Abstract

Symmetrical dual D-shape photonic crystal fibers (PCFs) for surface plasmon resonance (SPR) sensing are designed and analyzed by the finite element method (FEM). The performance of the sensor is remarkably enhanced by the directional power coupling between the two fibers. We study the influence of the structural parameters on the performance of the sensor as well as the relationship between the resonance wavelengths and analyze refractive indexes between 1.36 and 1.41. An average spectral sensitivity of 14660 nm/RIU can be achieved in this sensing range and the corresponding refractive index resolution is 6.82 × 10−6 RIU. The characteristics of a single D-shape PCF-SPR sensor with the same structural parameters are compared with those of the dual PCFs sensor and the latter has distinct advantages concerning the spectral sensitivity, resolution, amplitude sensitivity, and figure of merits (FOM).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance

Guowen An, Xiaopeng Hao, Shuguang Li, Xin Yan, and Xuenan Zhang
Appl. Opt. 56(24) 6988-6992 (2017)

Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance

Chenguang Li, Bei Yan, and Jianjun Liu
J. Opt. Soc. Am. A 36(10) 1663-1668 (2019)

Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber

Tiesheng Wu, Yu Shao, Ying Wang, Shaoqing Cao, Weiping Cao, Feng Zhang, Changrui Liao, Jun He, Yijian Huang, Maoxiang Hou, and Yiping Wang
Opt. Express 25(17) 20313-20322 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A: Hadrons Nucl. 216(4), 398–410 (1968).
    [Crossref]
  2. C. Caucheteur, Y. Shevchenko, L. Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
    [Crossref] [PubMed]
  3. W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(4), 1–8 (2014).
    [Crossref]
  4. J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
    [Crossref] [PubMed]
  5. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
    [Crossref] [PubMed]
  6. Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy,” Allergol. Int. 62(2), 163–169 (2013).
    [Crossref] [PubMed]
  7. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  8. J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
    [Crossref] [PubMed]
  9. L. Zhang and M. Fang, “Nanomaterials in pollution trace detection and environmental improvement,” Nano Today 5(2), 128–142 (2010).
    [Crossref]
  10. B. Krotkiewska, M. Pasek, and H. Krotkiewski, “Interaction of glycophorin A with lectins as measured by surface plasmon resonance (SPR),” Acta Biochim. Pol. 49(2), 481–490 (2002).
    [PubMed]
  11. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
    [Crossref]
  12. R. Jha and G. Badenes, “Effect of fiber core dopant concentration on the performance of surface plasmon resonance-based fiber optic sensor,” Sensor. Actuat. A-Phys. 150(2), 212–217 (2009).
  13. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensor. Actuat. Biol. Chem. 12(3), 213–220 (1993).
  14. J. Pollet, F. Delport, K. P. Janssen, D. T. Tran, J. Wouters, T. Verbiest, and J. Lammertyn, “Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor,” Talanta 83(5), 1436–1441 (2011).
    [Crossref] [PubMed]
  15. A. Hassani and M. Skorobogatiy, “Design of the Microstructured Optical Fiber-Based Surface Plasmon Resonance Sensors with Enhanced Microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
    [Crossref] [PubMed]
  16. J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014).
    [Crossref]
  17. J. Yao, X. Yang, M. Wang, and Y. Lu, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
    [Crossref]
  18. A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(12), 11499–11510 (2015).
    [Crossref] [PubMed]
  19. T. Huang, “Highly Sensitive SPR Sensor Based on D-shaped Photonic Crystal Fiber Coated with Indium Tin Oxide at Near-Infrared Wavelength,” Plasmonics 12(3), 583–588 (2017).
    [Crossref]
  20. T. Wu, Y. Shao, Y. Wang, S. Cao, W. Cao, F. Zhang, C. Liao, J. He, Y. Huang, M. Hou, and Y. Wang, “Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber,” Opt. Express 25(17), 20313–20322 (2017).
    [Crossref] [PubMed]
  21. J. N. Dash and R. Jha, “Highly sensitive D shaped PCF sensor based on SPR for near IR,” Opt. Quantum Electron. 48(2), 137 (2016).
    [Crossref]
  22. M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
    [Crossref]
  23. G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-Sensitivity Refractive Index Sensor Based on D-Shaped Photonic Crystal Fiber with Rectangular Lattice and Nanoscale Gold Film,” Plasmonics 9(6), 1355–1360 (2014).
    [Crossref]
  24. F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446(1–3), 115–118 (2007).
    [Crossref]
  25. A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
    [Crossref]
  26. X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(12), 17106–17114 (2015).
    [Crossref] [PubMed]
  27. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
    [Crossref]
  28. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007).
    [Crossref]
  29. E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
    [Crossref]
  30. R. K. Verma and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film,” J. Opt. Soc. Am. A 27(4), 846–851 (2010).
    [Crossref] [PubMed]
  31. J. N. Dash and R. Jha, “On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance,” Plasmonics 10(5), 1123–1131 (2015).
    [Crossref]
  32. A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-Based Conducting Metal Oxide Coated D-Shaped Optical Fiber SPR Sensor,” IEEE Photonics Technol. Lett. 27(23), 2437–2440 (2015).
    [Crossref]
  33. J. N. Dash and R. Jha, “Highly Sensitive Side-Polished Birefringent PCF-Based SPR Sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
    [Crossref]
  34. D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
    [Crossref]
  35. W. Qin, S. Li, J. Xue, X. Xin, and L. Zhang, “Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications,” Chin. Phys. B 22(7), 074213 (2013).
    [Crossref]
  36. A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and Figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
    [Crossref]

