Abstract

Surface plasmon polaritons are commonly believed to be a future basis for the next generation of optoelectronic and all-optical devices. To achieve this, it is critical that the surface plasmon polariton modes be strongly confined to the surface and have a sufficiently long propagation length and a nanosize wavelength. As of today, in the visible part of the spectrum, these conditions are not satisfied for any type of surface plasmon polaritons. In this paper, we demonstrate that in the ultraviolet range, surface plasmon polaritons propagating along a periodically nanostructured aluminum-dielectric interface have all these properties. Both the confinement length and the wavelength of the mode considered are smaller than the period of the structure, which can be as small as 10 nm. At the same time, the propagation length of new surface plasmon-polaritons can reach dozens of its wavelengths. These plasmon polaritons can be observed in materials that are uncommon in plasmonics such as aluminum. The suggested modes can be used for miniaturization of optical devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Bandgap-confined large-mode waveguides for surface plasmon-polaritons

Carsten Reinhardt, Andrey B. Evlyukhin, Wei Cheng, Tobias Birr, Andrey Markov, Bora Ung, Maksim Skorobogatiy, and Boris N. Chichkov
J. Opt. Soc. Am. B 30(11) 2898-2905 (2013)

Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides

Jianjun Chen, Zhi Li, Song Yue, and Qihuang Gong
Opt. Express 17(26) 23603-23609 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Opt. Express 21(15), 17814–17823 (2013).
    [Crossref] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  5. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
    [Crossref] [PubMed]
  6. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2012).
  7. E. S. Andrianov, A. P. Vinogradov, A. V. Dorofeenko, A. A. Zyablovsky, A. A. Lisyansky, and A. A. Pukhov, Quantum Plasmonics (Intellekt, 2015).
  8. R. A. Shore and A. D. Yaghjian, “Complex waves on periodic arrays of lossy and lossless permeable spheres: 1. Theory,” Radio Sci. 47, RS2014 (2012).
  9. R. A. Shore and A. D. Yaghjian, “Complex waves on periodic arrays of lossy and lossless permeable spheres: 2. Numerical results,” Radio Sci. 47, RS2015 (2012).
  10. R. E. Collin, Field Theory of Guided Waves (Wiley-IEEE, 1960).
  11. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  12. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34(22), 4755–4767 (1995).
    [Crossref] [PubMed]
  13. A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78(3), 035403 (2008).
    [Crossref]
  14. A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 2(2), 375–378 (2010).
    [Crossref]
  15. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
    [Crossref]
  16. D. Sarid, “Long-Range Surface-Plasma Waves on Very Thin Metal Films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
    [Crossref]
  17. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
    [Crossref] [PubMed]
  18. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
    [Crossref] [PubMed]
  19. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
    [Crossref]
  20. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
    [Crossref]
  21. J. R. Krenn, “Nanoparticle waveguides: Watching energy transfer,” Nat. Mater. 2(4), 210–211 (2003).
    [Crossref] [PubMed]
  22. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett. 32(8), 973–975 (2007).
    [Crossref] [PubMed]
  23. B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Opt. Express 19(7), 6450–6461 (2011).
    [Crossref] [PubMed]
  24. D. G. Baranov, A. P. Vinogradov, and A. A. Lisyansky, “Magneto-optics enhancement with gain-assisted plasmonic subdiffraction chains,” J. Opt. Soc. Am. B 32(2), 281–289 (2015).
    [Crossref]
  25. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356 (2000).
    [Crossref]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  27. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  28. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  29. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref] [PubMed]
  30. D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
    [Crossref]
  31. D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
    [Crossref] [PubMed]
  32. L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
    [Crossref] [PubMed]
  33. X. Jiao, E. M. Peterson, J. M. Harris, and S. Blair, “UV fluorescence lifetime modification by aluminum nanoapertures,” ACS Photonics 1(12), 1270–1277 (2014).
    [Crossref]
  34. Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
    [Crossref] [PubMed]
  35. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  36. F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  37. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [Crossref] [PubMed]
  38. E. Kretschmann, T. L. Ferrell, and J. C. Ashley, “Splitting of the Dispersion Relation of Surface Plasmons on a Rough Surface,” Phys. Rev. Lett. 42(19), 1312–1314 (1979).
    [Crossref]
  39. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
    [Crossref]
  40. M. E. Inchaussandague and R. A. Depine, “Parametric coordinate transformations for surface relief gratings,” in IV Iberoamerican Meeting of Optics and the VII Latin American Meeting of Optics, Lasers and Their Applications (SPIE, 2001), p. 4.
  41. T. C. Paulick, “Applicability of the Rayleigh hypothesis to real materials,” Phys. Rev. B Condens. Matter 42(5), 2801–2824 (1990).
    [Crossref] [PubMed]
  42. P. M. van den Berg and J. T. Fokkema, “The Rayleigh hypothesis in the theory of reflection by a grating,” J. Opt. Soc. Am. 69(1), 27–31 (1979).
    [Crossref]
  43. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  44. A. P. Vinogradov and A. V. Dorofeenko, “Near-field Bloch waves in photonic crystals,” J. Commun. Technol. Electron. 50, 1153–1158 (2005).
  45. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
    [Crossref]
  46. T. V. Shahbazyan and M. I. Stockman, Plasmonics: Theory and Applications (Springer, 2013).
  47. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Springer, 2006).
  48. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
    [Crossref]
  49. A. A. Maradudin and W. M. Visscher, “Electrostatic and electromagnetic surface shape resonances,” Z. Phys. B 60(2-4), 215–230 (1985).
    [Crossref]
  50. P. C. Das and J. I. Gersten, “Surface shape resonances,” Phys. Rev. B 25(10), 6281–6290 (1982).
    [Crossref]
  51. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [Crossref]
  52. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

