Abstract

We propose and experimentally demonstrate a novel multimode ultra-compact mode (de)multiplexer for highly integrated on-chip mode-division multiplexing systems. This device is composed of a wide divergence angle asymmetric Y-junction based on subwavelength structure and optimized using an inverse design method. The proposed device occupied a footprint of only 2.4 × 3 µm2. The measured insertion loss and crosstalk were less than 1dB and –24 dB from 1530 nm to 1590 nm for both TE0 mode and TE1 mode, respectively. Likewise, a three mode multiplexer is also designed and fabricated with a compact footprint of 3.6 × 4.8 µm2. Furthermore, our scheme could also be expanded to include more modes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers

Weijie Chang, Luluzi Lu, Xinshu Ren, Dongyu Li, Zepeng Pan, Mengfan Cheng, Deming Liu, and Minming Zhang
Photon. Res. 6(7) 660-665 (2018)

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Yaming Li, Chong Li, Chuanbo Li, Buwen Cheng, and Chunlai Xue
Opt. Express 22(5) 5781-5786 (2014)

Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics

Hung-Ching Chung, Kun-Sheng Lee, and Shuo-Yen Tseng
Opt. Express 25(12) 13626-13634 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref] [PubMed]
  2. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]
  3. J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
    [Crossref] [PubMed]
  4. Z. Zhang, X. Hu, and J. Wang, “On-chip optical mode exchange using tapered directional coupler,” Sci. Rep. 5(1), 16072 (2015).
    [Crossref] [PubMed]
  5. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguides and a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [Crossref]
  6. M. Ye, Y. Yu, J. Zou, W. Yang, and X. Zhang, “On-chip multiplexing conversion between wavelength division multiplexing-polarization division multiplexing and wavelength division multiplexing-mode division multiplexing,” Opt. Lett. 39(4), 758–761 (2014).
    [Crossref] [PubMed]
  7. J. D. Love and N. Riesen, “Single-, few- and multimode Y-Junctions,” J. Lightwave Technol. 30(3), 304–309 (2012).
    [Crossref]
  8. N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
    [Crossref] [PubMed]
  9. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [Crossref] [PubMed]
  10. W. Chen, P. Wang, T. Yang, G. Wang, T. Dai, Y. Zhang, L. Zhou, X. Jiang, and J. Yang, “Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions,” Opt. Lett. 41(12), 2851–2854 (2016).
    [Crossref] [PubMed]
  11. L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24(15), 16866–16873 (2016).
    [Crossref] [PubMed]
  12. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
    [Crossref]
  13. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
    [Crossref]
  14. A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2014).
    [Crossref] [PubMed]
  15. Z. Yu, H. Cui, and X. Sun, “Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint,” Opt. Lett. 42(16), 3093–3096 (2017).
    [Crossref] [PubMed]
  16. K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. Lett. 42(4), 855–858 (2017).
    [Crossref] [PubMed]
  17. J. C. C. Mak, C. Sideris, J. Jeong, A. Hajimiri, and J. K. S. Poon, “Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform,” Opt. Lett. 41(16), 3868–3871 (2016).
    [Crossref] [PubMed]
  18. L. Lu, D. Liu, F. Zhou, D. Li, M. Cheng, L. Deng, S. Fu, J. Xia, and M. Zhang, “Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures,” Opt. Lett. 41(21), 5051–5054 (2016).
    [Crossref] [PubMed]
  19. J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
    [Crossref]
  20. L. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
    [Crossref]
  21. L. Lu, M. Zhang, F. Zhou, W. Chang, J. Tang, D. Li, X. Ren, Z. Pan, M. Cheng, and D. Liu, “Inverse-designed ultra-compact star-crossings based on PhC-like subwavelength structures for optical intercross connect,” Opt. Express 25(15), 18355–18364 (2017).
    [Crossref] [PubMed]
  22. Lumerical FDTD solutions, https://www.lumerical.com .
  23. W. Chang, M. Zhang, L. Lu, F. Zhou, D. Li, Z. Pan, and D. Liu, “Inverse design of an ultra-compact mode (de)multiplexer based on subwavelength structure,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper SF1J.8.
    [Crossref]

