Abstract

We numerically demonstrate 80-km standard single-mode fiber transmission without optical amplification, dispersion compensation or carrier recovery using 200-Gb/s tandem single sideband modulated doubly differential QPSK. Simulation results show that doubly differential encoding enables practically constant system performance for frequency offsets within ± 2.3 GHz and allows a linewidth tolerance of 2.5 × 10−3 at 1-dB receiver sensitivity penalty. Employing 2.9-MHz linewidth lasers, the receiver sensitivity penalty at 7% HD-FEC threshold for 80-km transmission is less than 0.2 dB. By adding a 12-symbol decision feedback in the 2nd differential operation of doubly differential decoding, the receiver sensitivity is improved by 3.7 dB.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
C-band 56-Gb/s PAM4 transmission over 80-km SSMF with electrical equalization at receiver

Xizi Tang, Shuangyue Liu, Zhongliang Sun, Han Cui, Xuekai Xu, Jia Qi, Mengqi Guo, Yueming Lu, and Yaojun Qiao
Opt. Express 27(18) 25708-25717 (2019)

112 Gb/s transmission over 80 km SSMF using PDM-PAM4 and coherent detection without optical amplifier

Xian Zhou, Kangping Zhong, Jiahao Huo, Lei Gao, Yiguang Wang, Liang Wang, Yanfu Yang, Jinhui Yuan, Keping Long, Li Zeng, Alan Pak Tao Lau, and Chao Lu
Opt. Express 24(15) 17359-17371 (2016)

Transmission of a 127 Gb/s PM-QPSK Signal Over a 3350 km SMF-Only Line With Chromatic Dispersion Compensation Using Real-Time DSP [Invited]

