Abstract

In this paper an optimal power allocation scheme is proposed to acheive uniform illuminance. Regular arrays and random geometries are considered for an arrangement of the source LEDs. Uniform illuminance is accomplished by considering the variance of the received power on the receiver plane as metric and framing it as a convex optimization problem. Numerical results show that the quality factor of random geometries are superior to fixed geometries. While preserving uniformity, the cost of the system can be reduced when random geometries are used.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Joint power allocation and orientation for uniform illuminance in indoor visible light communication

Manh Le Tran and Sunghwan Kim
Opt. Express 27(20) 28575-28587 (2019)

Power allocation for uniform illumination with stochastic LED arrays

G. V. S. S. Praneeth Varma, Rayapati Sushma, Vandana Sharma, Abhinav Kumar, and G. V. V. Sharma
Opt. Express 25(8) 8659-8669 (2017)

Evolutionary algorithm based uniform received power and illumination rendering for indoor visible light communication

Jupeng Ding, Zhitong Huang, and Yuefeng Ji
J. Opt. Soc. Am. A 29(6) 971-979 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Guo-yong, C. Chang-ying, and C. Zhen-qiang, “Free-space optical communication using visible light,” J. Zhejiang Univ. Sci. A 8(2), 186–191 (2007).
    [Crossref]
  2. J. Kovác, J. Jakabovic, and M. Kytka, “Advanced light emitting devices for optoelectronic applications,” Proc. SPIE 7138, 71382A1 (2008).
  3. J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [Crossref]
  4. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  5. A. Anusree and R. K. Jeyachitra, “Performance analysis of a MIMO vlc (visible light communication) using different equalizers,” in Proceedings of International Conference on Wireless Communications Signal Processing and Networking (IEEE, 2016), pp. 43–46.
  6. R. Bai, R. Jang, J. Tan, and J. Quan, “Performance comparison of vlc MIMO techniques considering indoor illuminance with inclined LEDs,” in Proceedings of International Conference on Wireless for Space and Extreme Environments(IEEE, 2016), pp. 105–110.
  7. P. F. Mmbaga, J. Thompson, and H. Haas, “Performance analysis of indoor diffuse vlc MIMO channels using angular diversity detectors,” J. Lightwave Technol. 34(4), 1254–1266 (2016).
    [Crossref]
  8. A. Burton, H. L. Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proceedings of International Conference on Communications and Electronics (IEEE, 2012), pp. 48–53.
  9. L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in Proceedings of International Conference on Circuits and Systems for Communications (IEEE, 2008), pp. 678–682.
  10. Y. Chen, C. W. Sung, S.-W. Ho, and W. S. Wong, “Ber analysis for interfering visible light communication systems,” in Proceedings of International Symposium on Communication Systems Networks and Digital Signal Processing (IEEE, 2016), pp. 1–6.
  11. Q. Wang, Z. Wang, and L. Dai, “Multiuser MIMO-OFDM for visible light communications,” IEEE Photonics J. 7(6), 1–11 (2015).
    [Crossref]
  12. T. Fath and H. Haas, “Performance comparison of mimo techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
    [Crossref]
  13. Z. Wang, C. Yu, W.-D. Zhong, J. Chen, and W. Chen, “Performance of a novel led lamp arrangement to reduce snr fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
    [Crossref] [PubMed]
  14. N. Wittels and M. A. Gennert, “Optimal lighting design to maximize illumination uniformity,” Proc. SPIE 2348, 46–56 (1994).
    [Crossref]
  15. M. A. Gennert, N. Wittels, and G. L. Leatherman, “Uniform frontal illumination of planar surfaces: where to place the lamps,” Opt. Eng. 32(6), 1261–1271 (1993).
    [Crossref]
  16. I. Moreno, “Design of led spherical lamps for uniform far-field illumination,” Proc. SPIE 6046, 60462E (2016).
    [Crossref]
  17. I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. 45(10), 2265–2272 (2006).
    [Crossref] [PubMed]
  18. P. Lei, Q. Wang, and H. Zou, “Designing LED array for uniform illumination based on local search algorithm,” J. Europ. Opt. Soc. Rap. Public. 9, 140141 (2014).
    [Crossref]
  19. J. Ding, Z. Huang, and Y. Ji, “Evolutionary algorithm based power coverage optimization for visible light communications,” IEEE Commun. Lett. 16(4), 439–441 (2012).
    [Crossref]
  20. Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).
  21. Pal Sourav, “Optimization of LED array for uniform illumination over a target plane by evolutionary programming,” Appl. Opt. 54(27), 8221–8227 (2015).
    [Crossref]
  22. G.V.S.S. Praneeth Varma, Rayapati Sushma, Vandana Sharma, Abhinav Kumar, and G.V.V. Sharma, “Power allocation for uniform illumination with stochastic LED arrays,” Opt. Express 25(8), 8659–8669 (2017).
    [Crossref] [PubMed]
  23. M. Haenggi, “Mean interference in hard-core wireless networks,” IEEE Commun. Lett. 15(8), 792–794 (2011).
    [Crossref]
  24. J. Grubor, O. C. G. Jamett, J. W. Walewski, and K. d. Langer, “High-speed wireless indoor communication via visible light,” in ITG Fachbericht (2007), pp. 203–208.
  25. S. Boyd and L. Vandenberghe, Convex Optimization, (Cambridge University, 2004).
    [Crossref]

