Abstract

A new beam delivery method is introduced for controlling filament formation in optical fiber that enables point-by-point writing of 1st order fiber Bragg gratings (FBGs) with single femtosecond laser pulses. Uniform filament tracks with azimuthal symmetry were formed fully through the 9.3 µm core waveguide by a modified immersion focusing method to eliminate astigmatism by the cylindrical fiber shape. Filament arrays were precisely assembled inside of single-mode fiber, generating strong FBG resonances in the telecommunication band. Laser exposure control within this unique thin-grating geometry were key to manipulating the relative strength of the Bragg and cladding mode resonances while also independently tailoring their spectral resolution and features. This filament-by-filament writing rapidly forms gratings with highly flexible pattern control to tune wavelength, or introduce optical defects, demonstrated by a π-shifted FBG having a sharp 25 pm resonance embedded within a broader Bragg peak.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser writing of optical edge filters in fused silica optical waveguides

Jason R. Grenier, Luís A. Fernandes, and Peter R. Herman
Opt. Express 21(4) 4493-4502 (2013)

Role of the 1D optical filamentation process in the writing of first order fiber Bragg gratings with femtosecond pulses at 800nm [Invited]

Martin Bernier, Stephan Gagnon, and Réal Vallée
Opt. Mater. Express 1(5) 832-844 (2011)

Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single-and multi-core mid-IR glass fibers

