Abstract

To reduce the energy of an individual laser pulse, dual-pulse laser ignitions (LIs) at various pulse intervals were investigated in a Mach 2.92 scramjet engine fueled with ethylene. For comparison, experiments on a single-pulse LI were also performed. Schlieren visualization and high-speed photography were employed to observe the ignition processes simultaneously. The results indicate that the energy of an individual laser pulse can be reduced by half via a dual-pulse LI method as compared with a single-pulse LI with the same total energy. The reduction of the individual laser pulse energy degrades the requirements on the laser source and the beam delivery system, which facilitates the practical application of LI in hypersonic vehicles. A pulse interval shorter than 40 μs is suggested for dual-pulse LI in the present study. Because of the intense heat loss and radical dissipation in high-speed flows, the pulse interval for dual-pulse LI should be short enough to narrow the spatial distribution of the initial flame kernel.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma

Xiaohui Li, Leichao Yang, Jiangbo Peng, Xin Yu, Jianhan Liang, and Rui Sun
Opt. Express 24(22) 25362-25369 (2016)

Successive laser ablation ignition of premixed methane/air mixtures

Moon Soo Bak and Mark A Cappelli
Opt. Express 23(11) A419-A427 (2015)

Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy

M. Lackner, S. Charareh, F. Winter, K. F. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner
Opt. Express 12(19) 4546-4557 (2004)

References

  • View by:
  • |
  • |
  • |

  1. P. D. Ronney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
    [Crossref]
  2. T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
    [Crossref]
  3. D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
    [Crossref]
  4. J. V. Pastor, J. M. García-Oliver, A. García, and M. Pinotti, “Effect of laser induced plasma ignition timing and location on Diesel spray combustion,” Energy Convers. Manage. 133, 41–55 (2017).
    [Crossref]
  5. J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
    [Crossref]
  6. D. K. Srivastava and A. K. Agarwal, “Comparative experimental evaluation of performance, combustion and emissions of laser ignition with conventional spark plug in a compressed natural gas fuelled single cylinder engine,” Fuel 123, 113–122 (2014).
    [Crossref]
  7. J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” SAE paper, 780329 (1978).
    [Crossref]
  8. M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engines applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
    [Crossref]
  9. G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21(S6Suppl 6), A1113–A1125 (2013).
    [Crossref] [PubMed]
  10. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  11. D. K. Srivastava, M. Weinrotter, H. Kofler, A. K. Agarwal, and E. Wintner, “Laser-assisted homogeneous charge ignition in a constant volume combustion chamber,” Opt. Lasers Eng. 47(6), 680–685 (2009).
    [Crossref]
  12. D. H. McNeill, “Minimum ignition energy for laser spark ignition,” Proc. Combust. Inst. 30(2), 2913–2920 (2005).
    [Crossref]
  13. G. C. Gebel, T. Mosbach, W. Meier, and M. Aigner, “Optical and spectroscopic diagnostics of laser-induced air breakdown and kerosene spray ignition,” Combust. Flame 162(4), 1599–1613 (2015).
    [Crossref]
  14. J. Griffiths, M. Riley, A. Kirk, A. Borman, J. Lawrence, and C. Dowding, “Lean burn limit and time to light characteristics of laser ignition in gas turbines,” Opt. Lasers Eng. 55, 262–266 (2014).
    [Crossref]
  15. C. Manfletti and G. Kroupa, “Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser,” Opt. Express 21(S6Suppl 6), A1126–A1139 (2013).
    [Crossref] [PubMed]
  16. C. Manfletti and M. Börner, “Laser ignition for space propulsion systems,” in Laser Ignition Conference, (Optical Society of America, 2015), p. Th2A.3.
  17. S. Soller, “Laser ignition application to cryogenic propellant rocket thrust chambers,” in Laser Ignition Conference, (Optical Society of America, 2017), p. LFA4.3.
    [Crossref]
  18. M. Börner, J. C. Deeken, C. Manfletti, and M. Oschwald, “Determination of the minimum laser pulse energies for ignition in a subscale rocket combustion chamber,” in Laser Ignition Conference, (Optical Society of America, 2017), p. LThA4.2.
    [Crossref]
  19. H. Horisawa, S. Tsuchiya, J. Negishi, Y. Okawa, and I. Kimura, “Laser ignition and flameholding characteristics in supersonic airstreams,” Proc. SPIE 5448, 586–595 (2004).
    [Crossref]
  20. S. Brieschenk, H. Kleine, and S. O’Byrne, “Laser ignition of hypersonic air-hydrogen flow,” Shock Waves 23(5), 439–452 (2013).
    [Crossref]
  21. S. Brieschenk, S. O’Byrne, and H. Kleine, “Laser-induced plasma ignition studies in a model scramjet engine,” Combust. Flame 160(1), 145–148 (2013).
    [Crossref]
  22. L. Yang, X. Li, J. Liang, Y. Yu, and X. Yu, “Laser-induced plasma ignition of hydrocarbon fuel in supersonic flows,” in 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, (AIAA, 2015), pp. AIAA-2015–3544.
    [Crossref]
  23. X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
    [Crossref]
  24. S. Brieschenk, S. O’Byrne, and H. Kleine, “Ignition characteristics of laser-ionized fuel injected into a hypersonic crossflow,” Combust. Flame 161(4), 1015–1025 (2014).
    [Crossref]
  25. X. Li, L. Yang, J. Peng, X. Yu, J. Liang, and R. Sun, “Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma,” Opt. Express 24(22), 25362–25369 (2016).
    [Crossref] [PubMed]
  26. B. An, Z. Wang, L. Yang, X. Li, and J. Zhu, “Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma,” Acta Astronaut. 137, 444–449 (2017).
    [Crossref]
  27. X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
    [Crossref]
  28. J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
    [Crossref]
  29. M. S. Bak, S. Im, and M. A. Cappelli, “Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane-air mixtures,” Combust. Flame 161(7), 1744–1751 (2014).
    [Crossref]
  30. M. S. Bak, L. Wermer, and S. Im, “Schlieren imaging investigation of successive laser-induced breakdowns in atmospheric-pressure air,” J. Phys. D 48(48), 485203 (2015).
    [Crossref]
  31. L. Wermer, J. Hansson, and S. Im, “Dual-pulse laser-induced spark ignition and flame propagation of a methane diffusion jet flame,” Proc. Combust. Inst. 36(3), 4427–4434 (2017).
    [Crossref]
  32. P. S. Hsu, S. Roy, Z. Zhang, J. Sawyer, M. N. Slipchenko, J. G. Mance, and J. R. Gord, “High-repetition-rate laser ignition of fuel-air mixtures,” Opt. Lett. 41(7), 1570–1573 (2016).
    [Crossref] [PubMed]
  33. S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” J. Engine Res. 17(1), 139–150 (2016).
    [Crossref]
  34. X. Li, W. Liu, Y. Pan, L. Yang, B. An, and J. Zhu, “Characterization of ignition transient processes in kerosene-fueled model scramjet engine by dual-pulse laser-induced plasma,” Acta Astronaut. 144, 23–29 (2018).
    [Crossref]
  35. J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
    [Crossref]
  36. Y. Wang, L. Zheng, R. Woolley, and Y. Zhang, “Investigation of ignition process from visible to infrared by a high speed colour camera,” Fuel 185, 500–507 (2016).
    [Crossref]
  37. H. Wang, Z. Wang, M. Sun, and N. Qin, “Large-Eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor,” Int. J. Hydrogen Energy 38(14), 5918–5927 (2013).
    [Crossref]
  38. B. An, Z. Wang, L. Yang, G. Wu, J. Zhu, and X. Li, “Experimental investigation of the shock loss and temporal evolution of hot plume resulting from dual-pulse laser-induced breakdown in quiescent air,” J. Appl. Phys. 122(19), 193301 (2017).
    [Crossref]
  39. L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
    [Crossref]
  40. L. Ma, Q. Lei, Y. Wu, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).
    [Crossref]
  41. F. W. Barnes and C. Segal, “Cavity-based flameholding for chemically-reacting supersonic flows,” Prog. Aerosp. Sci. 76, 24–41 (2015).
    [Crossref]

