Abstract

A two-section InGaSb/AlGaAsSb single quantum well (SQW) laser emitting at 2 μm is presented. By varying the absorber bias voltage with a fixed gain current at 130 mA, passive mode locking at ~18.40 GHz, Q-switched mode locking, and passive Q-switching are observed in this laser. In the Q-switched mode locking regimes, the Q-switched RF signal and mode locked RF signal coexist, and the Q-switched lasing and mode-locked lasing happen at different wavelengths. This is the first observation of these three pulsed working regimes in a GaSb-based diode laser. An analysis of the regime switching mechanism is given based on the interplay between the gain saturation and the saturable absorption.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Q-switching stability limits of continuous-wave passive mode locking

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller
J. Opt. Soc. Am. B 16(1) 46-56 (1999)

Experimental investigation on a Q-switched, mode-locked fiber laser based on the combination of active mode locking and passive Q switching

Junsu Lee, Joonhoi Koo, You Min Chang, Pulak Debnath, Yong-Won Song, and Ju Han Lee
J. Opt. Soc. Am. B 29(6) 1479-1485 (2012)

Experimental investigation of different regimes of mode-locking in a high repetition rate passively mode-locked semiconductor quantum-dot laser

Fabien Kéfélian, Shane O’Donoghue, Maria Teresa Todaro, John McInerney, and Guillaume Huyet
Opt. Express 17(8) 6258-6267 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, Rijeka, 2010), Ch. 21.
  2. J. Geng and S. Jiang, “Fiber lasers: the 2 μm market heats up,” Opt. Photonics News 25(7), 34–41 (2014).
    [Crossref]
  3. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  4. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  5. X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
    [Crossref]
  6. T. Sadeev, D. Arsenijević, D. Franke, J. Kreissl, H. Künzel, and D. Bimberg, “1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range,” Appl. Phys. Lett. 106(3), 031114 (2015).
    [Crossref]
  7. K. Merghem, R. Teissier, G. Aubin, A. M. Monakhov, A. Ramdane, and A. N. Baranov, “Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm,” Appl. Phys. Lett. 107(11), 111109 (2015).
    [Crossref]
  8. K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
    [Crossref] [PubMed]
  9. A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm,” Opt. Express 19(10), 9995–10000 (2011).
    [Crossref] [PubMed]
  10. Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm–Ho-Codoped fiber laser at 2.06 μm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).
    [Crossref]
  11. M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 μm,” Opt. Express 15(25), 16292–16301 (2007).
    [Crossref] [PubMed]
  12. M. B. Flynn, L. O’Faolain, and T. F. Krauss, “An experimental and numerical study of Q-switched mode-locking in monolithic semiconductor diode lasers,” IEEE J. Quantum Electron. 40(8), 1008–1013 (2004).
    [Crossref]
  13. K. Holc, T. Weig, W. Pletschen, K. Köhler, J. Wagner, and U. T. Schwarz, “Picosecond pulse generation in monolithic GaN-based multi-section laser diodes,” Proc. SPIE 8625, 862515 (2013).
    [Crossref]
  14. M. J. Strain, M. Zanola, G. Mezösi, and M. Sorel, “Ultrashort Q-switched pulses from a passively mode-locked distributed Bragg reflector semiconductor laser,” Opt. Lett. 37(22), 4732–4734 (2012).
    [Crossref] [PubMed]
  15. G. Xie, J. Ma, P. Lv, W. Gao, P. Yuan, L. Qian, H. Yu, H. Zhang, J. Wang, and D. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
    [Crossref]
  16. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
    [Crossref] [PubMed]
  17. X. Li, H. Wang, Z. Qiao, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Design and analysis of 2-μm InGaSb/GaSb quantum well Lasers integrated onto Silicon-on-Insulator (SOI) waveguide circuits through an Al2O3 bonding layer,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1500507 (2016).
    [Crossref]
  18. A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express 20(11), 11665–11672 (2012).
    [Crossref] [PubMed]
  19. X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
    [Crossref]
  20. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–53 (1999).
    [Crossref]

2017 (1)

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

2016 (1)

X. Li, H. Wang, Z. Qiao, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Design and analysis of 2-μm InGaSb/GaSb quantum well Lasers integrated onto Silicon-on-Insulator (SOI) waveguide circuits through an Al2O3 bonding layer,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1500507 (2016).
[Crossref]

2015 (3)