Rui Suo, Joris Lousteau, Hongxia Li, Xin Jiang, Kaiming Zhou, Lin Zhang, William N MacPherson, Henry T Bookey, James S Barton, Ajoy K Kar, Animesh Jha, and Ian Bennion
Opt. Express 17(9) 7540-7548 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [Crossref]
  2. R. Kashyap, Fiber Bragg Gratings (Academic Press, 2009).
  3. K. K. C. Lee, A. Mariampillai, M. Haque, B. A. Standish, V. X. D. Yang, and P. R. Herman, “Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides,” Opt. Express 21(20), 24076–24086 (2013).
    [Crossref] [PubMed]
  4. J.-G. Liu, C. Schmidt-Hattenberger, and G. Borm, “Dynamic strain measurement with a fibre Bragg grating sensor system,” Measurement 32(2), 151–161 (2002).
    [Crossref]
  5. A. Cusano, A. Cutolo, and J. Albert, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers, 2011).
  6. D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16(18), 14004–14014 (2008).
    [Crossref] [PubMed]
  7. W. H. Glenn, G. Meltz, and E. Snitzer, “Method for impressing gratings within fiber optics,” (1988).
  8. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [Crossref] [PubMed]
  9. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express 16(23), 19169–19178 (2008).
    [Crossref] [PubMed]
  10. A. Saliminia, A. Proulx, and R. Vallée, “Inscription of strong Bragg gratings in pure silica photonic crystal fibers using UV femtosecond laser pulses,” Opt. Commun. 333, 133–138 (2014).
    [Crossref]
  11. A. Saliminia and R. Vallée, “Fiber Bragg grating inscription based on optical filamentation of UV femtosecond laser pulses,” Opt. Commun. 324, 245–251 (2014).
    [Crossref]
  12. J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fiber Bragg gratings,” Proc. SPIE 7589, 75890J (2010).
    [Crossref]
  13. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
    [Crossref] [PubMed]
  14. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [Crossref]
  15. J. R. Grenier, L. a. Fernandes, P. V. S. Marques, J. S. Aitchison, and P. R. Herman, “Optical circuits in fiber cladding: Femtosecond laser-written Bragg Grating Waveguides,” Laser Sci. Photonic Appl. 2, 1–2 (2011).
  16. K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
    [Crossref]
  17. P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lightwave Technol. 6, 1 (2017).
  18. R. J. Williams, R. G. Krämer, S. Nolte, and M. J. Withford, “Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique,” Opt. Lett. 38(11), 1918–1920 (2013).
    [Crossref] [PubMed]
  19. C. Voigtländer, J. Thomas, E. Wikszak, P. Dannberg, S. Nolte, and A. Tünnermann, “Chirped fiber Bragg gratings written with ultrashort pulses and a tunable phase mask,” Opt. Lett. 34(12), 1888–1890 (2009).
    [Crossref] [PubMed]
  20. B. Huang and X. Shu, “Line-by-Line inscription of phase-shifted fiber Bragg gratings with femtosecond laser,” in Asia Commun. Photonics Conf. (2015), paper ASu2A.60.
    [Crossref]
  21. S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24(1), 30–40 (2016).
    [Crossref] [PubMed]
  22. J. Burgmeier, C. Waltermann, G. Flachenecker, and W. Schade, “Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses,” Opt. Lett. 39(3), 540–543 (2014).
    [Crossref] [PubMed]
  23. R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36(15), 2988–2990 (2011).
    [Crossref] [PubMed]
  24. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [Crossref] [PubMed]
  25. Y. Li and T. G. Brown, “Radiation modes and tilted fiber gratings,” J. Opt. Soc. Am. B 23(8), 1544–1555 (2006).
    [Crossref]
  26. C. Liao, J. He, Q. Wang, C. Zhang, Z. Li, C. Wang, and Y. Wang, “Fiber Bragg gratings Fabricated by Femtosecond Laser Micromachining Methods,” in Opto-electronics and Communications Conference (IEEE, 2015).
    [Crossref]
  27. G. H. Cheng, Y. J. Zhang, and Q. Liu, “Transmitting volume Bragg gratings in PTR glass written with femtosecond Bessel beams,” Proc. SPIE 10173, 1017322 (2017).
    [Crossref]
  28. F. Ahmed and M. B. G. Jun, “Filament-Based Fabrication and Performance Analysis of Fiber Bragg Grating Sensors Using Ultrashort Pulse Laser,” J. Micro Nano-Manufacturing 2(2), 21007 (2014).
    [Crossref]
  29. F. Ahmed and M. B. G. Jun, “Bragg grating fabrication in microfiber by femtosecond pulse filamentation induced periodic refractive index modification,” Laser Appl. Microelectron. Optoelectron. Manuf. 9350, 93500C (2015).
  30. F. Ahmed and M. B. G. Jun, “Microfiber Bragg Grating Sandwiched between Standard Optical Fibers for Enhanced Temperature Sensing,” IEEE Photonics Technol. Lett. 28(6), 685–688 (2016).
    [Crossref]
  31. Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
    [Crossref] [PubMed]
  32. M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
    [Crossref] [PubMed]
  33. J. R. Grenier, L. A. Fernandes, and P. R. Herman, “Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics,” Opt. Express 23(13), 16760–16771 (2015).
    [Crossref] [PubMed]
  34. J. R. Grenier, M. Haque, A. Fernandes, K. K. C. Lee, and R. Herman, “Femtosecond Laser Inscription of Photonic and Optofluidic Devices in Fiber Cladding,” in Planar Waveguides and Other Confined Geometries (2015).
  35. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
    [Crossref]
  36. J. R. Grenier, L. A. Fernandes, and P. R. Herman, “Femtosecond laser writing of optical edge filters in fused silica optical waveguides,” Opt. Express 21(4), 4493–4502 (2013).
    [Crossref] [PubMed]
  37. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express 20(22), 24103–24114 (2012).
    [Crossref] [PubMed]
  38. T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
    [Crossref]
  39. Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
    [Crossref] [PubMed]
  40. Z. Cai, F. Liu, T. Guo, B.-O. Guan, G.-D. Peng, and J. Albert, “Evanescently coupled optical fiber refractometer based a tilted fiber Bragg grating and a D-shaped fiber,” Opt. Express 23(16), 20971–20976 (2015).
    [Crossref] [PubMed]

2017 (2)

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lightwave Technol. 6, 1 (2017).

G. H. Cheng, Y. J. Zhang, and Q. Liu, “Transmitting volume Bragg gratings in PTR glass written with femtosecond Bessel beams,” Proc. SPIE 10173, 1017322 (2017).
[Crossref]

2016 (3)

F. Ahmed and M. B. G. Jun, “Microfiber Bragg Grating Sandwiched between Standard Optical Fibers for Enhanced Temperature Sensing,” IEEE Photonics Technol. Lett. 28(6), 685–688 (2016).
[Crossref]

T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24(1), 30–40 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (5)

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

F. Ahmed and M. B. G. Jun, “Filament-Based Fabrication and Performance Analysis of Fiber Bragg Grating Sensors Using Ultrashort Pulse Laser,” J. Micro Nano-Manufacturing 2(2), 21007 (2014).
[Crossref]

A. Saliminia, A. Proulx, and R. Vallée, “Inscription of strong Bragg gratings in pure silica photonic crystal fibers using UV femtosecond laser pulses,” Opt. Commun. 333, 133–138 (2014).
[Crossref]

A. Saliminia and R. Vallée, “Fiber Bragg grating inscription based on optical filamentation of UV femtosecond laser pulses,” Opt. Commun. 324, 245–251 (2014).
[Crossref]

J. Burgmeier, C. Waltermann, G. Flachenecker, and W. Schade, “Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses,” Opt. Lett. 39(3), 540–543 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

2011 (3)

R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36(15), 2988–2990 (2011).
[Crossref] [PubMed]

J. R. Grenier, L. a. Fernandes, P. V. S. Marques, J. S. Aitchison, and P. R. Herman, “Optical circuits in fiber cladding: Femtosecond laser-written Bragg Grating Waveguides,” Laser Sci. Photonic Appl. 2, 1–2 (2011).