Manabu Arikawa, Takeshi Okamoto, Mitsunori Muraki, Daisaku Ogasahara, Emmanuel Le Taillandier de Gabory, Toshiharu Ito, and Kiyoshi Fukuchi
J. Opt. Commun. Netw. 4(11) B161-B167 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete Multi-Tone for 100 Gb/s Optical Access Networks,” in Proc. OFC (2014), paper M2I.1.
    [Crossref]
  2. K. P. Zhong, X. Zhou, Y. L. Gao, W. Chen, J. W. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 μm for Short Reach Communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
    [Crossref]
  3. X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of Standard Singlemode Fiber Using Kramers-Kronig Detection,” in Proc. OFC, paper Th5B.6 (2017).
  4. S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8x256Gbps Virtual-Carrier Assisted WDM Direct-Detection Transmission over a Single Span of 200km,” in Proc. ECOC (2017), paper Th.PDP.B.1.
  5. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
    [Crossref]
  6. Z. Li, M. S. Erkilinc, K. Shi, E. Sillenkens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Joint optimization of resampling rate and carrier-to-signal power ratio in direct-detection Kramers-Kronig receivers,” in Proc. ECOC, paper W.2.D.3 (2017).
  7. H. Chien and J. Yu, “On single-carrier 400G line side optics using PM-256QAM,” in Proc. ECOC (2016).
  8. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. ECOC (2010).
    [Crossref]
  9. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s Reduced-Guard-Interval CO-OFDM Transmission Over 2000 km of Ultra-Large-Area Fiber and Five 80-GHz-Grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
    [Crossref]
  10. M. S. Erkılınç, D. Lavery, K. Shi, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Bidirectional Wavelength-Division Multiplexing Transmission Over Installed Fibre Using a Simplified Optical Coherent Access Transceiver,” Nat. Commun. 8(1), 1043 (2017).
    [Crossref] [PubMed]
  11. T. T. Zhang, C. Sanchez, I. Phillips, S. Sygletos, and A. D. Ellis, “200-Gb/s Polarization Multiplexed Doubly Differential QPSK Signal Transmission over 80-km SSMF Using Tandem SSB without Optical Amplification,” in Proc. ECOC (2017), paper P1.SC4.69.
  12. A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
    [Crossref]
  13. A. J. Walsh, J. Mountjoy, H. Shams, A. Fagan, A. D. Ellis, and L. P. Barry, “Highly Robust Dual-Polarization Doubly Differential PSK Coherent Optical Packet Receiver for Energy Efficient Reconfigurable Networks,” J. Lightwave Technol. 33(24), 5218–5226 (2015).
    [Crossref]
  14. N. Sigron, I. Tselniker, and M. Nazarathy, “Carrier phase estimation for optically coherent QPSK based on Wiener-optimal and adaptive Multi-Symbol Delay Detection (MSDD),” Opt. Express 20(3), 1981–2003 (2012).
    [Crossref] [PubMed]
  15. Y. Wang, K. Shi, and E. Serpedi, “Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,” EURASIP J. Adv. Sig. Pr. 13, 1993–2001 (2004).
  16. A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [Crossref]
  17. C. R. S. Fludger, T. Duthel, D. Borne, C. Schulien, E. Schmidt, T. Wuth, J. Geyer, E. Man, G. Khoe, and H. Waardt, “Coherent Equalization and POLMUX-RZ-DQPSK for Robust 100-GE Transmission,” J. Lightwave Technol. 26(1), 64–72 (2008).
    [Crossref]
  18. D. K. Alphen and W. C. Lindsey, “Higher-order differential phase shift keyed modulation,” IEEE Trans. Commun. 42(234), 440–448 (1994).
    [Crossref]
  19. http://www.markimicrowave.com/Assets/datasheets/QH-0550.pdf .
  20. Y. Tang, W. Shieh, and B. S. Krongold, “DFT-Spread OFDM for Fiber Nonlinearity Mitigation,” IEEE Photonics Technol. Lett. 22(16), 1250–1252 (2010).
    [Crossref]
  21. P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and Experimental Results on System Maximum Reach Increase Through Symbol Rate Optimization,” J. Lightwave Technol. 34(8), 1872–1885 (2016).
    [Crossref]
  22. A. Ellis, A. K. Mishra, P. Frascella, I. Tomkos, S. K. Ibrahim, J. Zhao, and F. C. G. Gunning, “Adaptive modulation schemes,” in Proc. IEEE/LEOS Topical Meeting (2009), paper TUD3.2.
    [Crossref]
  23. A. D. Ellis, “DSP-lite Coherent Transmission,” presented at OFC Workshop “Does analog photonics have a role in a digital world”, USA, 18th March 2013.
  24. https://www.ntt-electronics.com/en/news/2016/3/industry-first-16nm-100g-200g-coherent-dsp.html .
  25. R. Schmogrow, S. Ben-Ezra, P. Schindler, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Pulse Shaping With Digital, Electrical, and Optical Filters—A Comparison,” J. Lightwave Technol. 31(15), 2570–2577 (2013).
    [Crossref]
  26. http://www.microlambdawireless.com/uploads/files/pdfs/MLTO%20Series%20TO-8%20Wideband%20Data%20Sheet.pdf .
  27. http://www.markimicrowave.com/Assets/datasheets/ADM-0126-5835SM.pdf .
  28. https://nardamiteq.com/viewmodel.php?model=SYS3X3842 .
  29. http://www.fujitsu.com/downloads/MICRO/fma/pdf/56G_ADC_FactSheet.pdf .

2017 (1)

M. S. Erkılınç, D. Lavery, K. Shi, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Bidirectional Wavelength-Division Multiplexing Transmission Over Installed Fibre Using a Simplified Optical Coherent Access Transceiver,” Nat. Commun. 8(1), 1043 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (2)

K. P. Zhong, X. Zhou, Y. L. Gao, W. Chen, J. W. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 μm for Short Reach Communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

A. J. Walsh, J. Mountjoy, H. Shams, A. Fagan, A. D. Ellis, and L. P. Barry, “Highly Robust Dual-Polarization Doubly Differential PSK Coherent Optical Packet Receiver for Energy Efficient Reconfigurable Networks,” J. Lightwave Technol. 33(24), 5218–5226 (2015).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

2010 (1)

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-Spread OFDM for Fiber Nonlinearity Mitigation,” IEEE Photonics Technol. Lett. 22(16), 1250–1252 (2010).
[Crossref]

2008 (1)

2004 (1)

Y. Wang, K. Shi, and E. Serpedi, “Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,” EURASIP J. Adv. Sig. Pr. 13, 1993–2001 (2004).

2000 (1)

A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
[Crossref]

1994 (1)

D. K. Alphen and W. C. Lindsey, “Higher-order differential phase shift keyed modulation,” IEEE Trans. Commun. 42(234), 440–448 (1994).
[Crossref]

1983 (1)

A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Abrate, S.

Alphen, D. K.

