Tech. 9(3), 1369–1376 (2016).
[Crossref]

Liu, J.

Liu, L.

Liu, W. B.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Liu, W. Q.

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

Ljungholm, M.

G. Y. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Lv, L. H.

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

Ma, X. M.

Z. M. Tao, Z. Z. Wang, S. J. Yang, H. H. Shan, X. M. Ma, H. Zhang, S. G. Zhao, D. Liu, C. B. Xie, and Y. J. Wang, “Profiling the PM2.5 mass concentration vertical distribution in the boundary layer,” Atmos. Meas. Tech. 9(3), 1369–1376 (2016).
[Crossref]

Malmqvist, E.

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Y. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

G. Y. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

G. Zhao, E. Malmqvist, S. Török, P.-E. Bengtsson, S. Svanberg, J. Bood, and M. Brydegaard, “Dual-band continuous-wave lidar system employed for particle classification,” Photon. J. (to be published).

Mamouri, R. E.

R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
[Crossref]

Matthias, V.

Mattis, I.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Mei, L.

Mona, L.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Muller, D.

R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
[Crossref]

D. Althausen, D. Muller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zorner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17(11), 1469–1482 (2000).
[Crossref]

Müller, D.

Muñoz-Porcar, C.

A. Comerón, C. Muñoz-Porcar, F. Rocadenbosch, A. Rodríguez-Gómez, and M. Sicard, “Current research in lidar technology used for the remote sensing of atmospheric aerosols,” Sensors (Basel) 17(12), 1450 (2017).
[Crossref] [PubMed]

Nenes, A.

R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
[Crossref]

Nicolae, D.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Pan, Y. B.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Papayannis, A.

R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
[Crossref]

C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. V. Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. A. Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. aerosol backscatter algorithms,” Appl. Opt. 43(4), 977–989 (2004).
[Crossref] [PubMed]

Pappalardo, G.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. V. Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. A. Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. aerosol backscatter algorithms,” Appl. Opt. 43(4), 977–989 (2004).
[Crossref] [PubMed]

Peng, Q. J.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Penner, I.

Perrone, M. R.

M. R. Perrone, F. De Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
[Crossref]

Qin, S.

Rapsomanikis, S.

R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
[Crossref]

Remoundaki, E.

R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
[Crossref]

Rocadenbosch, F.

Rodrigues, J. A.

Rodríguez-Gómez, A.

A. Comerón, C. Muñoz-Porcar, F. Rocadenbosch, A. Rodríguez-Gómez, and M. Sicard, “Current research in lidar technology used for the remote sensing of atmospheric aerosols,” Sensors (Basel) 17(12), 1450 (2017).
[Crossref] [PubMed]

Salvi, J.

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectronics J. 37(5), 433–451 (2006).
[Crossref]

Schafer, R. W.

R. W. Schafer, “What is a Savitzky-Golay filter?” IEEE Signal Process. Mag. 28(4), 111–117 (2011).
[Crossref]

Schneider, J.

Seifert, P.

H. Baars, P. Seifert, R. Engelmann, and U. Wandinger, “Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements,” Atmos. Meas. Tech. 10(9), 3175–3201 (2017).
[Crossref]

Shan, H. H.

Z. M. Tao, Z. Z. Wang, S. J. Yang, H. H. Shan, X. M. Ma, H. Zhang, S. G. Zhao, D. Liu, C. B. Xie, and Y. J. Wang, “Profiling the PM2.5 mass concentration vertical distribution in the boundary layer,” Atmos. Meas. Tech. 9(3), 1369–1376 (2016).
[Crossref]

Shcherbakov, V.

Shu, X. W.

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

Sicard, M.

A. Comerón, C. Muñoz-Porcar, F. Rocadenbosch, A. Rodríguez-Gómez, and M. Sicard, “Current research in lidar technology used for the remote sensing of atmospheric aerosols,” Sensors (Basel) 17(12), 1450 (2017).
[Crossref] [PubMed]

Song, X.

Song, Z. W.

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Sun, L.

