Abstract

Long-range shape measurement with high accuracy is needed for precision manufacturing of large-scale parts such as turbines, compressors, and trains. We have developed a high-accuracy ranging system based on frequency-modulated continuous-wave (FMCW) technology. Our system has two unique features. First, it achieves high-accuracy range measurement by directly modulating a low-cost vertical-cavity surface-emitting laser (VCSEL) at high sweep rates. The nonlinearity of the optical frequency sweep is compensated for by resampling through a reference interferometer. Second, an optical fiber with multiple fiber Bragg grating (FBG) structures is used for distance calibration. Ranging accuracy better than 10 μm is achieved at 2 m distance. Three-dimensional (3D) imaging of 10-cubic-meter volume has been obtained by combining the FMCW ranging with a galvanometer scanner.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large-volume, low-cost, high-precision FMCW tomography using stitched DFBs

Thomas DiLazaro and George Nehmetallah
Opt. Express 26(3) 2891-2904 (2018)

VCSEL-based swept source for low-cost optical coherence tomography

Sucbei Moon and Eun Seo Choi
Biomed. Opt. Express 8(2) 1110-1121 (2017)

Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance

E. Baumann, F. R. Giorgetta, J.-D. Deschênes, W. C. Swann, I. Coddington, and N. R. Newbury
Opt. Express 22(21) 24914-24928 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Uekita and Y. Takaya, “On-machine dimensional measurement of large parts by compensating for volumetric errors of machine tools,” Precis. Eng. 43, 200–210 (2016).
    [Crossref]
  2. G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
    [Crossref]
  3. M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [Crossref]
  4. F. Li, H. Chen, A. Pediredla, C. Yeh, K. He, A. Veeraraghavan, and O. Cossairt, “CS-ToF: High-resolution compressive time-of-flight imaging,” Opt. Express 25(25), 31096–31110 (2017).
    [Crossref] [PubMed]
  5. K. Yasumoto, T. Usui, and S. Han, A 0.3mm-resolution time of flight CMOS range imager with column-gating clock-skew calibration, International solid-state circuit conference, 75, 132 (2014).
  6. K.Iiyama, M.Yasuda and S.Takamiya: Extended-range high-resolution FMCW reflectometry by means of electronically frequency-multiplied sampling signal generated from auxiliary interferometer, IEICE Trans. Electron, E89-C, 6, 823 (2006).
  7. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
    [Crossref] [PubMed]
  8. Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49(2), 213–219 (2010).
    [Crossref] [PubMed]
  9. B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Soek, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-Photonic Integrated Circuit for 3D Microimaging,” IEEE J. Solid-State Circuits 52(1), 161–172 (2017).
    [Crossref]
  10. E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
    [Crossref] [PubMed]
  11. E. Baumann, F. R. Giorgetta, J.-D. Deschênes, W. C. Swann, I. Coddington, and N. R. Newbury, “Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance,” Opt. Express 22(21), 24914–24928 (2014).
    [Crossref] [PubMed]
  12. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
    [Crossref] [PubMed]
  13. Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3(12), 1496–1503 (2016).
    [Crossref] [PubMed]
  14. S. Song, J. Xu, and R. K. Wang, “Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source,” Biomed. Opt. Express 7(11), 4734–4748 (2016).
    [Crossref] [PubMed]
  15. M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
  16. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  17. T. Pfeiffer, W. Draxinger, W. Wieser, T. Klein, M. Petermann, and R. Huber, “Analysis of FDML lasers with meter range coherence,” Proc. SPIE 10053, 100531T (2017).
  18. S. Moon and E. S. Choi, “VCSEL-based swept source for low-cost optical coherence tomography,” Biomed. Opt. Express 8(2), 1110–1121 (2017).
    [Crossref] [PubMed]
  19. J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
    [Crossref]
  20. D. Derickson, “Fiber Optic Test and Measurement,” Upper Saddle River, New Jersey, 1998.
  21. T.-J. Ahn, J. Y. Lee, and D. Y. Kim, “Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation,” Appl. Opt. 44(35), 7630–7634 (2005).
    [Crossref] [PubMed]
  22. P. Sandborn, T. Hariyama, and M. C. Wu, “Resolution-Enhancement for Wide-Range Non-Linear FMCW Lidar using Quasi-Synchronous Resampling,” in Imaging and Applied Optics (2017).

2017 (4)

F. Li, H. Chen, A. Pediredla, C. Yeh, K. He, A. Veeraraghavan, and O. Cossairt, “CS-ToF: High-resolution compressive time-of-flight imaging,” Opt. Express 25(25), 31096–31110 (2017).
[Crossref] [PubMed]

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Soek, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-Photonic Integrated Circuit for 3D Microimaging,” IEEE J. Solid-State Circuits 52(1), 161–172 (2017).
[Crossref]

T. Pfeiffer, W. Draxinger, W. Wieser, T. Klein, M. Petermann, and R. Huber, “Analysis of FDML lasers with meter range coherence,” Proc. SPIE 10053, 100531T (2017).

