Abstract

Axial-aligned SFS-structured interferometers with step-index fibers hold advantages of easy fabrication, high stability, and extremely low cost, while low extinction ratio of the interferometer remains challenging. Here, we investigate the influence of core radius and refractive index of the fibers adopted in the interferometer on its extinction ratio and coupling loss, aiming to achieve the extinction ratio above 15dB – this criterion is applicable for practical use. The improvement of extinction ratio values presented in experiment was from 2dB to 7dB, which match perfectly with theoretical values, therefore demonstrates the effectiveness of the theoretical conclusion.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous measurement of refractive index, strain, and temperature based on a Mach–Zehnder interferometer with hybrid structure optical fiber

Xuekai Gao, Tigang Ning, Jingjing Zheng, Jing Li, Li Pei, Chuanbiao Zhang, Ling Liu, and Xueqing He
Appl. Opt. 58(30) 8187-8193 (2019)

Weakly-coupled 4-mode step-index FMF and demonstration of IM/DD MDM transmission

Tao Hu, Juhao Li, Dawei Ge, Zhongying Wu, Yu Tian, Lei Shen, Yaping Liu, Su Chen, Zhengbin Li, Yongqi He, and Zhangyuan Chen
Opt. Express 26(7) 8356-8363 (2018)

Simultaneous measurement of refractive index and temperature with high sensitivity based on a multipath fiber Mach–Zehnder interferometer

Yajun Jiang, Tao Wang, Chi Liu, Dingyi Feng, Biqiang Jiang, Dexing Yang, and Jianlin Zhao
Appl. Opt. 58(15) 4085-4090 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Grüner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, J. R. Lingle, and B. Pálsdóttir, “Few Mode Transmission Fiber With Low DGD, Low Mode Coupling, and Low Loss,” J. Lightwave Technol. 30(23), 3693–3698 (2012).
    [Crossref]
  2. L. Wang, R. M. Nejad, A. Corsi, J. Lin, Y. Messaddeq, L. Rusch, and S. LaRochelle, “Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing,” Opt. Express 25(10), 11736–11749 (2017).
    [Crossref] [PubMed]
  3. S. H. Chang, H. S. Chung, R. Ryf, N. K. Fontaine, C. Han, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers,” Opt. Express 23(6), 7164–7172 (2015).
    [Crossref] [PubMed]
  4. J. Vuong, P. Ramantanis, Y. Frignac, M. Salsi, P. Genevaux, D. F. Bendimerad, and G. Charlet, “Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber,” Opt. Express 23(2), 1438–1455 (2015).
    [Crossref] [PubMed]
  5. Y. Qi, J. Sun, Z. Kang, L. Ma, W. Jin, and S. Jian, “Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating,” Opt. Fiber Technol. 29, 70–73 (2016).
    [Crossref]
  6. Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
    [Crossref]
  7. E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS Fiber Sensor Utilizing a Few-Mode Fiber Exhibits Critical Wavelength Behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
    [Crossref]
  8. A. Kumar, N. K. Goel, and R. K. Varshney, “Studies on a Few-Mode Fiber-Optic Strain Sensor Based on LP01-LP 02 Mode Interference,” J. Lightwave Technol. 19(3), 358–362 (2001).
    [Crossref]
  9. T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
    [Crossref]
  10. Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4–6), 280–285 (2005).
    [Crossref]
  11. J. Su, X. Dong, and C. Lu, “Characteristics of Few Mode Fiber Under Bending,” IEEE J. Sel. Top. Quant. 22(2), 139–145 (2016).
    [Crossref]
  12. J. Su, X. Dong, and C. Lu, “Property of Bent Few-Mode Fiber and Its Application in Displacement Sensor,” IEEE Photonics Technol. Lett. 28(13), 1387–1390 (2016).
    [Crossref]
  13. B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, J. Wen, and G.-D. Peng, “Twist effect and sensing of few mode polymer fibre Bragg gratings,” Opt. Commun. 359, 411–418 (2016).
    [Crossref]
  14. A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
    [Crossref] [PubMed]
  15. T. Huang, S. Fu, C. Ke, P. P. Shum, and D. Liu, “Characterization of Fiber Bragg Grating Inscribed in Few-Mode Silica-Germanate Fiber,” IEEE Photonics Technol. Lett. 26(19), 1908–1911 (2014).
    [Crossref]
  16. T. Huang, S. Fu, S. Liu, M. Tang, and D. Liu, “Discrimination between temperature and strain using fiber Bragg grating inscribed in few-mode silica-germanate fiber,” in 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (2014), pp. 1058–1060.
  17. J. Su, X. Dong, and C. Lu, “Intensity detection scheme of sensors based on the modal interference effect of few mode fiber,” Measurement 79, 182–187 (2016).
    [Crossref]
  18. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46(13), 2516–2519 (2007).
    [Crossref] [PubMed]
  19. S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical Wavelength in the Transmission Spectrum of SMS Fiber Structure Employing GeO2,” IEEE Photonics Technol. Lett. 22(11), 799–801 (2010).
    [Crossref]
  20. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006).
    [Crossref] [PubMed]
  21. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [Crossref] [PubMed]
  22. J. Zheng, J. Li, T. Ning, L. Pei, S. Jian, and Y. Wen, “Improved self-imaging for multi-mode optical fiber involving cladding refractive index,” Opt. Commun. 311, 350–353 (2013).
    [Crossref]
  23. M. Bass, J. M. Enoch, E. W. V. Stryland, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 2001).
  24. H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
    [Crossref] [PubMed]
  25. G. Rego, O. V. Ivanov, and P. V. S. Marques, “Demonstration of coupling to symmetric and antisymmetric cladding modes in arc-induced long-period fiber gratings,” Opt. Express 14(21), 9594–9599 (2006).
    [Crossref] [PubMed]
  26. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  27. D. Marcuse, “Gaussian approximation of the fundamental modes of graded-index fibers,” J. Opt. Soc. Am. 68(1), 103–109 (1978).
    [Crossref]
  28. G. Keiser, Optical Fiber Communication (Publishing House of Electronics Industry, 2011).
  29. D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
    [Crossref]