D. K. Alphen and W. C. Lindsey, “Higher-order differential phase shift keyed modulation,” IEEE Trans. Commun. 42(234), 440–448 (1994).
[Crossref]

Antonelli, C.

Aref, V.

S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8x256Gbps Virtual-Carrier Assisted WDM Direct-Detection Transmission over a Single Span of 200km,” in Proc. ECOC (2017), paper Th.PDP.B.1.

Barry, L. P.

Bayvel, P.

M. S. Erkılınç, D. Lavery, K. Shi, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Bidirectional Wavelength-Division Multiplexing Transmission Over Installed Fibre Using a Simplified Optical Coherent Access Transceiver,” Nat. Commun. 8(1), 1043 (2017).
[Crossref] [PubMed]

Ben-Ezra, S.

Bertignono, L.

Bilal, S. M.

Borne, D.

Bosco, G.

Buchali, F.

S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8x256Gbps Virtual-Carrier Assisted WDM Direct-Detection Transmission over a Single Span of 200km,” in Proc. ECOC (2017), paper Th.PDP.B.1.

Buelow, H.

S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8x256Gbps Virtual-Carrier Assisted WDM Direct-Detection Transmission over a Single Span of 200km,” in Proc. ECOC (2017), paper Th.PDP.B.1.

Carena, A.

Chagnon, M.

S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8x256Gbps Virtual-Carrier Assisted WDM Direct-Detection Transmission over a Single Span of 200km,” in Proc. ECOC (2017), paper Th.PDP.B.1.

Chandrasekhar, S.

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s Reduced-Guard-Interval CO-OFDM Transmission Over 2000 km of Ultra-Large-Area Fiber and Five 80-GHz-Grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
[Crossref]

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. ECOC (2010).
[Crossref]

Chen, W.

K. P. Zhong, X. Zhou, Y. L. Gao, W. Chen, J. W. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 μm for Short Reach Communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

Chien, H.

H. Chien and J. Yu, “On single-carrier 400G line side optics using PM-256QAM,” in Proc. ECOC (2016).

Dischler, R.

S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8x256Gbps Virtual-Carrier Assisted WDM Direct-Detection Transmission over a Single Span of 200km,” in Proc. ECOC (2017), paper Th.PDP.B.1.

Draving, S.

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. ECOC (2010).
[Crossref]

Duthel, T.

Ellis, A.

A. Ellis, A. K. Mishra, P. Frascella, I. Tomkos, S. K. Ibrahim, J. Zhao, and F. C. G. Gunning, “Adaptive modulation schemes,” in Proc. IEEE/LEOS Topical Meeting (2009), paper TUD3.2.
[Crossref]

Ellis, A. D.

A. J. Walsh, J. Mountjoy, H. Shams, A. Fagan, A. D. Ellis, and L. P. Barry, “Highly Robust Dual-Polarization Doubly Differential PSK Coherent Optical Packet Receiver for Energy Efficient Reconfigurable Networks,” J. Lightwave Technol. 33(24), 5218–5226 (2015).
[Crossref]

T. T. Zhang, C. Sanchez, I. Phillips, S. Sygletos, and A. D. Ellis, “200-Gb/s Polarization Multiplexed Doubly Differential QPSK Signal Transmission over 80-km SSMF Using Tandem SSB without Optical Amplification,” in Proc. ECOC (2017), paper P1.SC4.69.

Engenhardt, K.

S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8x256Gbps Virtual-Carrier Assisted WDM Direct-Detection Transmission over a Single Span of 200km,” in Proc. ECOC (2017), paper Th.PDP.B.1.

Erkilinç, M. S.

M. S. Erkılınç, D. Lavery, K. Shi, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Bidirectional Wavelength-Division Multiplexing Transmission Over Installed Fibre Using a Simplified Optical Coherent Access Transceiver,” Nat. Commun. 8(1), 1043 (2017).
[Crossref] [PubMed]

Evangelista, J.

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. ECOC (2010).
[Crossref]

Fagan, A.

Fludger, C. R. S.

Forghieri, F.

Frascella, P.

A. Ellis, A. K. Mishra, P. Frascella, I. Tomkos, S. K. Ibrahim, J. Zhao, and F. C. G. Gunning, “Adaptive modulation schemes,” in Proc. IEEE/LEOS Topical Meeting (2009), paper TUD3.2.
[Crossref]

Freude, W.

Gao, Y. L.

K. P. Zhong, X. Zhou, Y. L. Gao, W. Chen, J. W. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 μm for Short Reach Communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

Geyer, J.