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

2010 (3)

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fiber Bragg gratings,” Proc. SPIE 7589, 75890J (2010).
[Crossref]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

2007 (1)

2006 (1)

2004 (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

2003 (1)

2002 (1)

J.-G. Liu, C. Schmidt-Hattenberger, and G. Borm, “Dynamic strain measurement with a fibre Bragg grating sensor system,” Measurement 32(2), 151–161 (2002).
[Crossref]

1989 (1)

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

1975 (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

Ahmed, F.

F. Ahmed and M. B. G. Jun, “Microfiber Bragg Grating Sandwiched between Standard Optical Fibers for Enhanced Temperature Sensing,” IEEE Photonics Technol. Lett. 28(6), 685–688 (2016).
[Crossref]

F. Ahmed and M. B. G. Jun, “Bragg grating fabrication in microfiber by femtosecond pulse filamentation induced periodic refractive index modification,” Laser Appl. Microelectron. Optoelectron. Manuf. 9350, 93500C (2015).

F. Ahmed and M. B. G. Jun, “Filament-Based Fabrication and Performance Analysis of Fiber Bragg Grating Sensors Using Ultrashort Pulse Laser,” J. Micro Nano-Manufacturing 2(2), 21007 (2014).
[Crossref]

Aitchison, J. S.

L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express 20(22), 24103–24114 (2012).
[Crossref] [PubMed]

J. R. Grenier, L. a. Fernandes, P. V. S. Marques, J. S. Aitchison, and P. R. Herman, “Optical circuits in fiber cladding: Femtosecond laser-written Bragg Grating Waveguides,” Laser Sci. Photonic Appl. 2, 1–2 (2011).

Albert, J.

T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Z. Cai, F. Liu, T. Guo, B.-O. Guan, G.-D. Peng, and J. Albert, “Evanescently coupled optical fiber refractometer based a tilted fiber Bragg grating and a D-shaped fiber,” Opt. Express 23(16), 20971–20976 (2015).
[Crossref] [PubMed]

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Ams, M.

Antipov, S.

Bartelt, H.

Becker, M.

Bennion, I.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
[Crossref] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Bergmann, J.

Blair, D. A. D.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Borm, G.

J.-G. Liu, C. Schmidt-Hattenberger, and G. Borm, “Dynamic strain measurement with a fibre Bragg grating sensor system,” Measurement 32(2), 151–161 (2002).
[Crossref]

Brown, T. G.

Brückner, S.

Burgmeier, J.

Cai, Z.

Cheng, G. H.

G. H. Cheng, Y. J. Zhang, and Q. Liu, “Transmitting volume Bragg gratings in PTR glass written with femtosecond Bessel beams,” Proc. SPIE 10173, 1017322 (2017).
[Crossref]

Coulas, D.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lightwave Technol. 6, 1 (2017).

Dannberg, P.

DeRosa, M. C.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Ding, H.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lightwave Technol. 6, 1 (2017).

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[Crossref] [PubMed]

Dubov, M.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Fernandes, L. A.

Flachenecker, G.

Francis, T. J.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Franke, M.

Fuerbach, A.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Glenn, W. H.

Grenier, J. R.

Grobnic, D.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lightwave Technol. 6, 1 (2017).

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[Crossref] [PubMed]

Guan, B. O.

T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Guan, B.-O.

Guo, T.

Haque, M.

He, J.

C. Liao, J. He, Q. Wang, C. Zhang, Z. Li, C. Wang, and Y. Wang, “Fiber Bragg gratings Fabricated by Femtosecond Laser Micromachining Methods,” in Opto-electronics and Communications Conference (IEEE, 2015).
[Crossref]

Henderson, G.

Herman, P. R.

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Hnatovsky, C.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lightwave Technol. 6, 1 (2017).

Ho, S.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Jovanovic, N.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fiber Bragg gratings,” Proc. SPIE 7589, 75890J (2010).
[Crossref]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

Jun, M. B. G.