2017 (1)

2016 (7)

H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
[Crossref] [PubMed]

Y. Qi, J. Sun, Z. Kang, L. Ma, W. Jin, and S. Jian, “Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating,” Opt. Fiber Technol. 29, 70–73 (2016).
[Crossref]

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

J. Su, X. Dong, and C. Lu, “Characteristics of Few Mode Fiber Under Bending,” IEEE J. Sel. Top. Quant. 22(2), 139–145 (2016).
[Crossref]

J. Su, X. Dong, and C. Lu, “Property of Bent Few-Mode Fiber and Its Application in Displacement Sensor,” IEEE Photonics Technol. Lett. 28(13), 1387–1390 (2016).
[Crossref]

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, J. Wen, and G.-D. Peng, “Twist effect and sensing of few mode polymer fibre Bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

J. Su, X. Dong, and C. Lu, “Intensity detection scheme of sensors based on the modal interference effect of few mode fiber,” Measurement 79, 182–187 (2016).
[Crossref]

2015 (3)

2014 (2)

T. Huang, S. Fu, C. Ke, P. P. Shum, and D. Liu, “Characterization of Fiber Bragg Grating Inscribed in Few-Mode Silica-Germanate Fiber,” IEEE Photonics Technol. Lett. 26(19), 1908–1911 (2014).
[Crossref]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

2013 (1)

J. Zheng, J. Li, T. Ning, L. Pei, S. Jian, and Y. Wen, “Improved self-imaging for multi-mode optical fiber involving cladding refractive index,” Opt. Commun. 311, 350–353 (2013).
[Crossref]

2012 (2)

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS Fiber Sensor Utilizing a Few-Mode Fiber Exhibits Critical Wavelength Behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

L. Grüner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, J. R. Lingle, and B. Pálsdóttir, “Few Mode Transmission Fiber With Low DGD, Low Mode Coupling, and Low Loss,” J. Lightwave Technol. 30(23), 3693–3698 (2012).
[Crossref]

2011 (1)

2010 (1)

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical Wavelength in the Transmission Spectrum of SMS Fiber Structure Employing GeO2,” IEEE Photonics Technol. Lett. 22(11), 799–801 (2010).
[Crossref]

2007 (1)

2006 (2)

2005 (1)

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4–6), 280–285 (2005).
[Crossref]

2001 (1)

1978 (1)

1977 (1)

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Atakaramians, S.