Gnauck, A. H.

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s Reduced-Guard-Interval CO-OFDM Transmission Over 2000 km of Ultra-Large-Area Fiber and Five 80-GHz-Grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
[Crossref]

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. ECOC (2010).
[Crossref]

Gunning, F. C. G.

A. Ellis, A. K. Mishra, P. Frascella, I. Tomkos, S. K. Ibrahim, J. Zhao, and F. C. G. Gunning, “Adaptive modulation schemes,” in Proc. IEEE/LEOS Topical Meeting (2009), paper TUD3.2.
[Crossref]

Ibrahim, S. K.

A. Ellis, A. K. Mishra, P. Frascella, I. Tomkos, S. K. Ibrahim, J. Zhao, and F. C. G. Gunning, “Adaptive modulation schemes,” in Proc. IEEE/LEOS Topical Meeting (2009), paper TUD3.2.
[Crossref]

Jiang, Y.

Kai, Y.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete Multi-Tone for 100 Gb/s Optical Access Networks,” in Proc. OFC (2014), paper M2I.1.
[Crossref]

Khoe, G.

Killey, R. I.

M. S. Erkılınç, D. Lavery, K. Shi, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Bidirectional Wavelength-Division Multiplexing Transmission Over Installed Fibre Using a Simplified Optical Coherent Access Transceiver,” Nat. Commun. 8(1), 1043 (2017).
[Crossref] [PubMed]

Koos, C.

Krongold, B. S.

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-Spread OFDM for Fiber Nonlinearity Mitigation,” IEEE Photonics Technol. Lett. 22(16), 1250–1252 (2010).
[Crossref]

Lau, A. P. T.

K. P. Zhong, X. Zhou, Y. L. Gao, W. Chen, J. W. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 μm for Short Reach Communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

Lavery, D.

M. S. Erkılınç, D. Lavery, K. Shi, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Bidirectional Wavelength-Division Multiplexing Transmission Over Installed Fibre Using a Simplified Optical Coherent Access Transceiver,” Nat. Commun. 8(1), 1043 (2017).
[Crossref] [PubMed]

Le, S. T.

S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8x256Gbps Virtual-Carrier Assisted WDM Direct-Detection Transmission over a Single Span of 200km,” in Proc. ECOC (2017), paper Th.PDP.B.1.

Leuthold, J.

Li, L.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete Multi-Tone for 100 Gb/s Optical Access Networks,” in Proc. OFC (2014), paper M2I.1.
[Crossref]

Lindsey, W. C.

D. K. Alphen and W. C. Lindsey, “Higher-order differential phase shift keyed modulation,” IEEE Trans. Commun. 42(234), 440–448 (1994).
[Crossref]

Liu, X.

Lu, C.

K. P. Zhong, X. Zhou, Y. L. Gao, W. Chen, J. W. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 μm for Short Reach Communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

Man, E.

Man, J. W.

K. P. Zhong, X. Zhou, Y. L. Gao, W. Chen, J. W. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 μm for Short Reach Communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

Mecozzi, A.

Meng, X. J.

A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
[Crossref]

Mishra, A. K.

A. Ellis, A. K. Mishra, P. Frascella, I. Tomkos, S. K. Ibrahim, J. Zhao, and F. C. G. Gunning, “Adaptive modulation schemes,” in Proc. IEEE/LEOS Topical Meeting (2009), paper TUD3.2.
[Crossref]

Mountjoy, J.

Narasimha, A.

A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
[Crossref]

Nazarathy, M.

Nebendahl, B.

Nespola, A.

Nishihara, M.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete Multi-Tone for 100 Gb/s Optical Access Networks,” in Proc. OFC (2014), paper M2I.1.
[Crossref]

Peckham, D. W.

Phillips, I.

T. T. Zhang, C. Sanchez, I. Phillips, S. Sygletos, and A. D. Ellis, “200-Gb/s Polarization Multiplexed Doubly Differential QPSK Signal Transmission over 80-km SSMF Using Tandem SSB without Optical Amplification,” in Proc. ECOC (2017), paper P1.SC4.69.

Poggiolini, P.

Rasmussen, J.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete Multi-Tone for 100 Gb/s Optical Access Networks,” in Proc. OFC (2014), paper M2I.1.
[Crossref]

Sanchez, C.