2018 (1)

X. Li, W. Liu, Y. Pan, L. Yang, B. An, and J. Zhu, “Characterization of ignition transient processes in kerosene-fueled model scramjet engine by dual-pulse laser-induced plasma,” Acta Astronaut. 144, 23–29 (2018).
[Crossref]

2017 (6)

L. Wermer, J. Hansson, and S. Im, “Dual-pulse laser-induced spark ignition and flame propagation of a methane diffusion jet flame,” Proc. Combust. Inst. 36(3), 4427–4434 (2017).
[Crossref]

B. An, Z. Wang, L. Yang, G. Wu, J. Zhu, and X. Li, “Experimental investigation of the shock loss and temporal evolution of hot plume resulting from dual-pulse laser-induced breakdown in quiescent air,” J. Appl. Phys. 122(19), 193301 (2017).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

B. An, Z. Wang, L. Yang, X. Li, and J. Zhu, “Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma,” Acta Astronaut. 137, 444–449 (2017).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

J. V. Pastor, J. M. García-Oliver, A. García, and M. Pinotti, “Effect of laser induced plasma ignition timing and location on Diesel spray combustion,” Energy Convers. Manage. 133, 41–55 (2017).
[Crossref]

2016 (5)

X. Li, L. Yang, J. Peng, X. Yu, J. Liang, and R. Sun, “Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma,” Opt. Express 24(22), 25362–25369 (2016).
[Crossref] [PubMed]

Y. Wang, L. Zheng, R. Woolley, and Y. Zhang, “Investigation of ignition process from visible to infrared by a high speed colour camera,” Fuel 185, 500–507 (2016).
[Crossref]

P. S. Hsu, S. Roy, Z. Zhang, J. Sawyer, M. N. Slipchenko, J. G. Mance, and J. R. Gord, “High-repetition-rate laser ignition of fuel-air mixtures,” Opt. Lett. 41(7), 1570–1573 (2016).
[Crossref] [PubMed]

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

L. Ma, Q. Lei, Y. Wu, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).
[Crossref]

2015 (4)

F. W. Barnes and C. Segal, “Cavity-based flameholding for chemically-reacting supersonic flows,” Prog. Aerosp. Sci. 76, 24–41 (2015).
[Crossref]

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

M. S. Bak, L. Wermer, and S. Im, “Schlieren imaging investigation of successive laser-induced breakdowns in atmospheric-pressure air,” J. Phys. D 48(48), 485203 (2015).
[Crossref]

G. C. Gebel, T. Mosbach, W. Meier, and M. Aigner, “Optical and spectroscopic diagnostics of laser-induced air breakdown and kerosene spray ignition,” Combust. Flame 162(4), 1599–1613 (2015).
[Crossref]