2017 (1)

2016 (2)

2015 (3)

Q. Wang, Z. Wang, and L. Dai, “Multiuser MIMO-OFDM for visible light communications,” IEEE Photonics J. 7(6), 1–11 (2015).
[Crossref]

Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).

Pal Sourav, “Optimization of LED array for uniform illumination over a target plane by evolutionary programming,” Appl. Opt. 54(27), 8221–8227 (2015).
[Crossref]

2014 (1)

P. Lei, Q. Wang, and H. Zou, “Designing LED array for uniform illumination based on local search algorithm,” J. Europ. Opt. Soc. Rap. Public. 9, 140141 (2014).
[Crossref]

2013 (1)

T. Fath and H. Haas, “Performance comparison of mimo techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
[Crossref]

2012 (2)

Z. Wang, C. Yu, W.-D. Zhong, J. Chen, and W. Chen, “Performance of a novel led lamp arrangement to reduce snr fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
[Crossref] [PubMed]

J. Ding, Z. Huang, and Y. Ji, “Evolutionary algorithm based power coverage optimization for visible light communications,” IEEE Commun. Lett. 16(4), 439–441 (2012).
[Crossref]

2011 (1)

M. Haenggi, “Mean interference in hard-core wireless networks,” IEEE Commun. Lett. 15(8), 792–794 (2011).
[Crossref]

2008 (1)

J. Kovác, J. Jakabovic, and M. Kytka, “Advanced light emitting devices for optoelectronic applications,” Proc. SPIE 7138, 71382A1 (2008).

2007 (1)

H. Guo-yong, C. Chang-ying, and C. Zhen-qiang, “Free-space optical communication using visible light,” J. Zhejiang Univ. Sci. A 8(2), 186–191 (2007).
[Crossref]

2006 (1)

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

1997 (1)

J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

1994 (1)

N. Wittels and M. A. Gennert, “Optimal lighting design to maximize illumination uniformity,” Proc. SPIE 2348, 46–56 (1994).
[Crossref]

1993 (1)

M. A. Gennert, N. Wittels, and G. L. Leatherman, “Uniform frontal illumination of planar surfaces: where to place the lamps,” Opt. Eng. 32(6), 1261–1271 (1993).
[Crossref]

Anusree, A.

A. Anusree and R. K. Jeyachitra, “Performance analysis of a MIMO vlc (visible light communication) using different equalizers,” in Proceedings of International Conference on Wireless Communications Signal Processing and Networking (IEEE, 2016), pp. 43–46.

Avendaño-Alejo, M.

Bai, R.

R. Bai, R. Jang, J. Tan, and J. Quan, “Performance comparison of vlc MIMO techniques considering indoor illuminance with inclined LEDs,” in Proceedings of International Conference on Wireless for Space and Extreme Environments(IEEE, 2016), pp. 105–110.

Barry, J.

J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Boyd, S.

S. Boyd and L. Vandenberghe, Convex Optimization, (Cambridge University, 2004).
[Crossref]

Burton, A.

A. Burton, H. L. Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proceedings of International Conference on Communications and Electronics (IEEE, 2012), pp. 48–53.