C. Zhang, L. Sun, and L. Chen, “Retrieval and analysis of aerosol lidar ratio at several typical regions in China,” Chin. J. Lasers 40(5), 0513002 (2013).
[Crossref]

Svanberg, K.

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Svanberg, S.

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

G. Y. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects,” Prog. Electromagn. Res. 147, 141–151 (2014).
[Crossref]

G. Zhao, E. Malmqvist, S. Török, P.-E. Bengtsson, S. Svanberg, J. Bood, and M. Brydegaard, “Dual-band continuous-wave lidar system employed for particle classification,” Photon. J. (to be published).

Tao, Z. M.

Z. M. Tao, Z. Z. Wang, S. J. Yang, H. H. Shan, X. M. Ma, H. Zhang, S. G. Zhao, D. Liu, C. B. Xie, and Y. J. Wang, “Profiling the PM2.5 mass concentration vertical distribution in the boundary layer,” Atmos. Meas. Tech. 9(3), 1369–1376 (2016).
[Crossref]

Teng, M.

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

Torok, S.

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Y. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

Török, S.

G. Zhao, E. Malmqvist, S. Török, P.-E. Bengtsson, S. Svanberg, J. Bood, and M. Brydegaard, “Dual-band continuous-wave lidar system employed for particle classification,” Photon. J. (to be published).

Tsaknakis, G.

R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
[Crossref]

Wandinger, U.

H. Baars, P. Seifert, R. Engelmann, and U. Wandinger, “Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements,” Atmos. Meas. Tech. 10(9), 3175–3201 (2017).
[Crossref]

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. V. Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. A. Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. aerosol backscatter algorithms,” Appl. Opt. 43(4), 977–989 (2004).
[Crossref] [PubMed]

D. Althausen, D. Muller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zorner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17(11), 1469–1482 (2000).
[Crossref]

Wang, Y. J.

Z. M. Tao, Z. Z. Wang, S. J. Yang, H. H. Shan, X. M. Ma, H. Zhang, S. G. Zhao, D. Liu, C. B. Xie, and Y. J. Wang, “Profiling the PM2.5 mass concentration vertical distribution in the boundary layer,” Atmos. Meas. Tech. 9(3), 1369–1376 (2016).
[Crossref]

Wang, Z. Z.

Z. M. Tao, Z. Z. Wang, S. J. Yang, H. H. Shan, X. M. Ma, H. Zhang, S. G. Zhao, D. Liu, C. B. Xie, and Y. J. Wang, “Profiling the PM2.5 mass concentration vertical distribution in the boundary layer,” Atmos. Meas. Tech. 9(3), 1369–1376 (2016).
[Crossref]

Wiegner, M.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. V. Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. A. Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. aerosol backscatter algorithms,” Appl. Opt. 43(4), 977–989 (2004).
[Crossref] [PubMed]

Wu, S.

Xiang, Y.

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

Xiao, Y. S.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Xie, C. B.

Z. M. Tao, Z. Z. Wang, S. J. Yang, H. H. Shan, X. M. Ma, H. Zhang, S. G. Zhao, D. Liu, C. B. Xie, and Y. J. Wang, “Profiling the PM2.5 mass concentration vertical distribution in the boundary layer,” Atmos. Meas. Tech. 9(3), 1369–1376 (2016).
[Crossref]

Xu, J. L.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Xu, Y. T.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Xu, Z. Y.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Yan, B.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Yang, N.

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

Yang, S. J.

Z. M. Tao, Z. Z. Wang, S. J. Yang, H. H. Shan, X. M. Ma, H. Zhang, S. G. Zhao, D. Liu, C. B. Xie, and Y. J. Wang, “Profiling the PM2.5 mass concentration vertical distribution in the boundary layer,” Atmos. Meas. Tech. 9(3), 1369–1376 (2016).
[Crossref]

Yang, Y.

Yao, Y. W.

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

Yuan, H. T.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Yuan, L.

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Zhang, C.

C. Zhang, L. Sun, and L. Chen, “Retrieval and analysis of aerosol lidar ratio at several typical regions in China,” Chin. J. Lasers 40(5), 0513002 (2013).
[Crossref]

Zhang, H.