T. T. Zhang, C. Sanchez, I. Phillips, S. Sygletos, and A. D. Ellis, “200-Gb/s Polarization Multiplexed Doubly Differential QPSK Signal Transmission over 80-km SSMF Using Tandem SSB without Optical Amplification,” in Proc. ECOC (2017), paper P1.SC4.69.

Savory, S. J.

M. S. Erkılınç, D. Lavery, K. Shi, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Bidirectional Wavelength-Division Multiplexing Transmission Over Installed Fibre Using a Simplified Optical Coherent Access Transceiver,” Nat. Commun. 8(1), 1043 (2017).
[Crossref] [PubMed]

Schindler, P.

Schmidt, E.

Schmogrow, R.

Schuh, K.

S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8x256Gbps Virtual-Carrier Assisted WDM Direct-Detection Transmission over a Single Span of 200km,” in Proc. ECOC (2017), paper Th.PDP.B.1.

Schulien, C.

Serpedi, E.

Y. Wang, K. Shi, and E. Serpedi, “Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,” EURASIP J. Adv. Sig. Pr. 13, 1993–2001 (2004).

Shams, H.

Shi, K.

M. S. Erkılınç, D. Lavery, K. Shi, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Bidirectional Wavelength-Division Multiplexing Transmission Over Installed Fibre Using a Simplified Optical Coherent Access Transceiver,” Nat. Commun. 8(1), 1043 (2017).
[Crossref] [PubMed]

Y. Wang, K. Shi, and E. Serpedi, “Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,” EURASIP J. Adv. Sig. Pr. 13, 1993–2001 (2004).

Shieh, W.

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-Spread OFDM for Fiber Nonlinearity Mitigation,” IEEE Photonics Technol. Lett. 22(16), 1250–1252 (2010).
[Crossref]

Shtaif, M.

Sigron, N.

Sygletos, S.

T. T. Zhang, C. Sanchez, I. Phillips, S. Sygletos, and A. D. Ellis, “200-Gb/s Polarization Multiplexed Doubly Differential QPSK Signal Transmission over 80-km SSMF Using Tandem SSB without Optical Amplification,” in Proc. ECOC (2017), paper P1.SC4.69.

Takahara, T.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete Multi-Tone for 100 Gb/s Optical Access Networks,” in Proc. OFC (2014), paper M2I.1.
[Crossref]

Tanaka, T.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete Multi-Tone for 100 Gb/s Optical Access Networks,” in Proc. OFC (2014), paper M2I.1.
[Crossref]

Tang, Y.

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-Spread OFDM for Fiber Nonlinearity Mitigation,” IEEE Photonics Technol. Lett. 22(16), 1250–1252 (2010).
[Crossref]

Tao, Z.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete Multi-Tone for 100 Gb/s Optical Access Networks,” in Proc. OFC (2014), paper M2I.1.
[Crossref]

Thomsen, B. C.

M. S. Erkılınç, D. Lavery, K. Shi, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Bidirectional Wavelength-Division Multiplexing Transmission Over Installed Fibre Using a Simplified Optical Coherent Access Transceiver,” Nat. Commun. 8(1), 1043 (2017).
[Crossref] [PubMed]

Tomkos, I.

A. Ellis, A. K. Mishra, P. Frascella, I. Tomkos, S. K. Ibrahim, J. Zhao, and F. C. G. Gunning, “Adaptive modulation schemes,” in Proc. IEEE/LEOS Topical Meeting (2009), paper TUD3.2.
[Crossref]

Tselniker, I.

Viterbi, A.

A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Waardt, H.

Walsh, A. J.

Wang, Y.

Y. Wang, K. Shi, and E. Serpedi, “Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,” EURASIP J. Adv. Sig. Pr. 13, 1993–2001 (2004).

Winzer, P. J.

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s Reduced-Guard-Interval CO-OFDM Transmission Over 2000 km of Ultra-Large-Area Fiber and Five 80-GHz-Grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
[Crossref]

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. ECOC (2010).
[Crossref]

Wu, M. C.

A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
[Crossref]

Wuth, T.

Yablonovitch, E.

A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
[Crossref]

Yu, J.

H. Chien and J. Yu, “On single-carrier 400G line side optics using PM-256QAM,” in Proc. ECOC (2016).

Zeng, L.

K. P. Zhong, X. Zhou, Y. L. Gao, W. Chen, J. W. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 μm for Short Reach Communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

Zhang, T. T.