2017 (3)

2016 (4)

2015 (3)

Z. Zhang, X. Hu, and J. Wang, “On-chip optical mode exchange using tapered directional coupler,” Sci. Rep. 5(1), 16072 (2015).
[Crossref] [PubMed]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

2014 (4)

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2014).
[Crossref] [PubMed]

M. Ye, Y. Yu, J. Zou, W. Yang, and X. Zhang, “On-chip multiplexing conversion between wavelength division multiplexing-polarization division multiplexing and wavelength division multiplexing-mode division multiplexing,” Opt. Lett. 39(4), 758–761 (2014).
[Crossref] [PubMed]

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (3)

1996 (2)

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

L. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
[Crossref]

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2014).
[Crossref] [PubMed]

Bergmen, K.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Chang, W.

Chen, C. P.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Chen, P.

Chen, S.

Chen, W.

Cheng, M.

Cui, H.

Da Ros, F.

Dadap, J. I.

Dai, D.

Dai, T.

Deng, L.

Ding, Y.

Driscoll, J. B.

Frandsen, L. H.

Frellsen, L. F.

Fu, S.

Gabrielli, L. H.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Grote, R. R.

Hajimiri, A.

Hu, X.

Z. Zhang, X. Hu, and J. Wang, “On-chip optical mode exchange using tapered directional coupler,” Sci. Rep. 5(1), 16072 (2015).
[Crossref] [PubMed]

Huang, B.

Ishizaka, Y.

Jeong, J.

Jiang, X.

Joblin, A.

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Kawaguchi, Y.

Koshiba, M.

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2014).
[Crossref] [PubMed]

Lalanne, L.

L. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
[Crossref]

Lemercier-Lalanne, D.

L. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
[Crossref]

Li, D.

Lipson, M.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Liu, D.

Liu, L.

Love, J. D.

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2014).
[Crossref] [PubMed]

Lu, L.

Lu, M.

Luo, L. W.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Mak, J. C. C.

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Ophir, N.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Osgood, R. M.

Ou, H.

Pan, Z.

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2014).
[Crossref] [PubMed]

Peucheret, C.

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2014).
[Crossref] [PubMed]

Poitras, C. B.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Poon, J. K. S.

Ren, X.

Riesen, N.

Saitoh, K.

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Shi, Y.

Sideris, C.

Sigmund, O.

Song, Q.

Souhan, B.

Sun, S.

Sun, W.

Sun, X.

Tang, J.

Uematsu, T.

Vance, R. W. C.

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2014).
[Crossref] [PubMed]

Wang, G.

Wang, J.

Wang, P.

W. Chen, P. Wang, T. Yang, G. Wang, T. Dai, Y. Zhang, L. Zhou, X. Jiang, and J. Yang, “Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions,” Opt. Lett. 41(12), 2851–2854 (2016).
[Crossref] [PubMed]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Wen, X.

Xia, J.

Xiao, S.

Xu, J.

Xu, K.

Yang, J.

Yang, T.

Yang, W.

Ye, M.

Yi, N.

Yu, Y.

Yu, Z.

Zhang, M.

Zhang, N.

Zhang, X.

Zhang, Y.

Zhang, Z.

Z. Zhang, X. Hu, and J. Wang, “On-chip optical mode exchange using tapered directional coupler,” Sci. Rep. 5(1), 16072 (2015).
[Crossref] [PubMed]

Zhou, F.

Zhou, L.

Zou, J.