Z. M. Tao, Z. Z. Wang, S. J. Yang, H. H. Shan, X. M. Ma, H. Zhang, S. G. Zhao, D. Liu, C. B. Xie, and Y. J. Wang, “Profiling the PM2.5 mass concentration vertical distribution in the boundary layer,” Atmos. Meas. Tech. 9(3), 1369–1376 (2016).
[Crossref]

Zhang, K.

Zhang, L. S.

L. Mei, L. S. Zhang, Z. Kong, and H. Li, “Noise modeling, evaluation and reduction for the atmospheric lidar technique employing an image sensor,” Opt. Commun. (to be published).

Zhang, T. S.

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

Zhao, G.

G. Zhao, E. Malmqvist, S. Török, P.-E. Bengtsson, S. Svanberg, J. Bood, and M. Brydegaard, “Dual-band continuous-wave lidar system employed for particle classification,” Photon. J. (to be published).

Zhao, G. Y.

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Y. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

G. Y. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Zhao, S. G.

Z. M. Tao, Z. Z. Wang, S. J. Yang, H. H. Shan, X. M. Ma, H. Zhang, S. G. Zhao, D. Liu, C. B. Xie, and Y. J. Wang, “Profiling the PM2.5 mass concentration vertical distribution in the boundary layer,” Atmos. Meas. Tech. 9(3), 1369–1376 (2016).
[Crossref]

Zhu, S. M.

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Zorner, S.

D. Althausen, D. Muller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zorner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17(11), 1469–1482 (2000).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

S. M. Zhu, E. Malmqvist, W. S. Li, S. Jansson, Y. Y. Li, Z. Duan, K. Svanberg, H. Q. Feng, Z. W. Song, G. Y. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Atmos. Chem. Phys. (1)

M. R. Perrone, F. De Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
[Crossref]

Atmos. Environ. (1)

L. H. Lv, W. Q. Liu, T. S. Zhang, Z. Y. Chen, Y. S. Dong, G. Q. Fan, Y. Xiang, Y. W. Yao, N. Yang, B. L. Chu, M. Teng, and X. W. Shu, “Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique,” Atmos. Environ. 164, 360–369 (2017).
[Crossref]

Atmos. Meas. Tech. (4)

Z. M. Tao, Z. Z. Wang, S. J. Yang, H. H. Shan, X. M. Ma, H. Zhang, S. G. Zhao, D. Liu, C. B. Xie, and Y. J. Wang, “Profiling the PM2.5 mass concentration vertical distribution in the boundary layer,” Atmos. Meas. Tech. 9(3), 1369–1376 (2016).
[Crossref]

R. E. Mamouri, A. Papayannis, V. Amiridis, D. Muller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, G. Tsaknakis, A. Nenes, S. Kazadzis, and E. Remoundaki, “Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece,” Atmos. Meas. Tech. 5(7), 1793–1808 (2012).
[Crossref]

H. Baars, P. Seifert, R. Engelmann, and U. Wandinger, “Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements,” Atmos. Meas. Tech. 10(9), 3175–3201 (2017).
[Crossref]

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Chin. J. Lasers (1)

C. Zhang, L. Sun, and L. Chen, “Retrieval and analysis of aerosol lidar ratio at several typical regions in China,” Chin. J. Lasers 40(5), 0513002 (2013).
[Crossref]

Forensic Sci. Int. (1)

A. J. Cooper, “Improved photo response non-uniformity (PRNU) based source camera identification,” Forensic Sci. Int. 226(1-3), 132–141 (2013).
[Crossref] [PubMed]

IEEE Signal Process. Mag. (1)

R. W. Schafer, “What is a Savitzky-Golay filter?” IEEE Signal Process. Mag. 28(4), 111–117 (2011).
[Crossref]

J. Atmos. Ocean. Technol. (1)

D. Althausen, D. Muller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zorner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17(11), 1469–1482 (2000).
[Crossref]

J. Electron. Imaging (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
[Crossref]

Laser Photon. Rev. (1)