2014 (4)

J. Griffiths, M. Riley, A. Kirk, A. Borman, J. Lawrence, and C. Dowding, “Lean burn limit and time to light characteristics of laser ignition in gas turbines,” Opt. Lasers Eng. 55, 262–266 (2014).
[Crossref]

D. K. Srivastava and A. K. Agarwal, “Comparative experimental evaluation of performance, combustion and emissions of laser ignition with conventional spark plug in a compressed natural gas fuelled single cylinder engine,” Fuel 123, 113–122 (2014).
[Crossref]

M. S. Bak, S. Im, and M. A. Cappelli, “Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane-air mixtures,” Combust. Flame 161(7), 1744–1751 (2014).
[Crossref]

S. Brieschenk, S. O’Byrne, and H. Kleine, “Ignition characteristics of laser-ionized fuel injected into a hypersonic crossflow,” Combust. Flame 161(4), 1015–1025 (2014).
[Crossref]

2013 (5)

H. Wang, Z. Wang, M. Sun, and N. Qin, “Large-Eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor,” Int. J. Hydrogen Energy 38(14), 5918–5927 (2013).
[Crossref]

S. Brieschenk, H. Kleine, and S. O’Byrne, “Laser ignition of hypersonic air-hydrogen flow,” Shock Waves 23(5), 439–452 (2013).
[Crossref]

S. Brieschenk, S. O’Byrne, and H. Kleine, “Laser-induced plasma ignition studies in a model scramjet engine,” Combust. Flame 160(1), 145–148 (2013).
[Crossref]

C. Manfletti and G. Kroupa, “Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser,” Opt. Express 21(S6Suppl 6), A1126–A1139 (2013).
[Crossref] [PubMed]

G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21(S6Suppl 6), A1113–A1125 (2013).
[Crossref] [PubMed]

2012 (1)

M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engines applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
[Crossref]

2011 (1)

2009 (2)

D. K. Srivastava, M. Weinrotter, H. Kofler, A. K. Agarwal, and E. Wintner, “Laser-assisted homogeneous charge ignition in a constant volume combustion chamber,” Opt. Lasers Eng. 47(6), 680–685 (2009).
[Crossref]

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[Crossref]

2007 (1)

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[Crossref]

2006 (1)

T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[Crossref]

2005 (1)

D. H. McNeill, “Minimum ignition energy for laser spark ignition,” Proc. Combust. Inst. 30(2), 2913–2920 (2005).
[Crossref]

2004 (2)

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[Crossref]

H. Horisawa, S. Tsuchiya, J. Negishi, Y. Okawa, and I. Kimura, “Laser ignition and flameholding characteristics in supersonic airstreams,” Proc. SPIE 5448, 586–595 (2004).
[Crossref]

2003 (1)

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
[Crossref]

1994 (1)

P. D. Ronney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
[Crossref]

Agarwal, A. K.

D. K. Srivastava and A. K. Agarwal, “Comparative experimental evaluation of performance, combustion and emissions of laser ignition with conventional spark plug in a compressed natural gas fuelled single cylinder engine,” Fuel 123, 113–122 (2014).
[Crossref]

D. K. Srivastava, M. Weinrotter, H. Kofler, A. K. Agarwal, and E. Wintner, “Laser-assisted homogeneous charge ignition in a constant volume combustion chamber,” Opt. Lasers Eng. 47(6), 680–685 (2009).
[Crossref]

Aigner, M.

G. C. Gebel, T. Mosbach, W. Meier, and M. Aigner, “Optical and spectroscopic diagnostics of laser-induced air breakdown and kerosene spray ignition,” Combust. Flame 162(4), 1599–1613 (2015).
[Crossref]

An, B.

X. Li, W. Liu, Y. Pan, L. Yang, B. An, and J. Zhu, “Characterization of ignition transient processes in kerosene-fueled model scramjet engine by dual-pulse laser-induced plasma,” Acta Astronaut. 144, 23–29 (2018).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

B. An, Z. Wang, L. Yang, G. Wu, J. Zhu, and X. Li, “Experimental investigation of the shock loss and temporal evolution of hot plume resulting from dual-pulse laser-induced breakdown in quiescent air,” J. Appl. Phys. 122(19), 193301 (2017).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

B. An, Z. Wang, L. Yang, X. Li, and J. Zhu, “Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma,” Acta Astronaut. 137, 444–449 (2017).
[Crossref]

Bak, M. S.

M. S. Bak, L. Wermer, and S. Im, “Schlieren imaging investigation of successive laser-induced breakdowns in atmospheric-pressure air,” J. Phys. D 48(48), 485203 (2015).
[Crossref]

M. S. Bak, S. Im, and M. A. Cappelli, “Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane-air mixtures,” Combust. Flame 161(7), 1744–1751 (2014).
[Crossref]

Barnes, F. W.

F. W. Barnes and C. Segal, “Cavity-based flameholding for chemically-reacting supersonic flows,” Prog. Aerosp. Sci. 76, 24–41 (2015).
[Crossref]

Bärwinkel, M.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

Beduneau, J. L.

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[Crossref]

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
[Crossref]

Borman, A.

J. Griffiths, M. Riley, A. Kirk, A. Borman, J. Lawrence, and C. Dowding, “Lean burn limit and time to light characteristics of laser ignition in gas turbines,” Opt. Lasers Eng. 55, 262–266 (2014).
[Crossref]

Börner, M.