2017 (1)

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

2016 (1)

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (2)

X. Jiao, E. M. Peterson, J. M. Harris, and S. Blair, “UV fluorescence lifetime modification by aluminum nanoapertures,” ACS Photonics 1(12), 1270–1277 (2014).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

2013 (4)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref] [PubMed]

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Opt. Express 21(15), 17814–17823 (2013).
[Crossref] [PubMed]

2012 (2)

R. A. Shore and A. D. Yaghjian, “Complex waves on periodic arrays of lossy and lossless permeable spheres: 1. Theory,” Radio Sci. 47, RS2014 (2012).

R. A. Shore and A. D. Yaghjian, “Complex waves on periodic arrays of lossy and lossless permeable spheres: 2. Numerical results,” Radio Sci. 47, RS2015 (2012).

2011 (2)

2010 (3)

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 2(2), 375–378 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

2009 (2)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

2008 (1)

A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78(3), 035403 (2008).
[Crossref]

2007 (1)

2006 (1)

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[Crossref]

2005 (4)

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

A. P. Vinogradov and A. V. Dorofeenko, “Near-field Bloch waves in photonic crystals,” J. Commun. Technol. Electron. 50, 1153–1158 (2005).

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

2004 (2)

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2003 (1)

J. R. Krenn, “Nanoparticle waveguides: Watching energy transfer,” Nat. Mater. 2(4), 210–211 (2003).
[Crossref] [PubMed]

2000 (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356 (2000).
[Crossref]

1998 (2)

1995 (1)

1991 (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

1990 (1)

T. C. Paulick, “Applicability of the Rayleigh hypothesis to real materials,” Phys. Rev. B Condens. Matter 42(5), 2801–2824 (1990).
[Crossref] [PubMed]

1985 (1)

A. A. Maradudin and W. M. Visscher, “Electrostatic and electromagnetic surface shape resonances,” Z. Phys. B 60(2-4), 215–230 (1985).
[Crossref]

1982 (2)

1981 (1)

D. Sarid, “Long-Range Surface-Plasma Waves on Very Thin Metal Films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

1979 (2)

P. M. van den Berg and J. T. Fokkema, “The Rayleigh hypothesis in the theory of reflection by a grating,” J. Opt. Soc. Am. 69(1), 27–31 (1979).
[Crossref]

E. Kretschmann, T. L. Ferrell, and J. C. Ashley, “Splitting of the Dispersion Relation of Surface Plasmons on a Rough Surface,” Phys. Rev. Lett. 42(19), 1312–1314 (1979).
[Crossref]

1965 (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Aalto, T.

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

Ashley, J. C.

E. Kretschmann, T. L. Ferrell, and J. C. Ashley, “Splitting of the Dispersion Relation of Surface Plasmons on a Rough Surface,” Phys. Rev. Lett. 42(19), 1312–1314 (1979).
[Crossref]

Atwater, H. A.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356 (2000).
[Crossref]

Aussenegg, F. R.

Baranov, D. G.

Baumberg, J. J.

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref] [PubMed]

Berg, F.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

Blair, S.

X. Jiao, E. M. Peterson, J. M. Harris, and S. Blair, “UV fluorescence lifetime modification by aluminum nanoapertures,” ACS Photonics 1(12), 1270–1277 (2014).
[Crossref]

Boltasseva, A.

