Abstract

A low-cost, high-speed SDM-WDM-PON architecture is proposed by using a multi-core fiber (MCF) and intensity modulation/directly detection (IM/DD). One of the MCF cores is used for sending laser sources from optical line terminal (OLT) to optical network unit (ONU), thus facilitating laserless and colorless ONUs, and providing ease of network management and maintenance. In addition, the wavelengths of the ONUs are controlled on the OLT side, which also enables flexible optical networks. Thanks to the low inter-core crosstalk of a MCF, downstream (DS) and upstream (US) signals are transmitted independently in different cores of the MCF, not only increasing the aggregated capacity but also avoiding the Rayleigh backscattering noise. Finally, a proof-of-principle experiment is performed by using a 7-core fiber, achieving 300 /120 Gb/s aggregated capacity for DS and US (3 × cores, 4 × wavelengths, 25/10 Gb/s per wavelength), respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
OFDM/WDM PON With Laserless, Colorless 1  Gb/s ONUs Based on Si-PIC and Slow IC

A. Agmon, M. Nazarathy, D. M. Marom, S. Ben-Ezra, A. Tolmachev, R. Killey, P. Bayvel, L. Meder, M. Hübner, W. Meredith, G. Vickers, P. C. Schindler, R. Schmogrow, D. Hillerkuss, W. Freude, C. Koos, and J. Leuthold
J. Opt. Commun. Netw. 6(3) 225-237 (2014)

Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats

Borui Li, Zhenhua Feng, Ming Tang, Zhilin Xu, Songnian Fu, Qiong Wu, Lei Deng, Weijun Tong, Shuang Liu, and Perry Ping Shum
Opt. Express 23(9) 10997-11006 (2015)

DSP-free single-wavelength 100 Gbps SDM-PON with increased splitting ratio using 10G-class DML