T. T. Zhang, C. Sanchez, I. Phillips, S. Sygletos, and A. D. Ellis, “200-Gb/s Polarization Multiplexed Doubly Differential QPSK Signal Transmission over 80-km SSMF Using Tandem SSB without Optical Amplification,” in Proc. ECOC (2017), paper P1.SC4.69.

Zhao, J.

A. Ellis, A. K. Mishra, P. Frascella, I. Tomkos, S. K. Ibrahim, J. Zhao, and F. C. G. Gunning, “Adaptive modulation schemes,” in Proc. IEEE/LEOS Topical Meeting (2009), paper TUD3.2.
[Crossref]

Zhong, K. P.

K. P. Zhong, X. Zhou, Y. L. Gao, W. Chen, J. W. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 μm for Short Reach Communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

Zhou, X.

K. P. Zhong, X. Zhou, Y. L. Gao, W. Chen, J. W. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 μm for Short Reach Communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

Zhu, B.

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s Reduced-Guard-Interval CO-OFDM Transmission Over 2000 km of Ultra-Large-Area Fiber and Five 80-GHz-Grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
[Crossref]

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. ECOC (2010).
[Crossref]

Electron. Lett. (1)

A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
[Crossref]

EURASIP J. Adv. Sig. Pr. (1)

Y. Wang, K. Shi, and E. Serpedi, “Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,” EURASIP J. Adv. Sig. Pr. 13, 1993–2001 (2004).

IEEE Photonics Technol. Lett. (2)

K. P. Zhong, X. Zhou, Y. L. Gao, W. Chen, J. W. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 μm for Short Reach Communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-Spread OFDM for Fiber Nonlinearity Mitigation,” IEEE Photonics Technol. Lett. 22(16), 1250–1252 (2010).
[Crossref]

IEEE Trans. Commun. (1)

D. K. Alphen and W. C. Lindsey, “Higher-order differential phase shift keyed modulation,” IEEE Trans. Commun. 42(234), 440–448 (1994).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

J. Lightwave Technol. (5)

Nat. Commun. (1)

M. S. Erkılınç, D. Lavery, K. Shi, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Bidirectional Wavelength-Division Multiplexing Transmission Over Installed Fibre Using a Simplified Optical Coherent Access Transceiver,” Nat. Commun. 8(1), 1043 (2017).
[Crossref] [PubMed]

Opt. Express (1)

Optica (1)

Other (15)

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete Multi-Tone for 100 Gb/s Optical Access Networks,” in Proc. OFC (2014), paper M2I.1.
[Crossref]

T. T. Zhang, C. Sanchez, I. Phillips, S. Sygletos, and A. D. Ellis, “200-Gb/s Polarization Multiplexed Doubly Differential QPSK Signal Transmission over 80-km SSMF Using Tandem SSB without Optical Amplification,” in Proc. ECOC (2017), paper P1.SC4.69.

http://www.markimicrowave.com/Assets/datasheets/QH-0550.pdf .

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of Standard Singlemode Fiber Using Kramers-Kronig Detection,” in Proc. OFC, paper Th5B.6 (2017).

S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8x256Gbps Virtual-Carrier Assisted WDM Direct-Detection Transmission over a Single Span of 200km,” in Proc. ECOC (2017), paper Th.PDP.B.1.

Z. Li, M. S. Erkilinc, K. Shi, E. Sillenkens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Joint optimization of resampling rate and carrier-to-signal power ratio in direct-detection Kramers-Kronig receivers,” in Proc. ECOC, paper W.2.D.3 (2017).

H. Chien and J. Yu, “On single-carrier 400G line side optics using PM-256QAM,” in Proc. ECOC (2016).

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. ECOC (2010).
[Crossref]

A. Ellis, A. K. Mishra, P. Frascella, I. Tomkos, S. K. Ibrahim, J. Zhao, and F. C. G. Gunning, “Adaptive modulation schemes,” in Proc. IEEE/LEOS Topical Meeting (2009), paper TUD3.2.
[Crossref]

A. D. Ellis, “DSP-lite Coherent Transmission,” presented at OFC Workshop “Does analog photonics have a role in a digital world”, USA, 18th March 2013.

https://www.ntt-electronics.com/en/news/2016/3/industry-first-16nm-100g-200g-coherent-dsp.html .