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356 (2000).
[Crossref]

Brown, A. S.

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

Callahan, J. M.

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

Carter, E. A.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Chan, C. T.

Chandezon, J.

Cherchi, M.

Cornet, G.

Das, P. C.

P. C. Das and J. I. Gersten, “Surface shape resonances,” Phys. Rev. B 25(10), 6281–6290 (1982).
[Crossref]

Depine, R. A.

M. E. Inchaussandague and R. A. Depine, “Parametric coordinate transformations for surface relief gratings,” in IV Iberoamerican Meeting of Optics and the VII Latin American Meeting of Optics, Lasers and Their Applications (SPIE, 2001), p. 4.

Djurišic, A. B.

Dorofeenko, A. V.

A. P. Vinogradov and A. V. Dorofeenko, “Near-field Bloch waves in photonic crystals,” J. Commun. Technol. Electron. 50, 1153–1158 (2005).

Dupuis, M. T.

Durach, M.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 2(2), 375–378 (2010).
[Crossref]

Elazar, J. M.

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Everitt, H. O.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

Ferrell, T. L.

E. Kretschmann, T. L. Ferrell, and J. C. Ashley, “Splitting of the Dispersion Relation of Surface Plasmons on a Rough Surface,” Phys. Rev. Lett. 42(19), 1312–1314 (1979).
[Crossref]

Fokkema, J. T.

Ford, G. W.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[Crossref]

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

Fung, K. H.

Garcia-Vidal, F.

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Gersten, J. I.

P. C. Das and J. I. Gersten, “Surface shape resonances,” Phys. Rev. B 25(10), 6281–6290 (1982).
[Crossref]

Govyadinov, A. A.

A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78(3), 035403 (2008).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Halas, N. J.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Harjanne, M.

Harris, J. M.

X. Jiao, E. M. Peterson, J. M. Harris, and S. Blair, “UV fluorescence lifetime modification by aluminum nanoapertures,” ACS Photonics 1(12), 1270–1277 (2014).
[Crossref]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356 (2000).
[Crossref]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Inchaussandague, M. E.

M. E. Inchaussandague and R. A. Depine, “Parametric coordinate transformations for surface relief gratings,” in IV Iberoamerican Meeting of Optics and the VII Latin American Meeting of Optics, Lasers and Their Applications (SPIE, 2001), p. 4.

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jiao, X.

X. Jiao, E. M. Peterson, J. M. Harris, and S. Blair, “UV fluorescence lifetime modification by aluminum nanoapertures,” ACS Photonics 1(12), 1270–1277 (2014).
[Crossref]

Kapulainen, M.

Kim, T.-H.

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Kinsey, N.

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Koenderink, A. F.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[Crossref]

Krauter, C. M.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Krenn, J. R.

Kretschmann, E.

E. Kretschmann, T. L. Ferrell, and J. C. Ashley, “Splitting of the Dispersion Relation of Surface Plasmons on a Rough Surface,” Phys. Rev. Lett. 42(19), 1312–1314 (1979).
[Crossref]

Leitner, A.

Link, S.

Lisyansky, A. A.

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Mahajan, S.

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref] [PubMed]

Majewski, M. L.

Manjavacas, A.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

A. A. Maradudin and W. M. Visscher, “Electrostatic and electromagnetic surface shape resonances,” Z. Phys. B 60(2-4), 215–230 (1985).
[Crossref]

Markel, V. A.

A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78(3), 035403 (2008).
[Crossref]

Martin-Moreno, L.

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Maystre, D.

McClain, M. J.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Nordlander, P.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Paulick, T. C.

T. C. Paulick, “Applicability of the Rayleigh hypothesis to real materials,” Phys. Rev. B Condens. Matter 42(5), 2801–2824 (1990).
[Crossref] [PubMed]

Pendry, J.

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Perkins, E.

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref] [PubMed]

Peterson, E. M.

X. Jiao, E. M. Peterson, J. M. Harris, and S. Blair, “UV fluorescence lifetime modification by aluminum nanoapertures,” ACS Photonics 1(12), 1270–1277 (2014).
[Crossref]

Polman, A.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[Crossref]

Quinten, M.

Rakic, A. D.

Reddy, H.

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

Rusina, A.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 2(2), 375–378 (2010).
[Crossref]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

Sarid, D.

D. Sarid, “Long-Range Surface-Plasma Waves on Very Thin Metal Films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

Shah, D.

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

Shalaev, V. M.

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shore, R. A.