2017 (2)

2016 (3)

J. N. Dash and R. Jha, “Highly Sensitive Side-Polished Birefringent PCF-Based SPR Sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
[Crossref]

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

J. N. Dash and R. Jha, “Highly sensitive D shaped PCF sensor based on SPR for near IR,” Opt. Quantum Electron. 48(2), 137 (2016).
[Crossref]

2015 (7)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

J. N. Dash and R. Jha, “On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-Based Conducting Metal Oxide Coated D-Shaped Optical Fiber SPR Sensor,” IEEE Photonics Technol. Lett. 27(23), 2437–2440 (2015).
[Crossref]

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and Figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(12), 17106–17114 (2015).
[Crossref] [PubMed]

J. Yao, X. Yang, M. Wang, and Y. Lu, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(12), 11499–11510 (2015).
[Crossref] [PubMed]

2014 (5)

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(4), 1–8 (2014).
[Crossref]

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-Sensitivity Refractive Index Sensor Based on D-Shaped Photonic Crystal Fiber with Rectangular Lattice and Nanoscale Gold Film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

2013 (2)

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy,” Allergol. Int. 62(2), 163–169 (2013).
[Crossref] [PubMed]

W. Qin, S. Li, J. Xue, X. Xin, and L. Zhang, “Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications,” Chin. Phys. B 22(7), 074213 (2013).
[Crossref]

2012 (2)

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

2011 (2)

J. Pollet, F. Delport, K. P. Janssen, D. T. Tran, J. Wouters, T. Verbiest, and J. Lammertyn, “Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor,” Talanta 83(5), 1436–1441 (2011).
[Crossref] [PubMed]

C. Caucheteur, Y. Shevchenko, L. Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

R. Jha and G. Badenes, “Effect of fiber core dopant concentration on the performance of surface plasmon resonance-based fiber optic sensor,” Sensor. Actuat. A-Phys. 150(2), 212–217 (2009).

2008 (2)

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
[Crossref]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

2007 (2)

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446(1–3), 115–118 (2007).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007).
[Crossref]

2006 (1)

2002 (1)

B. Krotkiewska, M. Pasek, and H. Krotkiewski, “Interaction of glycophorin A with lectins as measured by surface plasmon resonance (SPR),” Acta Biochim. Pol. 49(2), 481–490 (2002).
[PubMed]

2001 (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

1993 (1)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensor. Actuat. Biol. Chem. 12(3), 213–220 (1993).

1968 (2)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A: Hadrons Nucl. 216(4), 398–410 (1968).
[Crossref]

Ademgil, H.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Adikan, F. R. M.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(12), 11499–11510 (2015).
[Crossref] [PubMed]

Ahmed, R.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(12), 11499–11510 (2015).
[Crossref] [PubMed]

Akowuah, E. K.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Albert, J.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

C. Caucheteur, Y. Shevchenko, L. Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
[Crossref] [PubMed]

An, G.

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-Sensitivity Refractive Index Sensor Based on D-Shaped Photonic Crystal Fiber with Rectangular Lattice and Nanoscale Gold Film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

Badenes, G.