C. Manfletti and M. Börner, “Laser ignition for space propulsion systems,” in Laser Ignition Conference, (Optical Society of America, 2015), p. Th2A.3.

Bradley, D.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[Crossref]

Brieschenk, S.

S. Brieschenk, S. O’Byrne, and H. Kleine, “Ignition characteristics of laser-ionized fuel injected into a hypersonic crossflow,” Combust. Flame 161(4), 1015–1025 (2014).
[Crossref]

S. Brieschenk, H. Kleine, and S. O’Byrne, “Laser ignition of hypersonic air-hydrogen flow,” Shock Waves 23(5), 439–452 (2013).
[Crossref]

S. Brieschenk, S. O’Byrne, and H. Kleine, “Laser-induced plasma ignition studies in a model scramjet engine,” Combust. Flame 160(1), 145–148 (2013).
[Crossref]

Brüggemann, D.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

Cappelli, M. A.

M. S. Bak, S. Im, and M. A. Cappelli, “Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane-air mixtures,” Combust. Flame 161(7), 1744–1751 (2014).
[Crossref]

Carroll, S. D.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[Crossref]

Carter, C. D.

L. Ma, Q. Lei, Y. Wu, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).
[Crossref]

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

Dearden, G.

G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21(S6Suppl 6), A1113–A1125 (2013).
[Crossref] [PubMed]

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[Crossref]

Dodd, R.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[Crossref]

Dowding, C.

J. Griffiths, M. Riley, A. Kirk, A. Borman, J. Lawrence, and C. Dowding, “Lean burn limit and time to light characteristics of laser ignition in gas turbines,” Opt. Lasers Eng. 55, 262–266 (2014).
[Crossref]

García, A.

J. V. Pastor, J. M. García-Oliver, A. García, and M. Pinotti, “Effect of laser induced plasma ignition timing and location on Diesel spray combustion,” Energy Convers. Manage. 133, 41–55 (2017).
[Crossref]

García-Oliver, J. M.

J. V. Pastor, J. M. García-Oliver, A. García, and M. Pinotti, “Effect of laser induced plasma ignition timing and location on Diesel spray combustion,” Energy Convers. Manage. 133, 41–55 (2017).
[Crossref]

Gebel, G. C.

G. C. Gebel, T. Mosbach, W. Meier, and M. Aigner, “Optical and spectroscopic diagnostics of laser-induced air breakdown and kerosene spray ignition,” Combust. Flame 162(4), 1599–1613 (2015).
[Crossref]

Gord, J. R.

Griffiths, J.

J. Griffiths, M. Riley, A. Kirk, A. Borman, J. Lawrence, and C. Dowding, “Lean burn limit and time to light characteristics of laser ignition in gas turbines,” Opt. Lasers Eng. 55, 262–266 (2014).
[Crossref]

Hansson, J.

L. Wermer, J. Hansson, and S. Im, “Dual-pulse laser-induced spark ignition and flame propagation of a methane diffusion jet flame,” Proc. Combust. Inst. 36(3), 4427–4434 (2017).
[Crossref]

Horisawa, H.

H. Horisawa, S. Tsuchiya, J. Negishi, Y. Okawa, and I. Kimura, “Laser ignition and flameholding characteristics in supersonic airstreams,” Proc. SPIE 5448, 586–595 (2004).
[Crossref]

Hsu, P. S.

Ikeda, Y.

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[Crossref]

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
[Crossref]

Im, S.

L. Wermer, J. Hansson, and S. Im, “Dual-pulse laser-induced spark ignition and flame propagation of a methane diffusion jet flame,” Proc. Combust. Inst. 36(3), 4427–4434 (2017).
[Crossref]

M. S. Bak, L. Wermer, and S. Im, “Schlieren imaging investigation of successive laser-induced breakdowns in atmospheric-pressure air,” J. Phys. D 48(48), 485203 (2015).
[Crossref]

M. S. Bak, S. Im, and M. A. Cappelli, “Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane-air mixtures,” Combust. Flame 161(7), 1744–1751 (2014).
[Crossref]

Kawahara, N.

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[Crossref]

Keen, S.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[Crossref]

Kim, B.

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
[Crossref]

Kimura, I.

H. Horisawa, S. Tsuchiya, J. Negishi, Y. Okawa, and I. Kimura, “Laser ignition and flameholding characteristics in supersonic airstreams,” Proc. SPIE 5448, 586–595 (2004).
[Crossref]

Kirk, A.

J. Griffiths, M. Riley, A. Kirk, A. Borman, J. Lawrence, and C. Dowding, “Lean burn limit and time to light characteristics of laser ignition in gas turbines,” Opt. Lasers Eng. 55, 262–266 (2014).
[Crossref]

Kleine, H.

S. Brieschenk, S. O’Byrne, and H. Kleine, “Ignition characteristics of laser-ionized fuel injected into a hypersonic crossflow,” Combust. Flame 161(4), 1015–1025 (2014).
[Crossref]

S. Brieschenk, H. Kleine, and S. O’Byrne, “Laser ignition of hypersonic air-hydrogen flow,” Shock Waves 23(5), 439–452 (2013).
[Crossref]

S. Brieschenk, S. O’Byrne, and H. Kleine, “Laser-induced plasma ignition studies in a model scramjet engine,” Combust. Flame 160(1), 145–148 (2013).
[Crossref]

Kofler, H.