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photon. Rev. 9(6), 629–636 (2015).
[Crossref]

Laser Photonics Rev. (1)

G. Y. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Microelectronics J. (1)

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectronics J. 37(5), 433–451 (2006).
[Crossref]

Opt. Express (7)

F. Gao, J. Li, H. Lin, and S. He, “Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system,” Opt. Express 25(21), 25515–25522 (2017).
[Crossref] [PubMed]

L. Mei, P. Guan, and Z. Kong, “Remote sensing of atmospheric NO2by employing the continuous-wave differential absorption lidar technique,” Opt. Express 25(20), A953–A962 (2017).
[Crossref] [PubMed]

L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
[Crossref] [PubMed]

L. Mei, P. Guan, Y. Yang, and Z. Kong, “Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique,” Opt. Express 25(16), A628–A638 (2017).
[Crossref] [PubMed]

S. Wu, X. Song, B. Liu, G. Dai, J. Liu, K. Zhang, S. Qin, D. Hua, F. Gao, and L. Liu, “Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement,” Opt. Express 23(26), 33870–33892 (2015).
[Crossref] [PubMed]

J. L. Guerrero-Rascado, R. Facundes da Costa, A. E. Bedoya, R. Guardani, L. Alados-Arboledas, A. E. Bastidas, and E. Landulfo, “Multispectral elastic scanning lidar for industrial flare research: characterizing the electronic subsystem and application,” Opt. Express 22(25), 31063–31077 (2014).
[Crossref] [PubMed]

A. Borovoi, Y. Balin, G. Kokhanenko, I. Penner, A. Konoshonkin, and N. Kustova, “Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar,” Opt. Express 22(20), 24566–24573 (2014).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

J. C. Chen, J. Li, J. L. Xu, W. B. Liu, Y. Bo, X. Q. Feng, Y. T. Xu, D. L. Jiang, Z. Z. Chen, Y. B. Pan, Y. D. Guo, B. Yan, C. Guo, L. Yuan, H. T. Yuan, Y. Y. Lin, Y. S. Xiao, Q. J. Peng, W. Q. Lei, D. F. Cui, and Z. Y. Xu, “4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd:YAG slab laser,” Opt. Laser Technol. 63, 50–53 (2014).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (2)

A. Laskin and V. Laskin, “Variable beam shaping with using the same field mapping refractive beam shaper,” Proc. SPIE 8236, 82360D (2012).
[Crossref]

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Y. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

Prog. Electromagn. Res. (1)

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects,” Prog. Electromagn. Res. 147, 141–151 (2014).
[Crossref]

Sensors (Basel) (1)

A. Comerón, C. Muñoz-Porcar, F. Rocadenbosch, A. Rodríguez-Gómez, and M. Sicard, “Current research in lidar technology used for the remote sensing of atmospheric aerosols,” Sensors (Basel) 17(12), 1450 (2017).
[Crossref] [PubMed]

Other (7)

J. Lenoble, L. Remer, and D. Tanre, Aerosol Remote Sensing (Springer, 2013).

M. Brydegaard, J. Larsson, S. Török, E. Malmqvist, G. Zhao, S. Jansson, M. Andersson, S. Svanberg, S. Åkesson, F. Laurell, and J. Bood, “Short-wave infrared atmospheric Scheimpflug lidar,” presented at the 28th International Laser Radar Conference, Bucharest, Romania, 2017.

H. M. Merklinger, “Focusing the view camera,” http://www.trenholm.org/hmmerk/FVC161.pdf .

P. Predeep, Optoelectronics - Devices and Applications, (InTech, 2011), Chap. 16.

G. Zhao, E. Malmqvist, S. Török, P.-E. Bengtsson, S. Svanberg, J. Bood, and M. Brydegaard, “Dual-band continuous-wave lidar system employed for particle classification,” Photon. J. (to be published).