T. Sadeev, D. Arsenijević, D. Franke, J. Kreissl, H. Künzel, and D. Bimberg, “1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range,” Appl. Phys. Lett. 106(3), 031114 (2015).
[Crossref]

K. Merghem, R. Teissier, G. Aubin, A. M. Monakhov, A. Ramdane, and A. N. Baranov, “Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm,” Appl. Phys. Lett. 107(11), 111109 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

2014 (1)

J. Geng and S. Jiang, “Fiber lasers: the 2 μm market heats up,” Opt. Photonics News 25(7), 34–41 (2014).
[Crossref]

2013 (2)

K. Holc, T. Weig, W. Pletschen, K. Köhler, J. Wagner, and U. T. Schwarz, “Picosecond pulse generation in monolithic GaN-based multi-section laser diodes,” Proc. SPIE 8625, 862515 (2013).
[Crossref]

K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (2)

2007 (1)

2004 (1)

M. B. Flynn, L. O’Faolain, and T. F. Krauss, “An experimental and numerical study of Q-switched mode-locking in monolithic semiconductor diode lasers,” IEEE J. Quantum Electron. 40(8), 1008–1013 (2004).
[Crossref]

2001 (1)

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

1999 (1)

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Anantathanasarn, S.

Arsenijevic, D.

T. Sadeev, D. Arsenijević, D. Franke, J. Kreissl, H. Künzel, and D. Bimberg, “1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range,” Appl. Phys. Lett. 106(3), 031114 (2015).
[Crossref]

Aubin, G.

K. Merghem, R. Teissier, G. Aubin, A. M. Monakhov, A. Ramdane, and A. N. Baranov, “Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm,” Appl. Phys. Lett. 107(11), 111109 (2015).
[Crossref]

Bao, Q.

Baranov, A. N.

K. Merghem, R. Teissier, G. Aubin, A. M. Monakhov, A. Ramdane, and A. N. Baranov, “Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm,” Appl. Phys. Lett. 107(11), 111109 (2015).
[Crossref]

Bente, E. A. J. M.

Bimberg, D.

T. Sadeev, D. Arsenijević, D. Franke, J. Kreissl, H. Künzel, and D. Bimberg, “1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range,” Appl. Phys. Lett. 106(3), 031114 (2015).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Brown, C. T. A.

Calvez, S.

Cerutti, L.

Chen, S.

Chen, Y.

Cheng, J.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

Dawson, M. D.

Dekorsy, T.

der Au, J. A.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Fan, D.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Flynn, M. B.

M. B. Flynn, L. O’Faolain, and T. F. Krauss, “An experimental and numerical study of Q-switched mode-locking in monolithic semiconductor diode lasers,” IEEE J. Quantum Electron. 40(8), 1008–1013 (2004).
[Crossref]

Franke, D.

T. Sadeev, D. Arsenijević, D. Franke, J. Kreissl, H. Künzel, and D. Bimberg, “1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range,” Appl. Phys. Lett. 106(3), 031114 (2015).
[Crossref]

Gao, W.

Gassenq, A.

Geng, J.

J. Geng and S. Jiang, “Fiber lasers: the 2 μm market heats up,” Opt. Photonics News 25(7), 34–41 (2014).
[Crossref]

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm–Ho-Codoped fiber laser at 2.06 μm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Guina, M.

Guo, X.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

Guo, Z.

Gupta, J. A.

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hattasan, N.

Heck, M. J. R.

Heinecke, D.

Holc, K.

K. Holc, T. Weig, W. Pletschen, K. Köhler, J. Wagner, and U. T. Schwarz, “Picosecond pulse generation in monolithic GaN-based multi-section laser diodes,” Proc. SPIE 8625, 862515 (2013).
[Crossref]

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Hönninger, C.

Huang, X.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

Jiang, G.

Jiang, S.

J. Geng and S. Jiang, “Fiber lasers: the 2 μm market heats up,” Opt. Photonics News 25(7), 34–41 (2014).
[Crossref]

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm–Ho-Codoped fiber laser at 2.06 μm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Jiang, Z.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm–Ho-Codoped fiber laser at 2.06 μm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Keller, U.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–53 (1999).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kisel, V. E.

Köhler, K.

K. Holc, T. Weig, W. Pletschen, K. Köhler, J. Wagner, and U. T. Schwarz, “Picosecond pulse generation in monolithic GaN-based multi-section laser diodes,” Proc. SPIE 8625, 862515 (2013).
[Crossref]

Kölbl, C.

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Krauss, T. F.