Bendimerad, D. F.

Bhowmik, K.

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, J. Wen, and G.-D. Peng, “Twist effect and sensing of few mode polymer fibre Bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Boyter, C.

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS Fiber Sensor Utilizing a Few-Mode Fiber Exhibits Critical Wavelength Behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

Chang, S. H.

Charlet, G.

Chung, H. S.

Cohoon, G.

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS Fiber Sensor Utilizing a Few-Mode Fiber Exhibits Critical Wavelength Behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

Corsi, A.

Dong, X.

J. Su, X. Dong, and C. Lu, “Characteristics of Few Mode Fiber Under Bending,” IEEE J. Sel. Top. Quant. 22(2), 139–145 (2016).
[Crossref]

J. Su, X. Dong, and C. Lu, “Property of Bent Few-Mode Fiber and Its Application in Displacement Sensor,” IEEE Photonics Technol. Lett. 28(13), 1387–1390 (2016).
[Crossref]

J. Su, X. Dong, and C. Lu, “Intensity detection scheme of sensors based on the modal interference effect of few mode fiber,” Measurement 79, 182–187 (2016).
[Crossref]

Farrell, G.

Fontaine, N. K.

Frignac, Y.

Fu, S.

T. Huang, S. Fu, C. Ke, P. P. Shum, and D. Liu, “Characterization of Fiber Bragg Grating Inscribed in Few-Mode Silica-Germanate Fiber,” IEEE Photonics Technol. Lett. 26(19), 1908–1911 (2014).
[Crossref]

Genevaux, P.

Goel, N. K.

Grüner-Nielsen, L.

Han, C.

Hu, J.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Hu, Q.

Huang, T.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

T. Huang, S. Fu, C. Ke, P. P. Shum, and D. Liu, “Characterization of Fiber Bragg Grating Inscribed in Few-Mode Silica-Germanate Fiber,” IEEE Photonics Technol. Lett. 26(19), 1908–1911 (2014).
[Crossref]

Ivanov, O. V.

Jakobsen, D.

Jespersen, K. G.

Ji, M.

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, J. Wen, and G.-D. Peng, “Twist effect and sensing of few mode polymer fibre Bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Jian, S.

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Y. Qi, J. Sun, Z. Kang, L. Ma, W. Jin, and S. Jian, “Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating,” Opt. Fiber Technol. 29, 70–73 (2016).
[Crossref]

H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
[Crossref] [PubMed]

J. Zheng, J. Li, T. Ning, L. Pei, S. Jian, and Y. Wen, “Improved self-imaging for multi-mode optical fiber involving cladding refractive index,” Opt. Commun. 311, 350–353 (2013).
[Crossref]

Jin, W.

Y. Qi, J. Sun, Z. Kang, L. Ma, W. Jin, and S. Jian, “Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating,” Opt. Fiber Technol. 29, 70–73 (2016).
[Crossref]

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Kang, Z.

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Y. Qi, J. Sun, Z. Kang, L. Ma, W. Jin, and S. Jian, “Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating,” Opt. Fiber Technol. 29, 70–73 (2016).
[Crossref]

Ke, C.

T. Huang, S. Fu, C. Ke, P. P. Shum, and D. Liu, “Characterization of Fiber Bragg Grating Inscribed in Few-Mode Silica-Germanate Fiber,” IEEE Photonics Technol. Lett. 26(19), 1908–1911 (2014).
[Crossref]

Kim, B. Y.

Kim, K.

Kim, Y. K.

Koh, J.

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS Fiber Sensor Utilizing a Few-Mode Fiber Exhibits Critical Wavelength Behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

Kuhlmey, B. T.

Kumar, A.

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical Wavelength in the Transmission Spectrum of SMS Fiber Structure Employing GeO2,” IEEE Photonics Technol. Lett. 22(11), 799–801 (2010).
[Crossref]

A. Kumar, N. K. Goel, and R. K. Varshney, “Studies on a Few-Mode Fiber-Optic Strain Sensor Based on LP01-LP 02 Mode Interference,” J. Lightwave Technol. 19(3), 358–362 (2001).
[Crossref]

Lam, H. Q.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

LaRochelle, S.

Lee, H. P.

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4–6), 280–285 (2005).
[Crossref]

Lee, J. C.