D. K. Srivastava, M. Weinrotter, H. Kofler, A. K. Agarwal, and E. Wintner, “Laser-assisted homogeneous charge ignition in a constant volume combustion chamber,” Opt. Lasers Eng. 47(6), 680–685 (2009).
[Crossref]

Kroupa, G.

Lawrence, J.

J. Griffiths, M. Riley, A. Kirk, A. Borman, J. Lawrence, and C. Dowding, “Lean burn limit and time to light characteristics of laser ignition in gas turbines,” Opt. Lasers Eng. 55, 262–266 (2014).
[Crossref]

Lei, Q.

L. Ma, Q. Lei, Y. Wu, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).
[Crossref]

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

Li, X.

X. Li, W. Liu, Y. Pan, L. Yang, B. An, and J. Zhu, “Characterization of ignition transient processes in kerosene-fueled model scramjet engine by dual-pulse laser-induced plasma,” Acta Astronaut. 144, 23–29 (2018).
[Crossref]

B. An, Z. Wang, L. Yang, G. Wu, J. Zhu, and X. Li, “Experimental investigation of the shock loss and temporal evolution of hot plume resulting from dual-pulse laser-induced breakdown in quiescent air,” J. Appl. Phys. 122(19), 193301 (2017).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

B. An, Z. Wang, L. Yang, X. Li, and J. Zhu, “Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma,” Acta Astronaut. 137, 444–449 (2017).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

X. Li, L. Yang, J. Peng, X. Yu, J. Liang, and R. Sun, “Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma,” Opt. Express 24(22), 25362–25369 (2016).
[Crossref] [PubMed]

L. Yang, X. Li, J. Liang, Y. Yu, and X. Yu, “Laser-induced plasma ignition of hydrocarbon fuel in supersonic flows,” in 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, (AIAA, 2015), pp. AIAA-2015–3544.
[Crossref]

Liang, J.

X. Li, L. Yang, J. Peng, X. Yu, J. Liang, and R. Sun, “Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma,” Opt. Express 24(22), 25362–25369 (2016).
[Crossref] [PubMed]

L. Yang, X. Li, J. Liang, Y. Yu, and X. Yu, “Laser-induced plasma ignition of hydrocarbon fuel in supersonic flows,” in 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, (AIAA, 2015), pp. AIAA-2015–3544.
[Crossref]

Liu, W.

X. Li, W. Liu, Y. Pan, L. Yang, B. An, and J. Zhu, “Characterization of ignition transient processes in kerosene-fueled model scramjet engine by dual-pulse laser-induced plasma,” Acta Astronaut. 144, 23–29 (2018).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

Lorenz, S.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

Ma, L.

L. Ma, Q. Lei, Y. Wu, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).
[Crossref]

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

Mance, J. G.

Manfletti, C.

C. Manfletti and G. Kroupa, “Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser,” Opt. Express 21(S6Suppl 6), A1126–A1139 (2013).
[Crossref] [PubMed]

C. Manfletti and M. Börner, “Laser ignition for space propulsion systems,” in Laser Ignition Conference, (Optical Society of America, 2015), p. Th2A.3.

McNeill, D. H.

D. H. McNeill, “Minimum ignition energy for laser spark ignition,” Proc. Combust. Inst. 30(2), 2913–2920 (2005).
[Crossref]

Meier, W.

G. C. Gebel, T. Mosbach, W. Meier, and M. Aigner, “Optical and spectroscopic diagnostics of laser-induced air breakdown and kerosene spray ignition,” Combust. Flame 162(4), 1599–1613 (2015).
[Crossref]

Morsy, M. H.

M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engines applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
[Crossref]

Mosbach, T.

G. C. Gebel, T. Mosbach, W. Meier, and M. Aigner, “Optical and spectroscopic diagnostics of laser-induced air breakdown and kerosene spray ignition,” Combust. Flame 162(4), 1599–1613 (2015).
[Crossref]

Mühlbauer, W.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

Mullett, J. D.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[Crossref]

Nakayama, T.

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[Crossref]

Negishi, J.

H. Horisawa, S. Tsuchiya, J. Negishi, Y. Okawa, and I. Kimura, “Laser ignition and flameholding characteristics in supersonic airstreams,” Proc. SPIE 5448, 586–595 (2004).
[Crossref]

O’Byrne, S.

S. Brieschenk, S. O’Byrne, and H. Kleine, “Ignition characteristics of laser-ionized fuel injected into a hypersonic crossflow,” Combust. Flame 161(4), 1015–1025 (2014).
[Crossref]

S. Brieschenk, H. Kleine, and S. O’Byrne, “Laser ignition of hypersonic air-hydrogen flow,” Shock Waves 23(5), 439–452 (2013).
[Crossref]

S. Brieschenk, S. O’Byrne, and H. Kleine, “Laser-induced plasma ignition studies in a model scramjet engine,” Combust. Flame 160(1), 145–148 (2013).
[Crossref]

Okawa, Y.

H. Horisawa, S. Tsuchiya, J. Negishi, Y. Okawa, and I. Kimura, “Laser ignition and flameholding characteristics in supersonic airstreams,” Proc. SPIE 5448, 586–595 (2004).
[Crossref]

Ombrello, T. M.

L. Ma, Q. Lei, Y. Wu, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).
[Crossref]

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

Pan, Y.

X. Li, W. Liu, Y. Pan, L. Yang, B. An, and J. Zhu, “Characterization of ignition transient processes in kerosene-fueled model scramjet engine by dual-pulse laser-induced plasma,” Acta Astronaut. 144, 23–29 (2018).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

Pastor, J. V.