H. Sun, Laser Diode Beam Basics, Manipulations and Characterizations (Springer, 2012).

L. Mei, L. S. Zhang, Z. Kong, and H. Li, “Noise modeling, evaluation and reduction for the atmospheric lidar technique employing an image sensor,” Opt. Commun. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Architecture of the violet Scheimpflug lidar system. The lidar system is located in a building, and the elevation angle can be adjusted in a limited range by rotating the equatorial mount. The lidar system can be pointed either to the wall of a distant building or to free atmosphere during measurements by rotating the equatorial mount.
Fig. 2
Fig. 2 Measurement schemes and images of the collimated beam. Note that vertical pixels correspond to the image profile along the x-axis, while the horizontal pixel can be transformed to the distance after the calibration of pixel-distance relationship. Case I: (a) fast axis of the laser diode is perpendicular to the Scheimpflug plane (paper plane, y-z plane), (b) image in the atmosphere, and (c) image from a building. Case II: (d) slow axis of the laser diode is perpendicular to the Scheimpflug plane, (e) image in the atmosphere and (f) image from a building. Case III: (g) fast axis of the laser diode is perpendicular to the Scheimpflug plane, while the fast axis laser beam is reshaped by the cylindrical lens pair, (h) image in the atmosphere and (i) image from a building. Backscattering images from the building were recorded with 20-ms exposure time. Atmospheric backscattering images were recorded with 900-ms exposure time, when the lidar system is pointed to atmosphere by rotating the equatorial mount.
Fig. 3
Fig. 3 The widths of the laser beam in free atmosphere measured in different measurement cases. The divergence plotted for all cases is along the x-axis as indicated in the left panels of Fig. 2.
Fig. 4
Fig. 4 Atmospheric backscattering signals without (Case I) and with (Case III) the cylindrical lens pair. The time interval between the two measurements were about 30 minutes. The aerosol extinction coefficient is about 0.2 km−1. The exposure time and the electric gain are set to be 900 ms and 3, respectively. The lidar signals are averaged for 40 times.
Fig. 5
Fig. 5 The variations of the exposure time and averaging numbers in a sunny weather condition, on August 21nd, 2017.
Fig. 6
Fig. 6 (a) The SNR of the original lidar signal and (b) the SNR of the de-noised lidar signal by the Savitzky-Golay (SG) filter. The intensities of lidar signals that were measured with different exposure times have been normalized to 20 ms exposure time.
Fig. 7
Fig. 7 Procedures of measurements and lidar signal processing. The region of interest (ROI) is 2048 × 240 pixels in this work, SG - Savitzky-Golay.
Fig. 8
Fig. 8 Time-range map of atmospheric backscattering intensity. The strong echoes illustrated by ellipses are most likely due to cloud.
Fig. 9
Fig. 9 Atmospheric lidar signals measured with different PM10 concentrations, on a near horizontal path. It should be noted that the PM10 concentration is a one-hour average value.
Fig. 10
Fig. 10 Retrieved aerosol extinction coefficients by the Fernald method in different measurement times.
Fig. 11
Fig. 11 (a) Wind speed, relative humidity and (b) PM2.5/PM10 concentrations measured by a local national pollution monitoring station, (c) Time-range map of aerosol extinction coefficients retrieved by the Fernald method. The boundary value is difficult to evaluate if cloud appeared in the far end, the extinction coefficients cannot be resolved, which are illustrated by white-stripe areas.
Fig. 12
Fig. 12 The relationship between PM10 concentration, relative humidity and the aerosol extinction coefficient. The dashed curve is the linear fit between the aerosol extinction coefficient and the PM10 concentration.

Tables (1)

Tables Icon

Table 1 System specifications of the violet Scheimpflug lidar system.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ( λ , z ) = K β ( λ , z ) exp [ 2 0 z α ( λ , z ' ) d z ' ]
β aer ( z ) = β mol ( z ) + P ( z ) exp [ 2 ( S aer S mol ) z m z β mol ( ζ ) d ζ ] P ( z m ) β aer ( z m ) + β mol ( z m ) 2 S aer z m z P ( ζ ) exp [ 2 ( S aer S mol ) z m ζ β mol ( z ' ) d z ' ] d ζ

Metrics