R. A. Shore and A. D. Yaghjian, “Complex waves on periodic arrays of lossy and lossless permeable spheres: 1. Theory,” Radio Sci. 47, RS2014 (2012).

R. A. Shore and A. D. Yaghjian, “Complex waves on periodic arrays of lossy and lossless permeable spheres: 2. Numerical results,” Radio Sci. 47, RS2015 (2012).

Sigle, D. O.

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
[Crossref] [PubMed]

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 2(2), 375–378 (2010).
[Crossref]

Tian, S.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

van den Berg, P. M.

Vinogradov, A. P.

D. G. Baranov, A. P. Vinogradov, and A. A. Lisyansky, “Magneto-optics enhancement with gain-assisted plasmonic subdiffraction chains,” J. Opt. Soc. Am. B 32(2), 281–289 (2015).
[Crossref]

A. P. Vinogradov and A. V. Dorofeenko, “Near-field Bloch waves in photonic crystals,” J. Commun. Technol. Electron. 50, 1153–1158 (2005).

Visscher, W. M.

A. A. Maradudin and W. M. Visscher, “Electrostatic and electromagnetic surface shape resonances,” Z. Phys. B 60(2-4), 215–230 (1985).
[Crossref]

Weber, W. H.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Willingham, B.

Yaghjian, A. D.

R. A. Shore and A. D. Yaghjian, “Complex waves on periodic arrays of lossy and lossless permeable spheres: 2. Numerical results,” Radio Sci. 47, RS2015 (2012).

R. A. Shore and A. D. Yaghjian, “Complex waves on periodic arrays of lossy and lossless permeable spheres: 1. Theory,” Radio Sci. 47, RS2014 (2012).

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

Ylinen, S.

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Zhang, C.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Zhou, L.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

ACS Nano (1)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

X. Jiao, E. M. Peterson, J. M. Harris, and S. Blair, “UV fluorescence lifetime modification by aluminum nanoapertures,” ACS Photonics 1(12), 1270–1277 (2014).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A (1)

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 2(2), 375–378 (2010).
[Crossref]

Comput. J. (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

J. Commun. Technol. Electron. (1)

A. P. Vinogradov and A. V. Dorofeenko, “Near-field Bloch waves in photonic crystals,” J. Commun. Technol. Electron. 50, 1153–1158 (2005).

J. Opt. A, Pure Appl. Opt. (1)

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

J. Phys. Chem. Lett. (1)

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nano Lett. (2)

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

J. R. Krenn, “Nanoparticle waveguides: Watching energy transfer,” Nat. Mater. 2(4), 210–211 (2003).
[Crossref] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Phys. Rev. B (5)

P. C. Das and J. I. Gersten, “Surface shape resonances,” Phys. Rev. B 25(10), 6281–6290 (1982).
[Crossref]

A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78(3), 035403 (2008).
[Crossref]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356 (2000).
[Crossref]

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[Crossref]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[Crossref]

Phys. Rev. B Condens. Matter (2)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

T. C. Paulick, “Applicability of the Rayleigh hypothesis to real materials,” Phys. Rev. B Condens. Matter 42(5), 2801–2824 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

D. Sarid, “Long-Range Surface-Plasma Waves on Very Thin Metal Films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

E. Kretschmann, T. L. Ferrell, and J. C. Ashley, “Splitting of the Dispersion Relation of Surface Plasmons on a Rough Surface,” Phys. Rev. Lett. 42(19), 1312–1314 (1979).
[Crossref]

Radio Sci. (2)

R. A. Shore and A. D. Yaghjian, “Complex waves on periodic arrays of lossy and lossless permeable spheres: 1. Theory,” Radio Sci. 47, RS2014 (2012).

R. A. Shore and A. D. Yaghjian, “Complex waves on periodic arrays of lossy and lossless permeable spheres: 2. Numerical results,” Radio Sci. 47, RS2015 (2012).

Science (2)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Z. Phys. B (1)

A. A. Maradudin and W. M. Visscher, “Electrostatic and electromagnetic surface shape resonances,” Z. Phys. B 60(2-4), 215–230 (1985).
[Crossref]

Other (11)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

T. V. Shahbazyan and M. I. Stockman, Plasmonics: Theory and Applications (Springer, 2013).

P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Springer, 2006).

R. E. Collin, Field Theory of Guided Waves (Wiley-IEEE, 1960).

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2012).