J. V. Pastor, J. M. García-Oliver, A. García, and M. Pinotti, “Effect of laser induced plasma ignition timing and location on Diesel spray combustion,” Energy Convers. Manage. 133, 41–55 (2017).
[Crossref]

Pavel, N.

Peng, J.

Phuoc, T. X.

T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[Crossref]

Pinotti, M.

J. V. Pastor, J. M. García-Oliver, A. García, and M. Pinotti, “Effect of laser induced plasma ignition timing and location on Diesel spray combustion,” Energy Convers. Manage. 133, 41–55 (2017).
[Crossref]

Qin, N.

H. Wang, Z. Wang, M. Sun, and N. Qin, “Large-Eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor,” Int. J. Hydrogen Energy 38(14), 5918–5927 (2013).
[Crossref]

Riley, M.

J. Griffiths, M. Riley, A. Kirk, A. Borman, J. Lawrence, and C. Dowding, “Lean burn limit and time to light characteristics of laser ignition in gas turbines,” Opt. Lasers Eng. 55, 262–266 (2014).
[Crossref]

Ronney, P. D.

P. D. Ronney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
[Crossref]

Roy, S.

Sawyer, J.

Scarisbrick, A. D.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[Crossref]

Segal, C.

F. W. Barnes and C. Segal, “Cavity-based flameholding for chemically-reacting supersonic flows,” Prog. Aerosp. Sci. 76, 24–41 (2015).
[Crossref]

Shenton, A. T.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[Crossref]

Shenton, T.

Sheppard, C. G. W.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[Crossref]

Slipchenko, M. N.

Soller, S.

S. Soller, “Laser ignition application to cryogenic propellant rocket thrust chambers,” in Laser Ignition Conference, (Optical Society of America, 2017), p. LFA4.3.
[Crossref]

Srivastava, D. K.

D. K. Srivastava and A. K. Agarwal, “Comparative experimental evaluation of performance, combustion and emissions of laser ignition with conventional spark plug in a compressed natural gas fuelled single cylinder engine,” Fuel 123, 113–122 (2014).
[Crossref]

D. K. Srivastava, M. Weinrotter, H. Kofler, A. K. Agarwal, and E. Wintner, “Laser-assisted homogeneous charge ignition in a constant volume combustion chamber,” Opt. Lasers Eng. 47(6), 680–685 (2009).
[Crossref]

Stäglich, R.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

Suardjaja, I. M.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[Crossref]

Sun, M.

H. Wang, Z. Wang, M. Sun, and N. Qin, “Large-Eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor,” Int. J. Hydrogen Energy 38(14), 5918–5927 (2013).
[Crossref]

Sun, R.

Taira, T.

Tomita, E.

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[Crossref]

Triantos, G.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[Crossref]

Tsuchiya, S.

H. Horisawa, S. Tsuchiya, J. Negishi, Y. Okawa, and I. Kimura, “Laser ignition and flameholding characteristics in supersonic airstreams,” Proc. SPIE 5448, 586–595 (2004).
[Crossref]

Tsunekane, M.

Wang, H.

H. Wang, Z. Wang, M. Sun, and N. Qin, “Large-Eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor,” Int. J. Hydrogen Energy 38(14), 5918–5927 (2013).
[Crossref]

Wang, Y.

Y. Wang, L. Zheng, R. Woolley, and Y. Zhang, “Investigation of ignition process from visible to infrared by a high speed colour camera,” Fuel 185, 500–507 (2016).
[Crossref]

Wang, Z.

B. An, Z. Wang, L. Yang, G. Wu, J. Zhu, and X. Li, “Experimental investigation of the shock loss and temporal evolution of hot plume resulting from dual-pulse laser-induced breakdown in quiescent air,” J. Appl. Phys. 122(19), 193301 (2017).
[Crossref]

B. An, Z. Wang, L. Yang, X. Li, and J. Zhu, “Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma,” Acta Astronaut. 137, 444–449 (2017).
[Crossref]

H. Wang, Z. Wang, M. Sun, and N. Qin, “Large-Eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor,” Int. J. Hydrogen Energy 38(14), 5918–5927 (2013).
[Crossref]

Watkins, K. G.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[Crossref]

Weinrotter, M.

D. K. Srivastava, M. Weinrotter, H. Kofler, A. K. Agarwal, and E. Wintner, “Laser-assisted homogeneous charge ignition in a constant volume combustion chamber,” Opt. Lasers Eng. 47(6), 680–685 (2009).
[Crossref]

Wermer, L.

L. Wermer, J. Hansson, and S. Im, “Dual-pulse laser-induced spark ignition and flame propagation of a methane diffusion jet flame,” Proc. Combust. Inst. 36(3), 4427–4434 (2017).
[Crossref]

M. S. Bak, L. Wermer, and S. Im, “Schlieren imaging investigation of successive laser-induced breakdowns in atmospheric-pressure air,” J. Phys. D 48(48), 485203 (2015).
[Crossref]

Williams, C. J.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[Crossref]

Wintner, E.

D. K. Srivastava, M. Weinrotter, H. Kofler, A. K. Agarwal, and E. Wintner, “Laser-assisted homogeneous charge ignition in a constant volume combustion chamber,” Opt. Lasers Eng. 47(6), 680–685 (2009).
[Crossref]

Woolley, R.