http://www.microlambdawireless.com/uploads/files/pdfs/MLTO%20Series%20TO-8%20Wideband%20Data%20Sheet.pdf .

http://www.markimicrowave.com/Assets/datasheets/ADM-0126-5835SM.pdf .

https://nardamiteq.com/viewmodel.php?model=SYS3X3842 .

http://www.fujitsu.com/downloads/MICRO/fma/pdf/56G_ADC_FactSheet.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Principle of (a) DD precoding and (b) DD decoding.
Fig. 2
Fig. 2 Constellations of (a) the received ( θ R E C ), (b) first differential ( Δ θ R E C ) and (c) DD decoded ( Δ 2 θ R E C ) signals in Fig. 1(b).
Fig. 3
Fig. 3 Simulation setup of the proposed 200-Gb/s TSSB DDQPSK system. PC: polarization controller; VOA: variable optical attenuator; PBS: polarization beam splitter; BPD: balanced photo-detector; LPF: low-pass filter; ADC: analogue-to-digital converter. Green dashed boxes enclose the transmitter and receiver, whilst the black dotted boxes enclose digital and RF signal processing.
Fig. 4
Fig. 4 BER curves for 200-Gb/s TSSB DP-DDQPSK back-to-back system using 2.9-MHz linewidth lasers with ideal or imperfect 90 degree hybrids at zero FO. The phase differences between the signal and its phase shifted copy at two output ports, for signals input to port 1 and 2 of the hybrid are represented in the legend (different colors for different phase condition). AD: amplitude difference.
Fig. 5
Fig. 5 Back-to-back performance of (a) the 200-Gb/s DDQPSK system without carrier recovery at −22.9-dBm received power and (b) the 200-Gb/s QPSK system with carrier recovery at −30.1-dBm received power by changing frequencies of LO and the receiver-side RLOs (shown in legend).
Fig. 6
Fig. 6 Linewidth tolerance for 200-Gb/s DDQPSK without carrier recovery and QPSK using VV algorithm with optimal block size for phase noise compensation at zero FO.
Fig. 7
Fig. 7 Optical spectrum of the generated (a) SSB (USB or LSB) and (b) TSSB DDQPSK signal before transmission.
Fig. 8
Fig. 8 (a) BER curves of DDQPSK back-to-back system using SSB/TSSB and 2.9-MHz/100-kHz linewidth lasers at zero FO. (b) 200-Gb/s TSSB DDQPSK signal transmission over different fiber lengths (0 km and 80 km) using 2.9-MHz linewidth lasers with varied FO and different PRBS lengths. Only 215-1 PRBSs were utilized for the green hollow triangular with 27-1 PRBSs used for the other legends.
Fig. 9
Fig. 9 BER curves of back-to-back system using 100-kHz (circular dots) or 2.9-MHz (triangle) linewidth lasers and QPSK with/without DLD, DQPSK, DDQPSK without (L = 1) or with 12-symbol decision feedback (L = 13) under zero FO (dots, solid line) or 2.3-GHz FO (triangle, dash line).
Fig. 10
Fig. 10 (a) Block diagram for the DD decoding with multi-symbol decision feedback [14]. (b) 200-Gb/s DDQPSK back-to-back system performance against tap length (L) at −27.1-dBm received power and zero FO with 100-kHz linewidth lasers.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

θ D D E ( k ) = θ d a t a ( k ) + 2 θ D D E ( k 1 ) θ D D E ( k 2 ) mod 2 π , k 3
θ R E C ( n ) = θ D D E ( n ) + n ω O F T s + φ p ( n )
  Δ θ R E C ( n ) = θ D D E ( n ) θ D D E ( n 1 ) + ω O F T s = θ S D E ( n ) + ω O F T s  
  Δ 2 θ R E C = Δ θ R E C ( n ) Δ θ R E C ( n 1 ) = θ S D E ( n ) θ S D E ( n 1 ) = θ d a t a ( n )
  S 1 , in ( t ) = I 1 ( t ) cos ω 1 t Q 1 ( t ) sin ω 1 t
S 2 , in ( t ) = I 2 ( t ) cos ω 2 t Q 2 ( t ) sin ω 2 t
E ' ( t ) = 1 2 A β { j [ I 1 ( t ) + j Q 1 ( t ) ] e j ( ω c + ω 1 ) t + [ I 2 ( t ) j Q 2 ( t ) ] e j ( ω c ω 2 ) t }

Metrics