F. Ahmed and M. B. G. Jun, “Microfiber Bragg Grating Sandwiched between Standard Optical Fibers for Enhanced Temperature Sensing,” IEEE Photonics Technol. Lett. 28(6), 685–688 (2016).
[Crossref]

F. Ahmed and M. B. G. Jun, “Bragg grating fabrication in microfiber by femtosecond pulse filamentation induced periodic refractive index modification,” Laser Appl. Microelectron. Optoelectron. Manuf. 9350, 93500C (2015).

F. Ahmed and M. B. G. Jun, “Filament-Based Fabrication and Performance Analysis of Fiber Bragg Grating Sensors Using Ultrashort Pulse Laser,” J. Micro Nano-Manufacturing 2(2), 21007 (2014).
[Crossref]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Krämer, R. G.

Laegsgaard, J.

Lai, Y.

Lee, K. K. C.

Li, Y.

Li, Z.

C. Liao, J. He, Q. Wang, C. Zhang, Z. Li, C. Wang, and Y. Wang, “Fiber Bragg gratings Fabricated by Femtosecond Laser Micromachining Methods,” in Opto-electronics and Communications Conference (IEEE, 2015).
[Crossref]

Liao, C.

C. Liao, J. He, Q. Wang, C. Zhang, Z. Li, C. Wang, and Y. Wang, “Fiber Bragg gratings Fabricated by Femtosecond Laser Micromachining Methods,” in Opto-electronics and Communications Conference (IEEE, 2015).
[Crossref]

Lindner, E.

Liu, F.

Liu, J.-G.

J.-G. Liu, C. Schmidt-Hattenberger, and G. Borm, “Dynamic strain measurement with a fibre Bragg grating sensor system,” Measurement 32(2), 151–161 (2002).
[Crossref]

Liu, Q.

G. H. Cheng, Y. J. Zhang, and Q. Liu, “Transmitting volume Bragg gratings in PTR glass written with femtosecond Bessel beams,” Proc. SPIE 10173, 1017322 (2017).
[Crossref]

Liu, X.

Lu, P.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lightwave Technol. 6, 1 (2017).

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[Crossref] [PubMed]

Magi, E.

Marburger, J. H.

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

Mariampillai, A.

Marques, P. V.

Marques, P. V. S.

J. R. Grenier, L. a. Fernandes, P. V. S. Marques, J. S. Aitchison, and P. R. Herman, “Optical circuits in fiber cladding: Femtosecond laser-written Bragg Grating Waveguides,” Laser Sci. Photonic Appl. 2, 1–2 (2011).

Marshall, G. D.

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Meltz, G.

Mezentsev, V. K.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Mihailov, S. J.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lightwave Technol. 6, 1 (2017).

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[Crossref] [PubMed]

Morey, W. W.

Mou, C.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Naumov, A. Y.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lightwave Technol. 6, 1 (2017).

Nolte, S.

Peng, G.-D.

Proulx, A.

A. Saliminia, A. Proulx, and R. Vallée, “Inscription of strong Bragg gratings in pure silica photonic crystal fibers using UV femtosecond laser pulses,” Opt. Commun. 333, 133–138 (2014).
[Crossref]

Rothhardt, M. W.

Saliminia, A.

A. Saliminia, A. Proulx, and R. Vallée, “Inscription of strong Bragg gratings in pure silica photonic crystal fibers using UV femtosecond laser pulses,” Opt. Commun. 333, 133–138 (2014).
[Crossref]

A. Saliminia and R. Vallée, “Fiber Bragg grating inscription based on optical filamentation of UV femtosecond laser pulses,” Opt. Commun. 324, 245–251 (2014).
[Crossref]

Schade, W.

Schmidt-Hattenberger, C.

J.-G. Liu, C. Schmidt-Hattenberger, and G. Borm, “Dynamic strain measurement with a fibre Bragg grating sensor system,” Measurement 32(2), 151–161 (2002).
[Crossref]

Shevchenko, Y.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Smelser, C. W.

Snitzer, E.

W. H. Glenn, G. Meltz, and E. Snitzer, “Method for impressing gratings within fiber optics,” (1988).

Standish, B. A.

Steel, M.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fiber Bragg gratings,” Proc. SPIE 7589, 75890J (2010).
[Crossref]

Steel, M. J.

Sugden, K.

Thomas, J.

Thomas, J. U.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fiber Bragg gratings,” Proc. SPIE 7589, 75890J (2010).
[Crossref]

Tünnermann, A.

Turchinovich, D.

Unruh, J.

Vallée, R.