S. Moon and E. S. Choi, “VCSEL-based swept source for low-cost optical coherence tomography,” Biomed. Opt. Express 8(2), 1110–1121 (2017).
[Crossref] [PubMed]

2016 (3)

2014 (1)

2013 (2)

2012 (1)

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

2011 (1)

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).

2010 (1)

2009 (1)

2006 (1)

2005 (1)

2001 (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

1999 (1)

J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[Crossref]

Ahn, T.-J.

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Babbitt, W. R.

Barber, Z. W.

Baumann, E.

Behroozpour, B.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Soek, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-Photonic Integrated Circuit for 3D Microimaging,” IEEE J. Solid-State Circuits 52(1), 161–172 (2017).
[Crossref]

Berkovic, G.

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Boser, B. E.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Soek, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-Photonic Integrated Circuit for 3D Microimaging,” IEEE J. Solid-State Circuits 52(1), 161–172 (2017).
[Crossref]

Cable, A. E.

Chen, H.

Chen, L.

Choi, E. S.

Coddington, I.

Cossairt, O.

Crawford, M.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).

Derickson, D.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).

Deschênes, J.-D.

Doerr, C.

Draxinger, W.

T. Pfeiffer, W. Draxinger, W. Wieser, T. Klein, M. Petermann, and R. Huber, “Analysis of FDML lasers with meter range coherence,” Proc. SPIE 10053, 100531T (2017).

Ensher, J.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).

Fujimoto, J. G.

Giorgetta, F. R.

Grulkowski, I.

Hariyama, T.

P. Sandborn, T. Hariyama, and M. C. Wu, “Resolution-Enhancement for Wide-Range Non-Linear FMCW Lidar using Quasi-Synchronous Resampling,” in Imaging and Applied Optics (2017).

He, K.

Huber, R.

T. Pfeiffer, W. Draxinger, W. Wieser, T. Klein, M. Petermann, and R. Huber, “Analysis of FDML lasers with meter range coherence,” Proc. SPIE 10053, 100531T (2017).

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

Jayaraman, V.

Jiang, J.

Kaylor, B.

Kim, D. Y.

Klein, T.

T. Pfeiffer, W. Draxinger, W. Wieser, T. Klein, M. Petermann, and R. Huber, “Analysis of FDML lasers with meter range coherence,” Proc. SPIE 10053, 100531T (2017).

Knabe, K.

Lee, H.-C.

Lee, J. Y.

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Leyva, V.

Li, F.

Liu, J. J.

Matsui, Y.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Soek, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-Photonic Integrated Circuit for 3D Microimaging,” IEEE J. Solid-State Circuits 52(1), 161–172 (2017).
[Crossref]

Minneman, M. P.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).

Moon, S.

Myllyla, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Newbury, N. R.

Nielson, T.

Pediredla, A.

Petermann, M.

T. Pfeiffer, W. Draxinger, W. Wieser, T. Klein, M. Petermann, and R. Huber, “Analysis of FDML lasers with meter range coherence,” Proc. SPIE 10053, 100531T (2017).

Pfeiffer, T.

T. Pfeiffer, W. Draxinger, W. Wieser, T. Klein, M. Petermann, and R. Huber, “Analysis of FDML lasers with meter range coherence,” Proc. SPIE 10053, 100531T (2017).

Potsaid, B.

Quack, N.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Soek, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-Photonic Integrated Circuit for 3D Microimaging,” IEEE J. Solid-State Circuits 52(1), 161–172 (2017).
[Crossref]

Rakuljic, G.

Reibel, R. R.

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Roos, P. A.

Sandborn, P.

P. Sandborn, T. Hariyama, and M. C. Wu, “Resolution-Enhancement for Wide-Range Non-Linear FMCW Lidar using Quasi-Synchronous Resampling,” in Imaging and Applied Optics (2017).

Sandborn, P. A. M.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Soek, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-Photonic Integrated Circuit for 3D Microimaging,” IEEE J. Solid-State Circuits 52(1), 161–172 (2017).
[Crossref]

Satyan, N.

Schmitt, J. M.

J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[Crossref]

Shafir, E.

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

Sinclair, L. C.

Soek, T. J.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Soek, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-Photonic Integrated Circuit for 3D Microimaging,” IEEE J. Solid-State Circuits 52(1), 161–172 (2017).
[Crossref]

Song, S.

Swann, W. C.

Swanson, E.

Takaya, Y.

M. Uekita and Y. Takaya, “On-machine dimensional measurement of large parts by compensating for volumetric errors of machine tools,” Precis. Eng. 43, 200–210 (2016).
[Crossref]

Uekita, M.

M. Uekita and Y. Takaya, “On-machine dimensional measurement of large parts by compensating for volumetric errors of machine tools,” Precis. Eng. 43, 200–210 (2016).
[Crossref]

Vasilyev, A.