M. B. Flynn, L. O’Faolain, and T. F. Krauss, “An experimental and numerical study of Q-switched mode-locking in monolithic semiconductor diode lasers,” IEEE J. Quantum Electron. 40(8), 1008–1013 (2004).
[Crossref]

Kreissl, J.

T. Sadeev, D. Arsenijević, D. Franke, J. Kreissl, H. Künzel, and D. Bimberg, “1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range,” Appl. Phys. Lett. 106(3), 031114 (2015).
[Crossref]

Kuleshov, N. V.

Künzel, H.

T. Sadeev, D. Arsenijević, D. Franke, J. Kreissl, H. Künzel, and D. Bimberg, “1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range,” Appl. Phys. Lett. 106(3), 031114 (2015).
[Crossref]

Lagatsky, A. A.

Lester, L. F.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

Li, H.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

Li, X.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Design and analysis of 2-μm InGaSb/GaSb quantum well Lasers integrated onto Silicon-on-Insulator (SOI) waveguide circuits through an Al2O3 bonding layer,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1500507 (2016).
[Crossref]

Liu, C.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Design and analysis of 2-μm InGaSb/GaSb quantum well Lasers integrated onto Silicon-on-Insulator (SOI) waveguide circuits through an Al2O3 bonding layer,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1500507 (2016).
[Crossref]

Luo, T.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm–Ho-Codoped fiber laser at 2.06 μm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Lv, P.

Ma, J.

Malloy, K. J.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Merghem, K.

K. Merghem, R. Teissier, G. Aubin, A. M. Monakhov, A. Ramdane, and A. N. Baranov, “Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm,” Appl. Phys. Lett. 107(11), 111109 (2015).
[Crossref]

Mezösi, G.

Monakhov, A. M.

K. Merghem, R. Teissier, G. Aubin, A. M. Monakhov, A. Ramdane, and A. N. Baranov, “Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm,” Appl. Phys. Lett. 107(11), 111109 (2015).
[Crossref]

Morier-Genoud, F.

Moser, M.

Ng, G. I.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

Niu, Z.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Design and analysis of 2-μm InGaSb/GaSb quantum well Lasers integrated onto Silicon-on-Insulator (SOI) waveguide circuits through an Al2O3 bonding layer,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1500507 (2016).
[Crossref]

Nötzel, R.

O’Faolain, L.

M. B. Flynn, L. O’Faolain, and T. F. Krauss, “An experimental and numerical study of Q-switched mode-locking in monolithic semiconductor diode lasers,” IEEE J. Quantum Electron. 40(8), 1008–1013 (2004).
[Crossref]

Oei, Y. S.

Paajaste, J.

Paschotta, R.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Pletschen, W.

K. Holc, T. Weig, W. Pletschen, K. Köhler, J. Wagner, and U. T. Schwarz, “Picosecond pulse generation in monolithic GaN-based multi-section laser diodes,” Proc. SPIE 8625, 862515 (2013).
[Crossref]

Qian, L.

Qiao, Z.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Design and analysis of 2-μm InGaSb/GaSb quantum well Lasers integrated onto Silicon-on-Insulator (SOI) waveguide circuits through an Al2O3 bonding layer,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1500507 (2016).
[Crossref]

Ramdane, A.

K. Merghem, R. Teissier, G. Aubin, A. M. Monakhov, A. Ramdane, and A. N. Baranov, “Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm,” Appl. Phys. Lett. 107(11), 111109 (2015).
[Crossref]

Rodriguez, J. B.

Roelkens, G.

Sadeev, T.

T. Sadeev, D. Arsenijević, D. Franke, J. Kreissl, H. Künzel, and D. Bimberg, “1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range,” Appl. Phys. Lett. 106(3), 031114 (2015).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schwarz, U. T.

K. Holc, T. Weig, W. Pletschen, K. Köhler, J. Wagner, and U. T. Schwarz, “Picosecond pulse generation in monolithic GaN-based multi-section laser diodes,” Proc. SPIE 8625, 862515 (2013).
[Crossref]

Sibbett, W.

Smalbrugge, B.

Smit, M. K.

Sorel, M.

Stintz, A.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

Strain, M. J.

Suomalainen, S.

Tang, D.

Teissier, R.

K. Merghem, R. Teissier, G. Aubin, A. M. Monakhov, A. Ramdane, and A. N. Baranov, “Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm,” Appl. Phys. Lett. 107(11), 111109 (2015).
[Crossref]

Tong, C.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Design and analysis of 2-μm InGaSb/GaSb quantum well Lasers integrated onto Silicon-on-Insulator (SOI) waveguide circuits through an Al2O3 bonding layer,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1500507 (2016).
[Crossref]

Tournié, E.