Fangdi Bao, Yunhong Ding, Md Nooruzzaman, Yoshimichi Amma, Yusuke Sasaki, Leif K. Oxenløwe, Hao Hu, and Toshio Morioka
Opt. Express 27(23) 33915-33924 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. G. Kazovsky, W. Shaw, D. Gutierrez, N. Cheng, and S. Wong, “Next-generation optical access networks,” J. Lightwave Technol. 25(11), 3428–3442 (2007).
    [Crossref]
  2. R. Asif, “Advanced and flexible multi-carrier receiver architecture for high-count multi-core fiber based space division multiplexed applications,” Sci. Rep. 6(1), 27465 (2016).
    [Crossref] [PubMed]
  3. D. Nesset, “NG-PON2 technology and standards,” J. Lightwave Technol. 33(5), 1136–1143 (2015).
    [Crossref]
  4. D. T. van Veen and V. E. Houtsma, “Symmetrical 25-Gb/s TDM-PON with 31.5-dB Optical Power Budget Using Only Off-the-Shelf 10-Gb/s Optical Components,” J. Lightwave Technol. 34(7), 1636–1642 (2016).
    [Crossref]
  5. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2),” J. Lightwave Technol. 31(4), 587–593 (2013).
    [Crossref]
  6. P. Iannone, A. Gnauck, M. Straub, J. Hehmann, and L. Jentsch, “High-Split Intelligent TWDM PON Enabled by Distributed Raman Amplification,” in Proceedings of the European Conference and Exhibition on Optical Communications (ECOC, 2016), paper Th.3.C.6.
  7. N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
    [Crossref]
  8. J. K. Hmood, S. W. Harun, S. D. Emami, A. Khodaei, K. A. Noordin, H. Ahmad, and H. M. Shalaby, “Performance analysis of an all-optical OFDM system in presence of non-linear phase noise,” Opt. Express 23(4), 3886–3900 (2015).
    [Crossref] [PubMed]
  9. R. Hu, Q. Yang, M. Luo, X. Xiao, X. Xiao, H. Li, and W. Shieh, “A cost-effective 2.5 Gb/s/λ; Bi-directional coherent UDWDM-PON with computationally-efficient DSP,” in Proceedings of the European Conference and Exhibition on Optical Communications (ECOC, 2014), paper Th.2.6.4.
    [Crossref]
  10. D. Lavery, R. Maher, D. S. Millar, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Digital Coherent Receivers for Long-Reach Optical Access Networks,” J. Lightwave Technol. 31(4), 609–620 (2013).
    [Crossref]
  11. A. Shahpari, R. M. Ferreira, R. S. Luis, Z. Vujicic, F. P. Guiomar, J. D. Reis, and A. L. Teixeira, “Coherent Access: A Review,” J. Lightwave Technol. 35(4), 1050–1058 (2017).
    [Crossref]
  12. B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
    [Crossref] [PubMed]
  13. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
    [Crossref] [PubMed]
  14. R. Asif, H. Hu, P. Mitchell, J. Macdonald, F. Da Ros, N. Psaila, F. Ye, L. K. Oxenlowe, and T. Morioka, “Experimental demonstration of 6-mode division multiplexed NG-PON2: Cost effective 40 Gbit/s/spatial-mode access based on 3D laser inscribed photonic lanterns,” in Proceedings of the European Conference and Exhibition on Optical Communications (ECOC) 2015, paper Tu.1.5.1.
    [Crossref]
  15. C. Xia, N. Chand, A. M. Velázquez-Benítez, Z. Yang, X. Liu, J. E. Antonio-Lopez, H. Wen, B. Zhu, N. Zhao, F. Effenberger, R. Amezcua-Correa, and G. Li, “Time-division-multiplexed few-mode passive optical network,” Opt. Express 23(2), 1151–1158 (2015).
    [Crossref] [PubMed]
  16. F. Ren, J. Li, Z. Wu, T. Hu, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX,” Opt. Commun. 383, 525–530 (2017).
    [Crossref]
  17. H. Hu, R. Asif, F. Ye, S. Gross, M. Withford, T. Morioka, and L. K. Oxenlowe, “Bidirectional 120 Gbps SDM-WDM-PON with Colourless ONU using 10 Gbps Optical Components without DSP,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper M3C.1.
    [Crossref]
  18. A. Shahpari, R. S. Luís, V. Ribeiro, J. D. Reis, R. Ferreira, J. M. D. Mendinueta, Z. Vujicic, B. J. Puttnam, M. Lima, N. Wada, and A. Teixeira, “Spectrally efficient enhanced-performance bidirectional coherent PON With laserless 10 Gb/s ONU [Invited],” J. Opt. Commun. Netw. 7(3), A403–A413 (2015).
    [Crossref]
  19. A. Agmon, M. Nazarathy, D. M. Marom, S. Ben-Ezra, A. Tolmachev, R. Killey, P. Bayvel, L. Meder, M. Hübner, W. Meredith, G. Vickers, P. C. Schindler, R. Schmogrow, D. Hillerkuss, W. Freude, C. Koos, and J. Leuthold, “OFDM/WDM PON With Laserless, Colorless 1 Gb/s ONUs Based on Si-PIC and Slow IC,” J. Opt. Commun. Netw. 6(3), 225–237 (2014).
    [Crossref]
  20. S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. Hayes, M. Petrovich, G. Bai, and H. Ono, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission system,” in Proceedings of the European Conference and Exhibition on Optical Communication (ECOC, 2016), paper Th.3.A.1.
  21. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
    [Crossref] [PubMed]
  22. Deliverable D2, 3 “Report on Development of First Generation MCF and PBGF Fibres” http://www.fp7-cosign.eu/deliverables/

2017 (2)

F. Ren, J. Li, Z. Wu, T. Hu, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX,” Opt. Commun. 383, 525–530 (2017).
[Crossref]

A. Shahpari, R. M. Ferreira, R. S. Luis, Z. Vujicic, F. P. Guiomar, J. D. Reis, and A. L. Teixeira, “Coherent Access: A Review,” J. Lightwave Technol. 35(4), 1050–1058 (2017).
[Crossref]