Y. Wang, L. Zheng, R. Woolley, and Y. Zhang, “Investigation of ignition process from visible to infrared by a high speed colour camera,” Fuel 185, 500–507 (2016).
[Crossref]

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[Crossref]

Wu, G.

B. An, Z. Wang, L. Yang, G. Wu, J. Zhu, and X. Li, “Experimental investigation of the shock loss and temporal evolution of hot plume resulting from dual-pulse laser-induced breakdown in quiescent air,” J. Appl. Phys. 122(19), 193301 (2017).
[Crossref]

Wu, Y.

L. Ma, Q. Lei, Y. Wu, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).
[Crossref]

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

Xu, W.

L. Ma, Q. Lei, Y. Wu, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).
[Crossref]

Yang, L.

X. Li, W. Liu, Y. Pan, L. Yang, B. An, and J. Zhu, “Characterization of ignition transient processes in kerosene-fueled model scramjet engine by dual-pulse laser-induced plasma,” Acta Astronaut. 144, 23–29 (2018).
[Crossref]

B. An, Z. Wang, L. Yang, G. Wu, J. Zhu, and X. Li, “Experimental investigation of the shock loss and temporal evolution of hot plume resulting from dual-pulse laser-induced breakdown in quiescent air,” J. Appl. Phys. 122(19), 193301 (2017).
[Crossref]

B. An, Z. Wang, L. Yang, X. Li, and J. Zhu, “Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma,” Acta Astronaut. 137, 444–449 (2017).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

X. Li, L. Yang, J. Peng, X. Yu, J. Liang, and R. Sun, “Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma,” Opt. Express 24(22), 25362–25369 (2016).
[Crossref] [PubMed]

L. Yang, X. Li, J. Liang, Y. Yu, and X. Yu, “Laser-induced plasma ignition of hydrocarbon fuel in supersonic flows,” in 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, (AIAA, 2015), pp. AIAA-2015–3544.
[Crossref]

Yu, X.

X. Li, L. Yang, J. Peng, X. Yu, J. Liang, and R. Sun, “Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma,” Opt. Express 24(22), 25362–25369 (2016).
[Crossref] [PubMed]

L. Yang, X. Li, J. Liang, Y. Yu, and X. Yu, “Laser-induced plasma ignition of hydrocarbon fuel in supersonic flows,” in 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, (AIAA, 2015), pp. AIAA-2015–3544.
[Crossref]

Yu, Y.

L. Yang, X. Li, J. Liang, Y. Yu, and X. Yu, “Laser-induced plasma ignition of hydrocarbon fuel in supersonic flows,” in 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, (AIAA, 2015), pp. AIAA-2015–3544.
[Crossref]

Zhang, Y.

Y. Wang, L. Zheng, R. Woolley, and Y. Zhang, “Investigation of ignition process from visible to infrared by a high speed colour camera,” Fuel 185, 500–507 (2016).
[Crossref]

Zhang, Z.

Zheng, L.

Y. Wang, L. Zheng, R. Woolley, and Y. Zhang, “Investigation of ignition process from visible to infrared by a high speed colour camera,” Fuel 185, 500–507 (2016).
[Crossref]

Zhu, J.

X. Li, W. Liu, Y. Pan, L. Yang, B. An, and J. Zhu, “Characterization of ignition transient processes in kerosene-fueled model scramjet engine by dual-pulse laser-induced plasma,” Acta Astronaut. 144, 23–29 (2018).
[Crossref]

B. An, Z. Wang, L. Yang, G. Wu, J. Zhu, and X. Li, “Experimental investigation of the shock loss and temporal evolution of hot plume resulting from dual-pulse laser-induced breakdown in quiescent air,” J. Appl. Phys. 122(19), 193301 (2017).
[Crossref]

B. An, Z. Wang, L. Yang, X. Li, and J. Zhu, “Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma,” Acta Astronaut. 137, 444–449 (2017).
[Crossref]

Zimmer, L.

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
[Crossref]

Acta Astronaut. (4)

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

B. An, Z. Wang, L. Yang, X. Li, and J. Zhu, “Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma,” Acta Astronaut. 137, 444–449 (2017).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, and B. An, “Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions,” Acta Astronaut. 138, 79–84 (2017).
[Crossref]

X. Li, W. Liu, Y. Pan, L. Yang, B. An, and J. Zhu, “Characterization of ignition transient processes in kerosene-fueled model scramjet engine by dual-pulse laser-induced plasma,” Acta Astronaut. 144, 23–29 (2018).
[Crossref]

Appl. Phys. B (1)

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

Combust. Flame (8)

L. Ma, Q. Lei, Y. Wu, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).
[Crossref]

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, “Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark,” Combust. Flame 132(4), 653–665 (2003).
[Crossref]

M. S. Bak, S. Im, and M. A. Cappelli, “Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane-air mixtures,” Combust. Flame 161(7), 1744–1751 (2014).
[Crossref]

S. Brieschenk, S. O’Byrne, and H. Kleine, “Ignition characteristics of laser-ionized fuel injected into a hypersonic crossflow,” Combust. Flame 161(4), 1015–1025 (2014).
[Crossref]

S. Brieschenk, S. O’Byrne, and H. Kleine, “Laser-induced plasma ignition studies in a model scramjet engine,” Combust. Flame 160(1), 145–148 (2013).
[Crossref]

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[Crossref]

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[Crossref]

G. C. Gebel, T. Mosbach, W. Meier, and M. Aigner, “Optical and spectroscopic diagnostics of laser-induced air breakdown and kerosene spray ignition,” Combust. Flame 162(4), 1599–1613 (2015).
[Crossref]