Chang-ying, C.

H. Guo-yong, C. Chang-ying, and C. Zhen-qiang, “Free-space optical communication using visible light,” J. Zhejiang Univ. Sci. A 8(2), 186–191 (2007).
[Crossref]

Chen, J.

Chen, W.

Chen, Y.

Y. Chen, C. W. Sung, S.-W. Ho, and W. S. Wong, “Ber analysis for interfering visible light communication systems,” in Proceedings of International Symposium on Communication Systems Networks and Digital Signal Processing (IEEE, 2016), pp. 1–6.

Dai, L.

Q. Wang, Z. Wang, and L. Dai, “Multiuser MIMO-OFDM for visible light communications,” IEEE Photonics J. 7(6), 1–11 (2015).
[Crossref]

Ding, J.

J. Ding, Z. Huang, and Y. Ji, “Evolutionary algorithm based power coverage optimization for visible light communications,” IEEE Commun. Lett. 16(4), 439–441 (2012).
[Crossref]

Fath, T.

T. Fath and H. Haas, “Performance comparison of mimo techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
[Crossref]

Gennert, M. A.

N. Wittels and M. A. Gennert, “Optimal lighting design to maximize illumination uniformity,” Proc. SPIE 2348, 46–56 (1994).
[Crossref]

M. A. Gennert, N. Wittels, and G. L. Leatherman, “Uniform frontal illumination of planar surfaces: where to place the lamps,” Opt. Eng. 32(6), 1261–1271 (1993).
[Crossref]

Ghassemlooy, Z.

A. Burton, H. L. Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proceedings of International Conference on Communications and Electronics (IEEE, 2012), pp. 48–53.

Grubor, J.

J. Grubor, O. C. G. Jamett, J. W. Walewski, and K. d. Langer, “High-speed wireless indoor communication via visible light,” in ITG Fachbericht (2007), pp. 203–208.

Guo-yong, H.

H. Guo-yong, C. Chang-ying, and C. Zhen-qiang, “Free-space optical communication using visible light,” J. Zhejiang Univ. Sci. A 8(2), 186–191 (2007).
[Crossref]

Haas, H.

P. F. Mmbaga, J. Thompson, and H. Haas, “Performance analysis of indoor diffuse vlc MIMO channels using angular diversity detectors,” J. Lightwave Technol. 34(4), 1254–1266 (2016).
[Crossref]

T. Fath and H. Haas, “Performance comparison of mimo techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
[Crossref]

Haenggi, M.

M. Haenggi, “Mean interference in hard-core wireless networks,” IEEE Commun. Lett. 15(8), 792–794 (2011).
[Crossref]

Haigh, P. A.

A. Burton, H. L. Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proceedings of International Conference on Communications and Electronics (IEEE, 2012), pp. 48–53.

Ho, S.-W.

Y. Chen, C. W. Sung, S.-W. Ho, and W. S. Wong, “Ber analysis for interfering visible light communication systems,” in Proceedings of International Symposium on Communication Systems Networks and Digital Signal Processing (IEEE, 2016), pp. 1–6.

Huang, Z.

J. Ding, Z. Huang, and Y. Ji, “Evolutionary algorithm based power coverage optimization for visible light communications,” IEEE Commun. Lett. 16(4), 439–441 (2012).
[Crossref]

Jakabovic, J.

J. Kovác, J. Jakabovic, and M. Kytka, “Advanced light emitting devices for optoelectronic applications,” Proc. SPIE 7138, 71382A1 (2008).

Jamett, O. C. G.

J. Grubor, O. C. G. Jamett, J. W. Walewski, and K. d. Langer, “High-speed wireless indoor communication via visible light,” in ITG Fachbericht (2007), pp. 203–208.

Jang, R.

R. Bai, R. Jang, J. Tan, and J. Quan, “Performance comparison of vlc MIMO techniques considering indoor illuminance with inclined LEDs,” in Proceedings of International Conference on Wireless for Space and Extreme Environments(IEEE, 2016), pp. 105–110.

Jeyachitra, R. K.

A. Anusree and R. K. Jeyachitra, “Performance analysis of a MIMO vlc (visible light communication) using different equalizers,” in Proceedings of International Conference on Wireless Communications Signal Processing and Networking (IEEE, 2016), pp. 43–46.