2016 (2)

D. T. van Veen and V. E. Houtsma, “Symmetrical 25-Gb/s TDM-PON with 31.5-dB Optical Power Budget Using Only Off-the-Shelf 10-Gb/s Optical Components,” J. Lightwave Technol. 34(7), 1636–1642 (2016).
[Crossref]

R. Asif, “Advanced and flexible multi-carrier receiver architecture for high-count multi-core fiber based space division multiplexed applications,” Sci. Rep. 6(1), 27465 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (1)

2013 (2)

2011 (1)

2010 (2)

B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
[Crossref] [PubMed]

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[Crossref]

2007 (1)

Agmon, A.

Ahmad, H.

Amezcua-Correa, R.

Antonio-Lopez, J. E.

Asif, R.

R. Asif, “Advanced and flexible multi-carrier receiver architecture for high-count multi-core fiber based space division multiplexed applications,” Sci. Rep. 6(1), 27465 (2016).
[Crossref] [PubMed]

Bayvel, P.

Ben-Ezra, S.

Chand, N.

Chandrasekhar, S.

Chen, Z.

F. Ren, J. Li, Z. Wu, T. Hu, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX,” Opt. Commun. 383, 525–530 (2017).
[Crossref]

Cheng, N.

Cvijetic, N.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[Crossref]

Deng, L.

Dimarcello, F. V.

Effenberger, F.

Emami, S. D.

Feng, Z.

Ferreira, R.

Ferreira, R. M.

Fini, J. M.

Fishteyn, M.

Freude, W.

Fu, S.

Guiomar, F. P.

Gutierrez, D.

Harun, S. W.

He, Y.

F. Ren, J. Li, Z. Wu, T. Hu, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX,” Opt. Commun. 383, 525–530 (2017).
[Crossref]

Hillerkuss, D.

Hmood, J. K.

Houtsma, V. E.

Hu, J.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[Crossref]

Hu, T.

F. Ren, J. Li, Z. Wu, T. Hu, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX,” Opt. Commun. 383, 525–530 (2017).
[Crossref]

Hübner, M.

Kazovsky, L. G.

Khodaei, A.

Killey, R.

Koos, C.

Lavery, D.

Leuthold, J.

Li, B.

Li, G.

Li, J.

F. Ren, J. Li, Z. Wu, T. Hu, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX,” Opt. Commun. 383, 525–530 (2017).
[Crossref]

Li, Z.

F. Ren, J. Li, Z. Wu, T. Hu, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX,” Opt. Commun. 383, 525–530 (2017).
[Crossref]

Lima, M.

Liu, S.

Liu, X.

Luis, R. S.

Luís, R. S.

Luo, Y.

Ma, Y.

Maher, R.

Marom, D. M.

Meder, L.

Mendinueta, J. M. D.

Meredith, W.

Millar, D. S.

Mo, Q.

F. Ren, J. Li, Z. Wu, T. Hu, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX,” Opt. Commun. 383, 525–530 (2017).
[Crossref]

Monberg, E. M.

Nazarathy, M.

Nesset, D.

Noordin, K. A.

Peng, G.

Puttnam, B. J.

Qian, D.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[Crossref]

Qian, Y.

Reis, J. D.

Ren, F.

F. Ren, J. Li, Z. Wu, T. Hu, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX,” Opt. Commun. 383, 525–530 (2017).
[Crossref]

Ribeiro, V.

Savory, S. J.

Schindler, P. C.

Schmogrow, R.

Shahpari, A.

Shalaby, H. M.

Shaw, W.

Shum, P. P.

Tang, M.

Taunay, T. F.

Teixeira, A.

Teixeira, A. L.

Thomsen, B. C.

Tolmachev, A.

Tong, W.

van Veen, D. T.

Velázquez-Benítez, A. M.

Vickers, G.