R. Jha and G. Badenes, “Effect of fiber core dopant concentration on the performance of surface plasmon resonance-based fiber optic sensor,” Sensor. Actuat. A-Phys. 150(2), 212–217 (2009).

Bao, Y.

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-Sensitivity Refractive Index Sensor Based on D-Shaped Photonic Crystal Fiber with Rectangular Lattice and Nanoscale Gold Film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

Cao, S.

Cao, W.

Caucheteur, C.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

C. Caucheteur, Y. Shevchenko, L. Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
[Crossref] [PubMed]

Chávez, F.

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

Chen, L.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Chow, D. M.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(12), 11499–11510 (2015).
[Crossref] [PubMed]

Cucinotta, A.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Dash, J. N.

J. N. Dash and R. Jha, “Highly Sensitive Side-Polished Birefringent PCF-Based SPR Sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
[Crossref]

J. N. Dash and R. Jha, “Highly sensitive D shaped PCF sensor based on SPR for near IR,” Opt. Quantum Electron. 48(2), 137 (2016).
[Crossref]

J. N. Dash and R. Jha, “On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

Delport, F.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

J. Pollet, F. Delport, K. P. Janssen, D. T. Tran, J. Wouters, T. Verbiest, and J. Lammertyn, “Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor,” Talanta 83(5), 1436–1441 (2011).
[Crossref] [PubMed]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Fan, Z.

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-Sensitivity Refractive Index Sensor Based on D-Shaped Photonic Crystal Fiber with Rectangular Lattice and Nanoscale Gold Film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

Fang, M.

L. Zhang and M. Fang, “Nanomaterials in pollution trace detection and environmental improvement,” Nano Today 5(2), 128–142 (2010).
[Crossref]

Gao, D.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Gils, A.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

Gorman, T.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Guan, C.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Gupta, B. D.

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and Figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

R. K. Verma and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film,” J. Opt. Soc. Am. A 27(4), 846–851 (2010).
[Crossref] [PubMed]

Hao, F.

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446(1–3), 115–118 (2007).
[Crossref]

Hassani, A.

Haxha, S.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

He, J.

Hide, M.

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy,” Allergol. Int. 62(2), 163–169 (2013).
[Crossref] [PubMed]

Hiragun, T.

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy,” Allergol. Int. 62(2), 163–169 (2013).
[Crossref] [PubMed]

Hou, M.

Huang, T.

T. Huang, “Highly Sensitive SPR Sensor Based on D-shaped Photonic Crystal Fiber Coated with Indium Tin Oxide at Near-Infrared Wavelength,” Plasmonics 12(3), 583–588 (2017).
[Crossref]

Huang, Y.

Ishii, K.

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy,” Allergol. Int. 62(2), 163–169 (2013).
[Crossref] [PubMed]

Janssen, K. P.

J. Pollet, F. Delport, K. P. Janssen, D. T. Tran, J. Wouters, T. Verbiest, and J. Lammertyn, “Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor,” Talanta 83(5), 1436–1441 (2011).
[Crossref] [PubMed]

Jha, R.

J. N. Dash and R. Jha, “Highly sensitive D shaped PCF sensor based on SPR for near IR,” Opt. Quantum Electron. 48(2), 137 (2016).
[Crossref]

J. N. Dash and R. Jha, “Highly Sensitive Side-Polished Birefringent PCF-Based SPR Sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
[Crossref]

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-Based Conducting Metal Oxide Coated D-Shaped Optical Fiber SPR Sensor,” IEEE Photonics Technol. Lett. 27(23), 2437–2440 (2015).
[Crossref]

J. N. Dash and R. Jha, “On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

R. Jha and G. Badenes, “Effect of fiber core dopant concentration on the performance of surface plasmon resonance-based fiber optic sensor,” Sensor. Actuat. A-Phys. 150(2), 212–217 (2009).

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensor. Actuat. Biol. Chem. 12(3), 213–220 (1993).

Kawaguchi, T.

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy,” Allergol. Int. 62(2), 163–169 (2013).
[Crossref] [PubMed]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Krotkiewska, B.

B. Krotkiewska, M. Pasek, and H. Krotkiewski, “Interaction of glycophorin A with lectins as measured by surface plasmon resonance (SPR),” Acta Biochim. Pol. 49(2), 481–490 (2002).
[PubMed]

Krotkiewski, H.