Ji, Y.

J. Ding, Z. Huang, and Y. Ji, “Evolutionary algorithm based power coverage optimization for visible light communications,” IEEE Commun. Lett. 16(4), 439–441 (2012).
[Crossref]

Jung, D.

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in Proceedings of International Conference on Circuits and Systems for Communications (IEEE, 2008), pp. 678–682.

Kahn, J.

J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Kovác, J.

J. Kovác, J. Jakabovic, and M. Kytka, “Advanced light emitting devices for optoelectronic applications,” Proc. SPIE 7138, 71382A1 (2008).

Kumar, Abhinav

Kytka, M.

J. Kovác, J. Jakabovic, and M. Kytka, “Advanced light emitting devices for optoelectronic applications,” Proc. SPIE 7138, 71382A1 (2008).

Langer, K. d.

J. Grubor, O. C. G. Jamett, J. W. Walewski, and K. d. Langer, “High-speed wireless indoor communication via visible light,” in ITG Fachbericht (2007), pp. 203–208.

Leatherman, G. L.

M. A. Gennert, N. Wittels, and G. L. Leatherman, “Uniform frontal illumination of planar surfaces: where to place the lamps,” Opt. Eng. 32(6), 1261–1271 (1993).
[Crossref]

Lee, K.

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in Proceedings of International Conference on Circuits and Systems for Communications (IEEE, 2008), pp. 678–682.

Lei, P.

P. Lei, Q. Wang, and H. Zou, “Designing LED array for uniform illumination based on local search algorithm,” J. Europ. Opt. Soc. Rap. Public. 9, 140141 (2014).
[Crossref]

Le-Minh, H.

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in Proceedings of International Conference on Circuits and Systems for Communications (IEEE, 2008), pp. 678–682.

Liu, Y.

Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).

Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).

Long, K.

Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).

Minh, H. L.

A. Burton, H. L. Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proceedings of International Conference on Communications and Electronics (IEEE, 2012), pp. 48–53.

Mmbaga, P. F.

Moreno, I.

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

O’Brien, D.

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in Proceedings of International Conference on Circuits and Systems for Communications (IEEE, 2008), pp. 678–682.

Oh, Y.

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in Proceedings of International Conference on Circuits and Systems for Communications (IEEE, 2008), pp. 678–682.

Peng, Y.

Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).

Praneeth Varma, G.V.S.S.

Quan, J.

R. Bai, R. Jang, J. Tan, and J. Quan, “Performance comparison of vlc MIMO techniques considering indoor illuminance with inclined LEDs,” in Proceedings of International Conference on Wireless for Space and Extreme Environments(IEEE, 2016), pp. 105–110.

Rajbhandari, S.

A. Burton, H. L. Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proceedings of International Conference on Communications and Electronics (IEEE, 2012), pp. 48–53.

Sharma, G.V.V.

Sharma, Vandana

Sourav, Pal

Sung, C. W.

Y. Chen, C. W. Sung, S.-W. Ho, and W. S. Wong, “Ber analysis for interfering visible light communication systems,” in Proceedings of International Symposium on Communication Systems Networks and Digital Signal Processing (IEEE, 2016), pp. 1–6.

Sushma, Rayapati

Tan, J.

R. Bai, R. Jang, J. Tan, and J. Quan, “Performance comparison of vlc MIMO techniques considering indoor illuminance with inclined LEDs,” in Proceedings of International Conference on Wireless for Space and Extreme Environments(IEEE, 2016), pp. 105–110.

Thompson, J.

Tzonchev, R. I.

Vandenberghe, L.

S. Boyd and L. Vandenberghe, Convex Optimization, (Cambridge University, 2004).
[Crossref]

Walewski, J. W.

J. Grubor, O. C. G. Jamett, J. W. Walewski, and K. d. Langer, “High-speed wireless indoor communication via visible light,” in ITG Fachbericht (2007), pp. 203–208.

Wang, Q.

Q. Wang, Z. Wang, and L. Dai, “Multiuser MIMO-OFDM for visible light communications,” IEEE Photonics J. 7(6), 1–11 (2015).
[Crossref]

P. Lei, Q. Wang, and H. Zou, “Designing LED array for uniform illumination based on local search algorithm,” J. Europ. Opt. Soc. Rap. Public. 9, 140141 (2014).
[Crossref]

Wang, Z.