Vujicic, Z.

Wada, N.

Wen, H.

Wong, S.

Wu, Q.

Wu, Z.

F. Ren, J. Li, Z. Wu, T. Hu, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX,” Opt. Commun. 383, 525–530 (2017).
[Crossref]

Xia, C.

Xu, Z.

Yan, M. F.

Yan, X.

Yang, Z.

Yu, J.

F. Ren, J. Li, Z. Wu, T. Hu, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX,” Opt. Commun. 383, 525–530 (2017).
[Crossref]

Zhao, N.

Zhou, X.

Zhu, B.

IEEE Commun. Mag. (1)

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[Crossref]

J. Lightwave Technol. (6)

J. Opt. Commun. Netw. (2)

Opt. Commun. (1)

F. Ren, J. Li, Z. Wu, T. Hu, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX,” Opt. Commun. 383, 525–530 (2017).
[Crossref]

Opt. Express (5)

Sci. Rep. (1)

R. Asif, “Advanced and flexible multi-carrier receiver architecture for high-count multi-core fiber based space division multiplexed applications,” Sci. Rep. 6(1), 27465 (2016).
[Crossref] [PubMed]

Other (6)

P. Iannone, A. Gnauck, M. Straub, J. Hehmann, and L. Jentsch, “High-Split Intelligent TWDM PON Enabled by Distributed Raman Amplification,” in Proceedings of the European Conference and Exhibition on Optical Communications (ECOC, 2016), paper Th.3.C.6.

R. Hu, Q. Yang, M. Luo, X. Xiao, X. Xiao, H. Li, and W. Shieh, “A cost-effective 2.5 Gb/s/λ; Bi-directional coherent UDWDM-PON with computationally-efficient DSP,” in Proceedings of the European Conference and Exhibition on Optical Communications (ECOC, 2014), paper Th.2.6.4.
[Crossref]

R. Asif, H. Hu, P. Mitchell, J. Macdonald, F. Da Ros, N. Psaila, F. Ye, L. K. Oxenlowe, and T. Morioka, “Experimental demonstration of 6-mode division multiplexed NG-PON2: Cost effective 40 Gbit/s/spatial-mode access based on 3D laser inscribed photonic lanterns,” in Proceedings of the European Conference and Exhibition on Optical Communications (ECOC) 2015, paper Tu.1.5.1.
[Crossref]

H. Hu, R. Asif, F. Ye, S. Gross, M. Withford, T. Morioka, and L. K. Oxenlowe, “Bidirectional 120 Gbps SDM-WDM-PON with Colourless ONU using 10 Gbps Optical Components without DSP,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper M3C.1.
[Crossref]

S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. Hayes, M. Petrovich, G. Bai, and H. Ono, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission system,” in Proceedings of the European Conference and Exhibition on Optical Communication (ECOC, 2016), paper Th.3.A.1.

Deliverable D2, 3 “Report on Development of First Generation MCF and PBGF Fibres” http://www.fp7-cosign.eu/deliverables/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Proposed SDM-WDM-PON architecture. (LD: laser diode, Mod: modulator, MCF: multi-core fiber, OF: optical filter, Mux: multiplexer, OLT: optical line terminal, ONU: optical network unit, Tx: transmitter, Rx: receiver, DS: downstream, US: upstream.)
Fig. 2
Fig. 2 Experimental setup for SDM-WDM-PON system. (IM: intensity modulator, B2B: back to back.)
Fig. 3
Fig. 3 Optical spectra after transmission for (a) US signals, (b) DS signals.
Fig. 4
Fig. 4 Measured BER of the DS signals in 3 different cores (core 1, core 3, core 5) at the wavelength of (a) 1547.88 nm, (b) 1549.48 nm, (c) 1551.08 nm, (d) 1552.68 nm.
Fig. 5
Fig. 5 Measured BER of the US signal in 3 different cores (core 2, core 4, core 6) at the wavelength of 1552.68 nm.

Metrics