B. Krotkiewska, M. Pasek, and H. Krotkiewski, “Interaction of glycophorin A with lectins as measured by surface plasmon resonance (SPR),” Acta Biochim. Pol. 49(2), 481–490 (2002).
[PubMed]

Lammertyn, J.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

J. Pollet, F. Delport, K. P. Janssen, D. T. Tran, J. Wouters, T. Verbiest, and J. Lammertyn, “Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor,” Talanta 83(5), 1436–1441 (2011).
[Crossref] [PubMed]

Laroche, T.

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
[Crossref]

Li, S.

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-Sensitivity Refractive Index Sensor Based on D-Shaped Photonic Crystal Fiber with Rectangular Lattice and Nanoscale Gold Film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(4), 1–8 (2014).
[Crossref]

W. Qin, S. Li, J. Xue, X. Xin, and L. Zhang, “Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications,” Chin. Phys. B 22(7), 074213 (2013).
[Crossref]

Liao, C.

Liu, D.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Lu, J.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

Lu, P.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Lu, Y.

X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(12), 17106–17114 (2015).
[Crossref] [PubMed]

J. Yao, X. Yang, M. Wang, and Y. Lu, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

Lv, C.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Mahdiraji, G. A.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(12), 11499–11510 (2015).
[Crossref] [PubMed]

Mishra, A. K.

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and Figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

Mishra, S. K.

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and Figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

Nordlander, P.

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446(1–3), 115–118 (2007).
[Crossref]

Oliver, J. V.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Ortega-Mendoza, J. G.

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A: Hadrons Nucl. 216(4), 398–410 (1968).
[Crossref]

Padilla-Vivanco, A.

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

Pasek, M.

B. Krotkiewska, M. Pasek, and H. Krotkiewski, “Interaction of glycophorin A with lectins as measured by surface plasmon resonance (SPR),” Acta Biochim. Pol. 49(2), 481–490 (2002).
[PubMed]

Patnaik, A.

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-Based Conducting Metal Oxide Coated D-Shaped Optical Fiber SPR Sensor,” IEEE Photonics Technol. Lett. 27(23), 2437–2440 (2015).
[Crossref]

Pollet, J.

J. Pollet, F. Delport, K. P. Janssen, D. T. Tran, J. Wouters, T. Verbiest, and J. Lammertyn, “Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor,” Talanta 83(5), 1436–1441 (2011).
[Crossref] [PubMed]

Qin, W.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(4), 1–8 (2014).
[Crossref]

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-Sensitivity Refractive Index Sensor Based on D-Shaped Photonic Crystal Fiber with Rectangular Lattice and Nanoscale Gold Film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

W. Qin, S. Li, J. Xue, X. Xin, and L. Zhang, “Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications,” Chin. Phys. B 22(7), 074213 (2013).
[Crossref]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Rifat, A. A.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(12), 11499–11510 (2015).
[Crossref] [PubMed]

Robinson, G. K.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Selleri, S.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Senthilnathan, K.

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-Based Conducting Metal Oxide Coated D-Shaped Optical Fiber SPR Sensor,” IEEE Photonics Technol. Lett. 27(23), 2437–2440 (2015).
[Crossref]

Shao, L. Y.

Shao, Y.

Shee, Y. G.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(12), 11499–11510 (2015).
[Crossref] [PubMed]

Shevchenko, Y.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Skorobogatiy, M.

Spasic, D.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tian, M.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Toxqui-Quitl, C.

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

Tran, D. T.

J. Pollet, F. Delport, K. P. Janssen, D. T. Tran, J. Wouters, T. Verbiest, and J. Lammertyn, “Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor,” Talanta 83(5), 1436–1441 (2011).
[Crossref] [PubMed]

Van Stappen, T.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

Verbiest, T.

J. Pollet, F. Delport, K. P. Janssen, D. T. Tran, J. Wouters, T. Verbiest, and J. Lammertyn, “Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor,” Talanta 83(5), 1436–1441 (2011).
[Crossref] [PubMed]

Verma, R. K.

Vermeire, S.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

Vial, A.

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
[Crossref]

Villegas-Hernández, D.

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

Vincetti, L.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Wang, M.

X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(12), 17106–17114 (2015).
[Crossref] [PubMed]

J. Yao, X. Yang, M. Wang, and Y. Lu, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

Wang, Y.

Wen, Y.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Wouters, J.