E. S. Andrianov, A. P. Vinogradov, A. V. Dorofeenko, A. A. Zyablovsky, A. A. Lisyansky, and A. A. Pukhov, Quantum Plasmonics (Intellekt, 2015).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

M. E. Inchaussandague and R. A. Depine, “Parametric coordinate transformations for surface relief gratings,” in IV Iberoamerican Meeting of Optics and the VII Latin American Meeting of Optics, Lasers and Their Applications (SPIE, 2001), p. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The dispersion curves (a) and the parametric dependence of the transverse confinement length δ(ω) on the propagation length l pr (ω) (b) for different topologies that support SPPs. In insets of Fig. 1(a), the frequency units are eV. For details, see Table 1. In Fig. 1(b), points C i correspond to the boundary of the visible and IR regions assumed to be 780 nm (1.6 eV); in Fig. 1(a), this boundary is shown by the yellow line; segments A i C i correspond to the visible region. In the manuscript, for numerical calculations, we assume that the dielectric is vacuum with ε d =1.
Fig. 2
Fig. 2 The schematics of the system studied.
Fig. 3
Fig. 3 The dispersion curves of the SPP on the nanostructured surface for various modulation amplitudes h. The period of the modulation is 10 nm. The dielectric permittivity of metal assumed to be equal to the permittivity of aluminum taken from Ref [12]. The dash-dotted purple line corresponds to ω/ ω pl =0.73 at which Re ε m = ε d ( ω pl is the plasma frequency).
Fig. 4
Fig. 4 The dispersion curves of the SPP on an aluminum surface calculated without (a) and with (b) taking loss into account. The dispersion curve of the SPP on flat and nanostructured surfaces are shown by blue and red lines, respectively. The structure parameters are h = 5 nm and a = 10 nm. Orange lines show boundaries of the light cone, the dash-dotted purple line corresponds to ω/ ω pl =0.73. Re ε m = ε d for the frequency ω=0.73 ω pl . In this figure, the line numbering is the same as in Fig. 1.
Fig. 5
Fig. 5 The distribution of the electric field intensity | E | 2 near the interface. The values of ω and k x used in numerical calculations are marked by the black point in Fig. 4(b).
Fig. 6
Fig. 6 The optimal surface structure defined by Eq. (6).
Fig. 7
Fig. 7 The dependence of the SPP propagation length on its frequency on the optimized nanostructured interface.
Fig. 8
Fig. 8 The dispersion curves calculated by using the coordinate transformation [39, 40] (the red line) and with the help of Eqs. (13) and (14) (the blue line). The latter curve is extended to the second Brillouin zone.

Tables (1)

Tables Icon

Table 1 The dependencies k x (ω) and δ( l pr ) for various transmission lines. For dielectric permittivities of aluminum and silver, the data from Refs [11]. and [12] were used.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

δ = 1 Im( k ) = λ 0 λ SPP 2π ( λ 0 2 ε d λ SPP 2 ) 1/2
k SPP = k 0 ε m ε d /( ε m + ε d ) ,
itan( ε m k 0 2 k SPP 2 h 2 )= ε d k 0 2 k SPP 2 ε m ε m k 0 2 k SPP 2 ε d ,
k SPP = 1 a arccos[ a 3 4α( ω ) ],
k SPP = 1 a arccos[ a 3 2α( ω ) ],
λ SPP = 2π Re k x a.
l pr λ SPP = Re k x 4πIm k x ,
z(v)=h 2 0.838 ( v/γ ) 4 [ 1 +0.075( 2 14.65 ( va/3 ) 2 / γ 2 + 2 14.65 ( v+a/3 ) 2 / γ 2 ) 0.52 2 0.003 (v/γ) 4 (v/γ) 2 ], x(v)=v [ 0.996 +0.024( e 10.17 ( v0.13a ) 2 / γ 2 + e 10.17 ( v+0.13a ) 2 / γ 2 ) 0.16( e 10.17 ( v0.26a ) 2 / γ 2 + e 10.17 ( v+0.26a ) 2 / γ 2 + e 10.17 ( v0.35a ) 2 / γ 2 + e 10.17 ( v+0.35a ) 2 / γ 2 ) 0.29 ( v/γ ) 2 ( e 4 ( v0.083a ) 2 / γ 2 + e 4 ( v+0.083a ) 2 / γ 2 ) ],
s(x)=hcos(2πx/a),
d i =α(ω) ni E x,n ( x i ),
E x,n (x)= d n ( d 2 d x 2 + k 0 2 )G( x, x n ),
d n = d i e i k x (ni)a .
1=2iπα( ω ) n=1 ( d 2 d x 2 + k 0 2 ) H 0 (1) ( x )| x=n k 0 a cos( n k x a ).
α(ω)= α m (ω) 1 ε max ε m (ω) ε max bh,

Metrics