Appl. Opt. (1)

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

L. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
[Crossref]

Nat. Commun. (1)

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

M. Ye, Y. Yu, J. Zou, W. Yang, and X. Zhang, “On-chip multiplexing conversion between wavelength division multiplexing-polarization division multiplexing and wavelength division multiplexing-mode division multiplexing,” Opt. Lett. 39(4), 758–761 (2014).
[Crossref] [PubMed]

J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
[Crossref] [PubMed]

W. Chen, P. Wang, T. Yang, G. Wang, T. Dai, Y. Zhang, L. Zhou, X. Jiang, and J. Yang, “Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions,” Opt. Lett. 41(12), 2851–2854 (2016).
[Crossref] [PubMed]

Z. Yu, H. Cui, and X. Sun, “Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint,” Opt. Lett. 42(16), 3093–3096 (2017).
[Crossref] [PubMed]

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. Lett. 42(4), 855–858 (2017).
[Crossref] [PubMed]

J. C. C. Mak, C. Sideris, J. Jeong, A. Hajimiri, and J. K. S. Poon, “Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform,” Opt. Lett. 41(16), 3868–3871 (2016).
[Crossref] [PubMed]

L. Lu, D. Liu, F. Zhou, D. Li, M. Cheng, L. Deng, S. Fu, J. Xia, and M. Zhang, “Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures,” Opt. Lett. 41(21), 5051–5054 (2016).
[Crossref] [PubMed]

Opt. Quantum Electron. (1)

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Sci. Rep. (2)

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4(1), 7210 (2014).
[Crossref] [PubMed]

Z. Zhang, X. Hu, and J. Wang, “On-chip optical mode exchange using tapered directional coupler,” Sci. Rep. 5(1), 16072 (2015).
[Crossref] [PubMed]

Other (2)

Lumerical FDTD solutions, https://www.lumerical.com .

W. Chang, M. Zhang, L. Lu, F. Zhou, D. Li, Z. Pan, and D. Liu, “Inverse design of an ultra-compact mode (de)multiplexer based on subwavelength structure,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper SF1J.8.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) and (b)Working principles for two-mode (De) MUX and N-mode (De) MUX based on conventional waveguides and asymmetric Y-junctions, respectively. (c) Mode conversion factor (MCF) as a function of the refractive index of the material.
Fig. 2
Fig. 2 (a) Schematic of the two-mode MUX based on SW structure asymmetric Y-junction. (b) The manual initial pattern of inverse design region for two-mode MUX. (c) and (d) The optimized patterns for random and manually-set initials, respectively. (e) The calculated FOMs after every iteration for manually-set and random initial patterns.
Fig. 3
Fig. 3 (a) and (b) Simulated magnetic field distribution of Hz for TE0 and TE1, respectively. (c) and (d) Simulated spectra transmission for the MUX and the MDM system, respectively.
Fig. 4
Fig. 4 (a) SEM image for the fabricated MDM system (b) and (c) The detailed SEM pictures for the MDM system with a 5 μm long bus waveguide and the DeMUX, respectively. (d) The measured spectrum transmission for the fabricated MDM link
Fig. 5
Fig. 5 (a) Schematic of the two-mode MUX based on SW structure asymmetric Y-junction. (b) The optimized pattern for the manually-set initial pattern as shown in Fig. 5(a). (c)- (e) Simulated magnetic field distributions of Hz for TE0, TE1 and TE2, respectively.
Fig. 6
Fig. 6 (a) SEM image for the fabricated three- mode MDM system (b) the detailed SEM picture for DeMUX. (c)- (e) The measured spectra transmission for TE0 injected in the upper, middle, lower input waveguides, respectively.
Fig. 7
Fig. 7 (a) and (b) Simulated ILs and CTs of TE0 for the two-mode MUX with different holes radii varying from 40 nm to 50 nm, respectively. (c) and (d) Simulated ILs and CTs of TE1 for the two-mode MUX with different holes radii varying from 40 nm to 50 nm, respectively. (e)-(g) Simulated average transmission of TE0, TE1 and TE2 for the three-mode MUX as a function of various holes radii, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

MCF= 2| β 1 β 2 | tanθ [ ( β 1 + β 2 ) 2 ( 2 n 0 k ) 2 ] 1/2
FOM=1( 1α ) 1 2M ( | 1 t 1 |+| 1 t 2 | )α 1 2M ( x 1 + x 2 )

Metrics