J. Pollet, F. Delport, K. P. Janssen, D. T. Tran, J. Wouters, T. Verbiest, and J. Lammertyn, “Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor,” Talanta 83(5), 1436–1441 (2011).
[Crossref] [PubMed]

Wu, T.

Wuilpart, M.

Xin, X.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(4), 1–8 (2014).
[Crossref]

W. Qin, S. Li, J. Xue, X. Xin, and L. Zhang, “Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications,” Chin. Phys. B 22(7), 074213 (2013).
[Crossref]

Xue, J.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(4), 1–8 (2014).
[Crossref]

W. Qin, S. Li, J. Xue, X. Xin, and L. Zhang, “Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications,” Chin. Phys. B 22(7), 074213 (2013).
[Crossref]

Yanase, T.

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy,” Allergol. Int. 62(2), 163–169 (2013).
[Crossref] [PubMed]

Yanase, Y.

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy,” Allergol. Int. 62(2), 163–169 (2013).
[Crossref] [PubMed]

Yang, X.

J. Yao, X. Yang, M. Wang, and Y. Lu, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(12), 17106–17114 (2015).
[Crossref] [PubMed]

Yao, J.

X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(12), 17106–17114 (2015).
[Crossref] [PubMed]

J. Yao, X. Yang, M. Wang, and Y. Lu, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

Yao, Y.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(4), 1–8 (2014).
[Crossref]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensor. Actuat. Biol. Chem. 12(3), 213–220 (1993).

Yuan, L.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Zaca-Morán, P.

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

Zhang, F.

Zhang, L.

W. Qin, S. Li, J. Xue, X. Xin, and L. Zhang, “Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications,” Chin. Phys. B 22(7), 074213 (2013).
[Crossref]

L. Zhang and M. Fang, “Nanomaterials in pollution trace detection and environmental improvement,” Nano Today 5(2), 128–142 (2010).
[Crossref]

Zhang, W.

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-Sensitivity Refractive Index Sensor Based on D-Shaped Photonic Crystal Fiber with Rectangular Lattice and Nanoscale Gold Film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

Zhong, X.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Zoboli, M.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Acta Biochim. Pol. (1)

B. Krotkiewska, M. Pasek, and H. Krotkiewski, “Interaction of glycophorin A with lectins as measured by surface plasmon resonance (SPR),” Acta Biochim. Pol. 49(2), 481–490 (2002).
[PubMed]

Allergol. Int. (1)

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy,” Allergol. Int. 62(2), 163–169 (2013).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
[Crossref]

Biosens. Bioelectron. (1)

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446(1–3), 115–118 (2007).
[Crossref]

Chin. Phys. B (1)

W. Qin, S. Li, J. Xue, X. Xin, and L. Zhang, “Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications,” Chin. Phys. B 22(7), 074213 (2013).
[Crossref]

Electron. Lett. (1)

J. Yao, X. Yang, M. Wang, and Y. Lu, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-Based Conducting Metal Oxide Coated D-Shaped Optical Fiber SPR Sensor,” IEEE Photonics Technol. Lett. 27(23), 2437–2440 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Today (1)

L. Zhang and M. Fang, “Nanomaterials in pollution trace detection and environmental improvement,” Nano Today 5(2), 128–142 (2010).
[Crossref]

Opt. Commun. (3)

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and Figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(4), 1–8 (2014).
[Crossref]

Opt. Quantum Electron. (2)

J. N. Dash and R. Jha, “Highly sensitive D shaped PCF sensor based on SPR for near IR,” Opt. Quantum Electron. 48(2), 137 (2016).
[Crossref]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Plasmonics (4)

J. N. Dash and R. Jha, “On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

J. N. Dash and R. Jha, “Highly Sensitive Side-Polished Birefringent PCF-Based SPR Sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
[Crossref]

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-Sensitivity Refractive Index Sensor Based on D-Shaped Photonic Crystal Fiber with Rectangular Lattice and Nanoscale Gold Film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

T. Huang, “Highly Sensitive SPR Sensor Based on D-shaped Photonic Crystal Fiber Coated with Indium Tin Oxide at Near-Infrared Wavelength,” Plasmonics 12(3), 583–588 (2017).
[Crossref]

Sensor. Actuat. A-Phys. (1)

R. Jha and G. Badenes, “Effect of fiber core dopant concentration on the performance of surface plasmon resonance-based fiber optic sensor,” Sensor. Actuat. A-Phys. 150(2), 212–217 (2009).