Lee, J. H.

Li, A.

Li, H.

Li, J.

J. Zheng, J. Li, T. Ning, L. Pei, S. Jian, and Y. Wen, “Improved self-imaging for multi-mode optical fiber involving cladding refractive index,” Opt. Commun. 311, 350–353 (2013).
[Crossref]

Li, Q.

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4–6), 280–285 (2005).
[Crossref]

Lian, Y.

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Lin, C.-H.

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4–6), 280–285 (2005).
[Crossref]

Lin, J.

Lingle, J. R.

Liu, D.

T. Huang, S. Fu, C. Ke, P. P. Shum, and D. Liu, “Characterization of Fiber Bragg Grating Inscribed in Few-Mode Silica-Germanate Fiber,” IEEE Photonics Technol. Lett. 26(19), 1908–1911 (2014).
[Crossref]

Liu, Y.

Lu, C.

J. Su, X. Dong, and C. Lu, “Property of Bent Few-Mode Fiber and Its Application in Displacement Sensor,” IEEE Photonics Technol. Lett. 28(13), 1387–1390 (2016).
[Crossref]

J. Su, X. Dong, and C. Lu, “Intensity detection scheme of sensors based on the modal interference effect of few mode fiber,” Measurement 79, 182–187 (2016).
[Crossref]

J. Su, X. Dong, and C. Lu, “Characteristics of Few Mode Fiber Under Bending,” IEEE J. Sel. Top. Quant. 22(2), 139–145 (2016).
[Crossref]

Luo, Y.

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, J. Wen, and G.-D. Peng, “Twist effect and sensing of few mode polymer fibre Bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Ma, L.

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Y. Qi, J. Sun, Z. Kang, L. Ma, W. Jin, and S. Jian, “Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating,” Opt. Fiber Technol. 29, 70–73 (2016).
[Crossref]

Marcuse, D.

D. Marcuse, “Gaussian approximation of the fundamental modes of graded-index fibers,” J. Opt. Soc. Am. 68(1), 103–109 (1978).
[Crossref]

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Marin, E.

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical Wavelength in the Transmission Spectrum of SMS Fiber Structure Employing GeO2,” IEEE Photonics Technol. Lett. 22(11), 799–801 (2010).
[Crossref]

Marques, P. V. S.

Medrano, M.

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS Fiber Sensor Utilizing a Few-Mode Fiber Exhibits Critical Wavelength Behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

Messaddeq, Y.

Meunier, J.-P.

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical Wavelength in the Transmission Spectrum of SMS Fiber Structure Employing GeO2,” IEEE Photonics Technol. Lett. 22(11), 799–801 (2010).
[Crossref]

Miller, J.

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS Fiber Sensor Utilizing a Few-Mode Fiber Exhibits Critical Wavelength Behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

Nejad, R. M.

Nicholson, J. W.

Ning, T.

J. Zheng, J. Li, T. Ning, L. Pei, S. Jian, and Y. Wen, “Improved self-imaging for multi-mode optical fiber involving cladding refractive index,” Opt. Commun. 311, 350–353 (2013).
[Crossref]

Pálsdóttir, B.

Park, K. J.

Pei, L.

J. Zheng, J. Li, T. Ning, L. Pei, S. Jian, and Y. Wen, “Improved self-imaging for multi-mode optical fiber involving cladding refractive index,” Opt. Commun. 311, 350–353 (2013).
[Crossref]

Peng, G.-D.

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, J. Wen, and G.-D. Peng, “Twist effect and sensing of few mode polymer fibre Bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Qi, Y.

Y. Qi, J. Sun, Z. Kang, L. Ma, W. Jin, and S. Jian, “Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating,” Opt. Fiber Technol. 29, 70–73 (2016).
[Crossref]

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Rajan, G.

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, J. Wen, and G.-D. Peng, “Twist effect and sensing of few mode polymer fibre Bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Ramantanis, P.

Rego, G.

Ren, G.

Rusch, L.

Ryf, R.

Salik, E.

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS Fiber Sensor Utilizing a Few-Mode Fiber Exhibits Critical Wavelength Behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

Salsi, M.

Semenova, Y.

Shao, X.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Shieh, W.