Wagner, J.

K. Holc, T. Weig, W. Pletschen, K. Köhler, J. Wagner, and U. T. Schwarz, “Picosecond pulse generation in monolithic GaN-based multi-section laser diodes,” Proc. SPIE 8625, 862515 (2013).
[Crossref]

Wang, H.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Design and analysis of 2-μm InGaSb/GaSb quantum well Lasers integrated onto Silicon-on-Insulator (SOI) waveguide circuits through an Al2O3 bonding layer,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1500507 (2016).
[Crossref]

Wang, J.

Wang, Q.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm–Ho-Codoped fiber laser at 2.06 μm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Weig, T.

K. Holc, T. Weig, W. Pletschen, K. Köhler, J. Wagner, and U. T. Schwarz, “Picosecond pulse generation in monolithic GaN-based multi-section laser diodes,” Proc. SPIE 8625, 862515 (2013).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Wen, S.

Xie, G.

Yang, K.

Yu, H.

Yu, X.

Yuan, P.

Zanola, M.

Zhang, H.

Zhang, Y.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Design and analysis of 2-μm InGaSb/GaSb quantum well Lasers integrated onto Silicon-on-Insulator (SOI) waveguide circuits through an Al2O3 bonding layer,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1500507 (2016).
[Crossref]

Zhao, C.

Appl. Phys. Lett. (4)

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

T. Sadeev, D. Arsenijević, D. Franke, J. Kreissl, H. Künzel, and D. Bimberg, “1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range,” Appl. Phys. Lett. 106(3), 031114 (2015).
[Crossref]

K. Merghem, R. Teissier, G. Aubin, A. M. Monakhov, A. Ramdane, and A. N. Baranov, “Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm,” Appl. Phys. Lett. 107(11), 111109 (2015).
[Crossref]

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

M. B. Flynn, L. O’Faolain, and T. F. Krauss, “An experimental and numerical study of Q-switched mode-locking in monolithic semiconductor diode lasers,” IEEE J. Quantum Electron. 40(8), 1008–1013 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

X. Li, H. Wang, Z. Qiao, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Design and analysis of 2-μm InGaSb/GaSb quantum well Lasers integrated onto Silicon-on-Insulator (SOI) waveguide circuits through an Al2O3 bonding layer,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1500507 (2016).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm–Ho-Codoped fiber laser at 2.06 μm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Photonics News (1)

J. Geng and S. Jiang, “Fiber lasers: the 2 μm market heats up,” Opt. Photonics News 25(7), 34–41 (2014).
[Crossref]

Proc. SPIE (1)

K. Holc, T. Weig, W. Pletschen, K. Köhler, J. Wagner, and U. T. Schwarz, “Picosecond pulse generation in monolithic GaN-based multi-section laser diodes,” Proc. SPIE 8625, 862515 (2013).
[Crossref]

Other (1)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, Rijeka, 2010), Ch. 21.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup for characterizing the two-section quantum well laser.
Fig. 2
Fig. 2 L-I curves of the laser at room temperature with the absorber section bias Va varied from 0 to −4 V. The I-V curve of the gain section at Va = 0 V is also shown in the figure.
Fig. 3
Fig. 3 RF spectra of the laser at different Va when Ig is fixed at 130 mA to work in different regimes: (a) cw mode locking (Va = −1.5 V), and the inset shows the RF peak in greater detail. (b) QML-1 (Va = −1.9 V). (c) QML-2 (Va = −2.1 V). (d) pure Q-switching (Va = −2.6 V).
Fig. 4
Fig. 4 (a) Pulse trains and (b) optical spectra under the four bias conditions in Fig. 3. From the lowest panels to the highest ones for both (a) and (b): cw mode locking (Ig = 130 mA, Va = −1.5 V); QML-1 (Ig = 130 mA, Va = −1.9 V); QML-2 (Ig = 130 mA, Va = −2.1 V); pure Q-switching (Ig = 130 mA, Va = −2.6 V).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T R d E P d t = [ g l q P ( E P ) ] E P
d g d t = g g 0 τ L E P E s a t , L T R g
q P ( E P ) = q 0 E s a t , A E P [ 1 exp ( E P E s a t , A ) ]
E P | d q P d E P | < T R τ L + E P E s a t , L

Metrics