Sensor. Actuat. Biol. Chem. (1)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensor. Actuat. Biol. Chem. 12(3), 213–220 (1993).

Sensors (Basel) (3)

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(12), 11499–11510 (2015).
[Crossref] [PubMed]

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(12), 17106–17114 (2015).
[Crossref] [PubMed]

Talanta (1)

J. Pollet, F. Delport, K. P. Janssen, D. T. Tran, J. Wouters, T. Verbiest, and J. Lammertyn, “Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor,” Talanta 83(5), 1436–1441 (2011).
[Crossref] [PubMed]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Z. Phys. A: Hadrons Nucl. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A: Hadrons Nucl. 216(4), 398–410 (1968).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Cross-section of the symmetrical dual D-shape PCFs-SPR sensor; (b) Electric field intensity distribution of the fundamental mode.
Fig. 2
Fig. 2 Electric and magnetic field distributions of the core-guided modes: (a) x-even mode; (b) x-odd mode; (c) y-even mode; (d) y-odd mode.
Fig. 3
Fig. 3 Loss spectra of the even and odd modes for analyte refractive indexes of 1.39 and 1.40 for (a) x-polarization direction and (b) y-polarization direction (nair = 1, ra = 100 nm, tAg = 50 nm, r = 12 μm, and d = 900 nm)
Fig. 4
Fig. 4 Dispersion relationship of the x-even mode (red), SPPs mode (blue), and loss spectrum (black). Inset (a) shows the x-even mode at 984 nm, inset (c) shows the x-even mode at 870 nm, and inset (b) shows the SPPs mode at 984 nm (nair = 1, nana = 1.40, ra = 100 nm, tAg = 50 nm, r = 12 μm, and d = 900 nm)
Fig. 5
Fig. 5 Loss spectra of the x-even mode for gold and silver with the analyte refractive indexes increasing from 1.36 to 1.38 (nair = 1, ra = 100 nm, tAg = 50 nm, tAu = 50 nm, r = 12 μm, and d = 900 nm).
Fig. 6
Fig. 6 Loss spectra of the x-even mode for different air hole radii (nair = 1, nana = 1.40, tAg = 50 nm, r = 12 μm, and d = 900 nm)
Fig. 7
Fig. 7 Dependence of loss spectra of the x-even mode on the distance between the air holes in the arc shape and fiber center (nair = 1, nana = 1.38, ra = 100 nm, tAg = 50 nm, and d = 900 nm)
Fig. 8
Fig. 8 Dependence of loss spectra of the x-even mode on the distance between two fibers for different analyte refractive indexes: (a) nana = 1.40 and (b) nana = 1.41 (nair = 1, ra = 100 nm, tAg = 50 nm, and r = 12 μm)
Fig. 9
Fig. 9 Dependence of the loss spectra of the x-even mode on the analyte refractive indexes for the dual D-shape sensor (nair = 1, ra = 100 nm, tAg = 50 nm, r = 12 μm, and d = 900 nm)
Fig. 10
Fig. 10 Dependence of loss spectra of the x-even mode on the analyte refractive indexes for the single D-shape sensor (nair = 1, ra = 100 nm, tAg = 50 nm, r = 12 μm, and d = 900 nm)
Fig. 11
Fig. 11 Variation of amplitude sensitivity with wavelength for analyte refractive indexes change of 0.01. (a) the dual D-shape sensor; (b) the single D-shape sensor (nair = 1, ra = 100 nm, tAg = 50 nm, r = 12 μm, and d = 900 nm)
Fig. 12
Fig. 12 Dependence of FOM of the two sensors on the analyte refractive indexes (nair = 1, ra = 100 nm, tAg = 50 nm, r = 12 μm, and d = 900 nm)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε Ag ( ω ) = ε + σ / ε 0 i ω + p = 1 4 C p ω 2 + A P i ω + B p .
α loss =8 .686 × 2 π λ Im ( n eff ) × 10 7 ( d B / c m ) .
S ( λ ) = Δ λ Δ n a n a ( n m / R I U ) .
R = Δ n a n a Δ λ min / Δ λ = Δ λ min / S ( λ ) .
S A ( λ ) = 1 α ( λ , n ana ) α ( λ , n ana ) n ana ( RIU -1 ) .
F O M = m ( e V R I U - 1 ) F W H M ( e V ) .

Metrics