Shum, P. P.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

T. Huang, S. Fu, C. Ke, P. P. Shum, and D. Liu, “Characterization of Fiber Bragg Grating Inscribed in Few-Mode Silica-Germanate Fiber,” IEEE Photonics Technol. Lett. 26(19), 1908–1911 (2014).
[Crossref]

Su, J.

J. Su, X. Dong, and C. Lu, “Intensity detection scheme of sensors based on the modal interference effect of few mode fiber,” Measurement 79, 182–187 (2016).
[Crossref]

J. Su, X. Dong, and C. Lu, “Property of Bent Few-Mode Fiber and Its Application in Displacement Sensor,” IEEE Photonics Technol. Lett. 28(13), 1387–1390 (2016).
[Crossref]

J. Su, X. Dong, and C. Lu, “Characteristics of Few Mode Fiber Under Bending,” IEEE J. Sel. Top. Quant. 22(2), 139–145 (2016).
[Crossref]

Sun, J.

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Y. Qi, J. Sun, Z. Kang, L. Ma, W. Jin, and S. Jian, “Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating,” Opt. Fiber Technol. 29, 70–73 (2016).
[Crossref]

Sun, Y.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

L. Grüner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, J. R. Lingle, and B. Pálsdóttir, “Few Mode Transmission Fiber With Low DGD, Low Mode Coupling, and Low Loss,” J. Lightwave Technol. 30(23), 3693–3698 (2012).
[Crossref]

Tripathi, S. M.

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical Wavelength in the Transmission Spectrum of SMS Fiber Structure Employing GeO2,” IEEE Photonics Technol. Lett. 22(11), 799–801 (2010).
[Crossref]

Tseng, P.-Y.

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4–6), 280–285 (2005).
[Crossref]

Varshney, R. K.

Vuong, J.

Wang, L.

Wang, P.

Wang, Q.

Wang, Y.

Wei, L.

Wen, J.

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, J. Wen, and G.-D. Peng, “Twist effect and sensing of few mode polymer fibre Bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Wen, Y.

J. Zheng, J. Li, T. Ning, L. Pei, S. Jian, and Y. Wen, “Improved self-imaging for multi-mode optical fiber involving cladding refractive index,” Opt. Commun. 311, 350–353 (2013).
[Crossref]

Wu, Q.

Wu, Z.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Yan, B.

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, J. Wen, and G.-D. Peng, “Twist effect and sensing of few mode polymer fibre Bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Zhang, J.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Zheng, J.

J. Zheng, J. Li, T. Ning, L. Pei, S. Jian, and Y. Wen, “Improved self-imaging for multi-mode optical fiber involving cladding refractive index,” Opt. Commun. 311, 350–353 (2013).
[Crossref]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

J. Su, X. Dong, and C. Lu, “Characteristics of Few Mode Fiber Under Bending,” IEEE J. Sel. Top. Quant. 22(2), 139–145 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (4)

J. Su, X. Dong, and C. Lu, “Property of Bent Few-Mode Fiber and Its Application in Displacement Sensor,” IEEE Photonics Technol. Lett. 28(13), 1387–1390 (2016).
[Crossref]

T. Huang, S. Fu, C. Ke, P. P. Shum, and D. Liu, “Characterization of Fiber Bragg Grating Inscribed in Few-Mode Silica-Germanate Fiber,” IEEE Photonics Technol. Lett. 26(19), 1908–1911 (2014).
[Crossref]

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS Fiber Sensor Utilizing a Few-Mode Fiber Exhibits Critical Wavelength Behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical Wavelength in the Transmission Spectrum of SMS Fiber Structure Employing GeO2,” IEEE Photonics Technol. Lett. 22(11), 799–801 (2010).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

Measurement (1)

J. Su, X. Dong, and C. Lu, “Intensity detection scheme of sensors based on the modal interference effect of few mode fiber,” Measurement 79, 182–187 (2016).
[Crossref]

Opt. Commun. (4)

J. Zheng, J. Li, T. Ning, L. Pei, S. Jian, and Y. Wen, “Improved self-imaging for multi-mode optical fiber involving cladding refractive index,” Opt. Commun. 311, 350–353 (2013).
[Crossref]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4–6), 280–285 (2005).
[Crossref]

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, J. Wen, and G.-D. Peng, “Twist effect and sensing of few mode polymer fibre Bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