Veeraraghavan, A.

Wang, R. K.

Wang, Z.

Wieser, W.

T. Pfeiffer, W. Draxinger, W. Wieser, T. Klein, M. Petermann, and R. Huber, “Analysis of FDML lasers with meter range coherence,” Proc. SPIE 10053, 100531T (2017).

Wojtkowski, M.

Wu, M. C.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Soek, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-Photonic Integrated Circuit for 3D Microimaging,” IEEE J. Solid-State Circuits 52(1), 161–172 (2017).
[Crossref]

P. Sandborn, T. Hariyama, and M. C. Wu, “Resolution-Enhancement for Wide-Range Non-Linear FMCW Lidar using Quasi-Synchronous Resampling,” in Imaging and Applied Optics (2017).

Xu, J.

Yariv, A.

Yeh, C.

Adv. Opt. Photonics (1)

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (2)

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[Crossref]

IEEE J. Solid-State Circuits (1)

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. J. Soek, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-Photonic Integrated Circuit for 3D Microimaging,” IEEE J. Solid-State Circuits 52(1), 161–172 (2017).
[Crossref]

Opt. Eng. (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Precis. Eng. (1)

M. Uekita and Y. Takaya, “On-machine dimensional measurement of large parts by compensating for volumetric errors of machine tools,” Precis. Eng. 43, 200–210 (2016).
[Crossref]

Proc. SPIE (2)

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).

T. Pfeiffer, W. Draxinger, W. Wieser, T. Klein, M. Petermann, and R. Huber, “Analysis of FDML lasers with meter range coherence,” Proc. SPIE 10053, 100531T (2017).

Other (4)

D. Derickson, “Fiber Optic Test and Measurement,” Upper Saddle River, New Jersey, 1998.

P. Sandborn, T. Hariyama, and M. C. Wu, “Resolution-Enhancement for Wide-Range Non-Linear FMCW Lidar using Quasi-Synchronous Resampling,” in Imaging and Applied Optics (2017).

K. Yasumoto, T. Usui, and S. Han, A 0.3mm-resolution time of flight CMOS range imager with column-gating clock-skew calibration, International solid-state circuit conference, 75, 132 (2014).

K.Iiyama, M.Yasuda and S.Takamiya: Extended-range high-resolution FMCW reflectometry by means of electronically frequency-multiplied sampling signal generated from auxiliary interferometer, IEICE Trans. Electron, E89-C, 6, 823 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1 Examples of objects that require precision shape measurement.
Fig. 2
Fig. 2 Current response of VCSEL: (a) Wavelength response, (b) Optical frequency shift from the frequency with 2 mA injection current, and (c) Optical output power.
Fig. 3
Fig. 3 Frequency modulation response of VCSEL.
Fig. 4
Fig. 4 Linewidth of VCSEL.
Fig. 5
Fig. 5 Simulation model for resampling.
Fig. 6
Fig. 6 Schematic illustrating the timing of optical frequency sweep in VCSEL.
Fig. 7
Fig. 7 FFT result of target beat signal after resampling.
Fig. 8
Fig. 8 Simulated distance accuracy for (a) Symmetric sinusoidal modulation and (b) Non-symmetric sinusoid-like modulation of VCSEL.
Fig. 9
Fig. 9 (a) The amplitude of the FFT peak versus the optical delay between the reference and target MZIs for various target distances. (b) The FFT signal of P1 (target distance 0.1 m and optical delay 6 m). (c) The FFT signal of P2 (target distance 2.1 m and optical delay 6 m).
Fig. 10
Fig. 10 Experimental setup for resampling.
Fig. 11
Fig. 11 FFT of target beat signal after resampling.
Fig. 12
Fig. 12 Precision of the measured target distance versus attenuation of the target signal.
Fig. 13
Fig. 13 Calibration method using an FBG fiber: (a) Equipmental setup; (b) Schematic calibration curve. If measured distance is not linear with the true distance, we can use the calibration curve to deduce the true distance.
Fig. 14
Fig. 14 Calibration method of FBG fiber length.
Fig. 15
Fig. 15 Measurement results for FBG fiber with a time delay between the reference and target MZIs.
Fig. 16
Fig. 16 Measurement results for FBG fiber without time delay between the reference and target MZIs.
Fig. 17
Fig. 17 Optical setup for distance measurement.
Fig. 18
Fig. 18 Measurement errors versus the stage position at 0.5 m from the collimator. The error is defined as the difference between the distance measured by the FMCW system and the stage position from the stepping motor readout.
Fig. 19
Fig. 19 Measurement results of a US Quarter coin.
Fig. 20
Fig. 20 Measurement results for an optical post and a gas cylinder.
Fig. 21
Fig. 21 Long range measurement with various objects up to 9 m.

Tables (1)

Tables Icon

Table 1 Summary of the measurement errors at various distances.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L c = 2ln2 π λ 2 Δν
ΔR= 2ln2 π λ 2 Δλ

Metrics