Wittels, N.

N. Wittels and M. A. Gennert, “Optimal lighting design to maximize illumination uniformity,” Proc. SPIE 2348, 46–56 (1994).
[Crossref]

M. A. Gennert, N. Wittels, and G. L. Leatherman, “Uniform frontal illumination of planar surfaces: where to place the lamps,” Opt. Eng. 32(6), 1261–1271 (1993).
[Crossref]

Wong, W. S.

Y. Chen, C. W. Sung, S.-W. Ho, and W. S. Wong, “Ber analysis for interfering visible light communication systems,” in Proceedings of International Symposium on Communication Systems Networks and Digital Signal Processing (IEEE, 2016), pp. 1–6.

Yu, C.

Zeng, L.

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in Proceedings of International Conference on Circuits and Systems for Communications (IEEE, 2008), pp. 678–682.

Zhen-qiang, C.

H. Guo-yong, C. Chang-ying, and C. Zhen-qiang, “Free-space optical communication using visible light,” J. Zhejiang Univ. Sci. A 8(2), 186–191 (2007).
[Crossref]

Zhong, W.-D.

Zou, H.

P. Lei, Q. Wang, and H. Zou, “Designing LED array for uniform illumination based on local search algorithm,” J. Europ. Opt. Soc. Rap. Public. 9, 140141 (2014).
[Crossref]

Appl. Opt. (2)

IEEE Commun. Lett. (2)

J. Ding, Z. Huang, and Y. Ji, “Evolutionary algorithm based power coverage optimization for visible light communications,” IEEE Commun. Lett. 16(4), 439–441 (2012).
[Crossref]

M. Haenggi, “Mean interference in hard-core wireless networks,” IEEE Commun. Lett. 15(8), 792–794 (2011).
[Crossref]

IEEE Photonics J. (1)

Q. Wang, Z. Wang, and L. Dai, “Multiuser MIMO-OFDM for visible light communications,” IEEE Photonics J. 7(6), 1–11 (2015).
[Crossref]

IEEE Trans. Commun. (1)

T. Fath and H. Haas, “Performance comparison of mimo techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

J. Europ. Opt. Soc. Rap. Public. (1)

P. Lei, Q. Wang, and H. Zou, “Designing LED array for uniform illumination based on local search algorithm,” J. Europ. Opt. Soc. Rap. Public. 9, 140141 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Zhejiang Univ. Sci. A (1)

H. Guo-yong, C. Chang-ying, and C. Zhen-qiang, “Free-space optical communication using visible light,” J. Zhejiang Univ. Sci. A 8(2), 186–191 (2007).
[Crossref]

Opt. Eng. (1)

M. A. Gennert, N. Wittels, and G. L. Leatherman, “Uniform frontal illumination of planar surfaces: where to place the lamps,” Opt. Eng. 32(6), 1261–1271 (1993).
[Crossref]

Opt. Express (2)

Proc. IEEE (1)

J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Proc. SPIE (4)

Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).

N. Wittels and M. A. Gennert, “Optimal lighting design to maximize illumination uniformity,” Proc. SPIE 2348, 46–56 (1994).
[Crossref]

I. Moreno, “Design of led spherical lamps for uniform far-field illumination,” Proc. SPIE 6046, 60462E (2016).
[Crossref]

J. Kovác, J. Jakabovic, and M. Kytka, “Advanced light emitting devices for optoelectronic applications,” Proc. SPIE 7138, 71382A1 (2008).

Other (7)

A. Anusree and R. K. Jeyachitra, “Performance analysis of a MIMO vlc (visible light communication) using different equalizers,” in Proceedings of International Conference on Wireless Communications Signal Processing and Networking (IEEE, 2016), pp. 43–46.

R. Bai, R. Jang, J. Tan, and J. Quan, “Performance comparison of vlc MIMO techniques considering indoor illuminance with inclined LEDs,” in Proceedings of International Conference on Wireless for Space and Extreme Environments(IEEE, 2016), pp. 105–110.