Y. Qi, J. Sun, Z. Kang, L. Ma, W. Jin, and S. Jian, “Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating,” Opt. Fiber Technol. 29, 70–73 (2016).
[Crossref]

Opt. Laser Technol. (1)

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Opt. Lett. (2)

Other (4)

M. Bass, J. M. Enoch, E. W. V. Stryland, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 2001).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

G. Keiser, Optical Fiber Communication (Publishing House of Electronics Industry, 2011).

T. Huang, S. Fu, S. Liu, M. Tang, and D. Liu, “Discrimination between temperature and strain using fiber Bragg grating inscribed in few-mode silica-germanate fiber,” in 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (2014), pp. 1058–1060.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of precisely aligned SFS structure.
Fig. 2
Fig. 2 The impact of coupling ratio k (curve) and η01, η02 (insert) to ER in SFS comb filters.
Fig. 3
Fig. 3 (a) The RI profile of the FMF and the cross-section view and (b) top view of the mode distribution in the SMF and FMF. Δn = n1-n2. Every subgraph in (b) is within the area of 60μm × 60μm around the fiber center.
Fig. 4
Fig. 4 Transmission characteristics of SFS using step-index SMF and FMFs. (a) coupling coefficient η0n, (b) coupling ratio k = η02/η01, (c) extinction ratio ER(dB), and (d) the loss introduced by coupling.
Fig. 5
Fig. 5 (a) longitudinal distribution within FMF of af = 15μm. And (b) Transmission spectrum of SFS. The lines with and without marker represent η02 and η01, respectively. The length of FMF used in simulation was 100mm. Δnf = 3 × 10−3. The parameters not mentioned are the same with that of Fig. 4.
Fig. 6
Fig. 6 Transmission characteristics of step-index SFS simulated with commercial Corning SMF-28 and different FMFs. (a) extinction ratio ER(dB), (b) the loss introduced by coupling. The insertions are ER(dB) and LOSS(dB) under the condition of af = 17μm. (c) transmission spectrum with 100mm FMF of af = 17μm and (d) its coupling coefficient.
Fig. 7
Fig. 7 Transmission characteristics of step-index SFS simulated with commercial Yangtze FMF (solid line) and FMFs for comparison (dashed and dash-dotted line). (a) extinction ratio ER(dB), (b) the loss introduced by coupling.
Fig. 8
Fig. 8 (a) Experiment setup and (b) refractive index profile of the lab-made SMF.
Fig. 9
Fig. 9 Transmission spectrum of (a) simulation and (b) experiment results of SFSs. Dashed and solid line represent those adopting commercial SMF and lab-made SMF, respectively.
Fig. 10
Fig. 10 (a) Schematic of a typical application of SFS with specialty SMF in fiber ring laser and (b) its effect on ER and insertion loss. Without a section of conventional SMF between them, the small-mode-area EDF connects with FMF directly may lead to a small additional insertion loss while obviously improve ER.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

η i , 0 n = ( 0 2 π 0 ψ s , i ( r , φ ) ψ 0 n * ( r , φ ) r d r d φ ) 2 0 2 π 0 | ψ s , i ( r , φ ) | 2 r d r d φ 0 2 π 0 | ψ 0 n ( r , φ ) | 2 r d r d φ
ψ m n ( r , φ ) = { c m n J m ( U m n r / a ) cos ( m φ ) r a d m n K m ( W m n r / a ) cos ( m φ ) r > a
E F M F = n = 1 N η i , 0 n ψ 0 n ( r , φ ) exp ( j β 0 n z )
T = | n = 1 N η 1 , 0 n η 2 , 0 n exp ( j β 0 n z ) | 2
T = | η 01 exp ( j β 01 z ) + η 02 exp ( j β 02 z ) | 2
E R = 10 lg ( T max T min ) = 20 lg | η 01 + η 02 η 01 η 02 |
L O S S ( d B ) = 10 lg ( T max ) = 20 lg ( η 01 + η 02 )
E R = f ( a s , Δ n s , a f , Δ n f , λ )
ψ s ( r ) = ψ 0 exp ( r 2 / w 0 2 )
E R = f ( w 0 , a f , Δ n f , λ )
α s = 20 lg ( 2 w 1 w 2 w 1 2 + w 2 2 )

Metrics