Energy Convers. Manage. (1)

J. V. Pastor, J. M. García-Oliver, A. García, and M. Pinotti, “Effect of laser induced plasma ignition timing and location on Diesel spray combustion,” Energy Convers. Manage. 133, 41–55 (2017).
[Crossref]

Fuel (2)

D. K. Srivastava and A. K. Agarwal, “Comparative experimental evaluation of performance, combustion and emissions of laser ignition with conventional spark plug in a compressed natural gas fuelled single cylinder engine,” Fuel 123, 113–122 (2014).
[Crossref]

Y. Wang, L. Zheng, R. Woolley, and Y. Zhang, “Investigation of ignition process from visible to infrared by a high speed colour camera,” Fuel 185, 500–507 (2016).
[Crossref]

Int. J. Hydrogen Energy (1)

H. Wang, Z. Wang, M. Sun, and N. Qin, “Large-Eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor,” Int. J. Hydrogen Energy 38(14), 5918–5927 (2013).
[Crossref]

J. Appl. Phys. (1)

B. An, Z. Wang, L. Yang, G. Wu, J. Zhu, and X. Li, “Experimental investigation of the shock loss and temporal evolution of hot plume resulting from dual-pulse laser-induced breakdown in quiescent air,” J. Appl. Phys. 122(19), 193301 (2017).
[Crossref]

J. Engine Res. (1)

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

J. Phys. D (2)

M. S. Bak, L. Wermer, and S. Im, “Schlieren imaging investigation of successive laser-induced breakdowns in atmospheric-pressure air,” J. Phys. D 48(48), 485203 (2015).
[Crossref]

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[Crossref]

Opt. Eng. (1)

P. D. Ronney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (3)

J. Griffiths, M. Riley, A. Kirk, A. Borman, J. Lawrence, and C. Dowding, “Lean burn limit and time to light characteristics of laser ignition in gas turbines,” Opt. Lasers Eng. 55, 262–266 (2014).
[Crossref]

D. K. Srivastava, M. Weinrotter, H. Kofler, A. K. Agarwal, and E. Wintner, “Laser-assisted homogeneous charge ignition in a constant volume combustion chamber,” Opt. Lasers Eng. 47(6), 680–685 (2009).
[Crossref]

T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[Crossref]

Opt. Lett. (1)

Proc. Combust. Inst. (2)

L. Wermer, J. Hansson, and S. Im, “Dual-pulse laser-induced spark ignition and flame propagation of a methane diffusion jet flame,” Proc. Combust. Inst. 36(3), 4427–4434 (2017).
[Crossref]

D. H. McNeill, “Minimum ignition energy for laser spark ignition,” Proc. Combust. Inst. 30(2), 2913–2920 (2005).
[Crossref]

Proc. SPIE (1)

H. Horisawa, S. Tsuchiya, J. Negishi, Y. Okawa, and I. Kimura, “Laser ignition and flameholding characteristics in supersonic airstreams,” Proc. SPIE 5448, 586–595 (2004).
[Crossref]

Prog. Aerosp. Sci. (1)

F. W. Barnes and C. Segal, “Cavity-based flameholding for chemically-reacting supersonic flows,” Prog. Aerosp. Sci. 76, 24–41 (2015).
[Crossref]

Renew. Sustain. Energy Rev. (1)

M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engines applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
[Crossref]

Shock Waves (1)

S. Brieschenk, H. Kleine, and S. O’Byrne, “Laser ignition of hypersonic air-hydrogen flow,” Shock Waves 23(5), 439–452 (2013).
[Crossref]

Other (5)

L. Yang, X. Li, J. Liang, Y. Yu, and X. Yu, “Laser-induced plasma ignition of hydrocarbon fuel in supersonic flows,” in 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, (AIAA, 2015), pp. AIAA-2015–3544.
[Crossref]

J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” SAE paper, 780329 (1978).
[Crossref]

C. Manfletti and M. Börner, “Laser ignition for space propulsion systems,” in Laser Ignition Conference, (Optical Society of America, 2015), p. Th2A.3.

S. Soller, “Laser ignition application to cryogenic propellant rocket thrust chambers,” in Laser Ignition Conference, (Optical Society of America, 2017), p. LFA4.3.
[Crossref]

M. Börner, J. C. Deeken, C. Manfletti, and M. Oschwald, “Determination of the minimum laser pulse energies for ignition in a subscale rocket combustion chamber,” in Laser Ignition Conference, (Optical Society of America, 2017), p. LThA4.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the model scramjet combustor.
Fig. 2
Fig. 2 The optical layout used for the LI, Schlieren visualization and high-speed photography.
Fig. 3
Fig. 3 Ignition processes of single-pulse LI and dual-pulse LIs with pulse intervals of 100 ns and 40 μs.
Fig. 4
Fig. 4 Ignition processes of dual-pulse LIs with pulse intervals of 240 μs and 340 μs.
Fig. 5
Fig. 5 Average integrated flame chemiluminescence intensities of single-pulse LI and dual-pulse LIs with pulse intervals of 100 ns, 40 μs, 240 μs and 340 μs during ignition processes.
Fig. 6
Fig. 6 The ignition times of dual-pulse LIs with pulse intervals of 100 ns, 40 μs, 240 μs, and 340 μs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r = ( 2 λ π ) ( f D 0 )
l = ( 2 1 ) θ D 0 f 2

Metrics