A. Burton, H. L. Minh, Z. Ghassemlooy, S. Rajbhandari, and P. A. Haigh, “Performance analysis for 180° receiver in visible light communications,” in Proceedings of International Conference on Communications and Electronics (IEEE, 2012), pp. 48–53.

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in Proceedings of International Conference on Circuits and Systems for Communications (IEEE, 2008), pp. 678–682.

Y. Chen, C. W. Sung, S.-W. Ho, and W. S. Wong, “Ber analysis for interfering visible light communication systems,” in Proceedings of International Symposium on Communication Systems Networks and Digital Signal Processing (IEEE, 2016), pp. 1–6.

J. Grubor, O. C. G. Jamett, J. W. Walewski, and K. d. Langer, “High-speed wireless indoor communication via visible light,” in ITG Fachbericht (2007), pp. 203–208.

S. Boyd and L. Vandenberghe, Convex Optimization, (Cambridge University, 2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 System model.
Fig. 2
Fig. 2 LED deployment for various geometries.
Fig. 3
Fig. 3 SNR profiles for different geometries.
Fig. 4
Fig. 4 Optimal distribution of total transmit power across source LEDs and their SNR profiles.
Fig. 5
Fig. 5 Optimal distribution of total transmit power across source LEDs and their SNR profiles.
Fig. 6
Fig. 6 Performance of HCPP model with intesity λmpp= 200.

Tables (5)

Tables Icon

Table 1 Arrangement of LEDs in Different Geometries

Tables Icon

Table 2 Simulation Parameters

Tables Icon

Table 3 Variance of Received Power

Tables Icon

Table 4 Quality Factor

Tables Icon

Table 5 Quality Factor

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

P r j = i = 1 N H i j P t i ,
λ m p p = λ p p p e λ p p p π δ 2
F Λ = Λ ¯ 2 var ( Λ ) ,
Λ j = P r j 2 σ j 2
min P t i E [ ( P r j E [ P r j ] ) 2 ]
min x 1 2 x T P x subject to G x 0 A x = P
β u v = { 2 p = 1 K H u p 2 K 2 ( p = 1 K H u p ) 2 K 2 , u = v 2 p = 1 K H u p H v p K 2 ( p = 1 K H u p ) ( p = 1 K H v p ) K 2 , u v
E [ ( P r j ) 2 ] = E [ ( i = 1 N H i j P t i ) 2 ] ( From ( 1 ) ) = E [ i = 1 N H i j 2 P t i 2 + 2 i = 1 N q = i + 1 N H i j H q j P t i P t q ] = j = 1 K i = 1 N H i j 2 P t i 2 K + j = 1 K 2 i = 1 N q = i + 1 N H i j H q j P t i P t q K = i = 1 K μ i i P t i 2 + 2 i = 1 N q = i + 1 N μ i q P t i P t q K where μ i q = j = 1 K H i j H q j .
( E [ P r j ] ) 2 = ( j = 1 N P r j K ) 2 = ( j = 1 K i = 1 N H i j P t i K ) 2 = ( i = 1 N γ i P t i K ) 2 where γ i = j = 1 K H i j = i = 1 N γ i 2 P t i 2 + 2 i = 1 N p = i + 1 N γ i γ p P t i P t p K 2 .
var ( P r j ) = i = 1 N μ i i P t i 2 + 2 i = 1 N q = i + 1 N μ i q P t i P t q K j = 1 N γ i 2 P t i 2 + 2 i = 1 N p = i + 1 N γ i γ p P t i P t p K 2 = i = 1 N μ i i K γ i 2 K 2 P t i 2 + 2 i = 1 N q = i + 1 N μ i q K γ i γ p K 2 P t i P t q = 1 2 i = 1 N ( 2 j = 1 K H i j 2 K 2 ( j = 1 K H i j ) 2 K 2 ) P t i 2 + 2 u = 1 N v = i + 1 N ( 2 j = 1 K H u j H v j K 2 ( j = 1 K H u j ) ( j = 1 K H v j ) K 2 ) P t u P t v
= 1 2 [ P t 1 , , P t N ] [ β 11 β 1 N β N 1 β N N ] [ P t 1 P t N ] = 1 2 x T P x .
i = 1 N P t i = P A x = P
P t i 0 i 1 , , N
G x 0

Metrics