A. Saliminia and R. Vallée, “Fiber Bragg grating inscription based on optical filamentation of UV femtosecond laser pulses,” Opt. Commun. 324, 245–251 (2014).
[Crossref]

A. Saliminia, A. Proulx, and R. Vallée, “Inscription of strong Bragg gratings in pure silica photonic crystal fibers using UV femtosecond laser pulses,” Opt. Commun. 333, 133–138 (2014).
[Crossref]

Voigtländer, C.

Walker, R.

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lightwave Technol. 6, 1 (2017).

Walker, R. B.

Walsh, R.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Waltermann, C.

Wang, C.

C. Liao, J. He, Q. Wang, C. Zhang, Z. Li, C. Wang, and Y. Wang, “Fiber Bragg gratings Fabricated by Femtosecond Laser Micromachining Methods,” in Opto-electronics and Communications Conference (IEEE, 2015).
[Crossref]

Wang, Q.

C. Liao, J. He, Q. Wang, C. Zhang, Z. Li, C. Wang, and Y. Wang, “Fiber Bragg gratings Fabricated by Femtosecond Laser Micromachining Methods,” in Opto-electronics and Communications Conference (IEEE, 2015).
[Crossref]

Wang, Y.

C. Liao, J. He, Q. Wang, C. Zhang, Z. Li, C. Wang, and Y. Wang, “Fiber Bragg gratings Fabricated by Femtosecond Laser Micromachining Methods,” in Opto-electronics and Communications Conference (IEEE, 2015).
[Crossref]

Wikszak, E.

Williams, R. J.

Withford, M. J.

Yang, V. X. D.

Zhang, C.

C. Liao, J. He, Q. Wang, C. Zhang, Z. Li, C. Wang, and Y. Wang, “Fiber Bragg gratings Fabricated by Femtosecond Laser Micromachining Methods,” in Opto-electronics and Communications Conference (IEEE, 2015).
[Crossref]

Zhang, L.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Zhang, Y. J.

G. H. Cheng, Y. J. Zhang, and Q. Liu, “Transmitting volume Bragg gratings in PTR glass written with femtosecond Bessel beams,” Proc. SPIE 10173, 1017322 (2017).
[Crossref]

Zhou, K.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
[Crossref] [PubMed]

Anal. Chem. (1)

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Electron. Lett. (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (2)

F. Ahmed and M. B. G. Jun, “Microfiber Bragg Grating Sandwiched between Standard Optical Fibers for Enhanced Temperature Sensing,” IEEE Photonics Technol. Lett. 28(6), 685–688 (2016).
[Crossref]

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

J. Lightwave Technol. (1)

P. Lu, S. J. Mihailov, H. Ding, D. Grobnic, R. Walker, D. Coulas, C. Hnatovsky, and A. Y. Naumov, “Plane-by-plane inscription of grating structures in optical fibers,” J. Lightwave Technol. 6, 1 (2017).

J. Micro Nano-Manufacturing (1)

F. Ahmed and M. B. G. Jun, “Filament-Based Fabrication and Performance Analysis of Fiber Bragg Grating Sensors Using Ultrashort Pulse Laser,” J. Micro Nano-Manufacturing 2(2), 21007 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Laser Appl. Microelectron. Optoelectron. Manuf. (1)

F. Ahmed and M. B. G. Jun, “Bragg grating fabrication in microfiber by femtosecond pulse filamentation induced periodic refractive index modification,” Laser Appl. Microelectron. Optoelectron. Manuf. 9350, 93500C (2015).

Laser Sci. Photonic Appl. (1)

J. R. Grenier, L. a. Fernandes, P. V. S. Marques, J. S. Aitchison, and P. R. Herman, “Optical circuits in fiber cladding: Femtosecond laser-written Bragg Grating Waveguides,” Laser Sci. Photonic Appl. 2, 1–2 (2011).

Measurement (1)

J.-G. Liu, C. Schmidt-Hattenberger, and G. Borm, “Dynamic strain measurement with a fibre Bragg grating sensor system,” Measurement 32(2), 151–161 (2002).
[Crossref]

Opt. Commun. (2)

A. Saliminia, A. Proulx, and R. Vallée, “Inscription of strong Bragg gratings in pure silica photonic crystal fibers using UV femtosecond laser pulses,” Opt. Commun. 333, 133–138 (2014).
[Crossref]

A. Saliminia and R. Vallée, “Fiber Bragg grating inscription based on optical filamentation of UV femtosecond laser pulses,” Opt. Commun. 324, 245–251 (2014).
[Crossref]

Opt. Express (10)

M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express 16(23), 19169–19178 (2008).
[Crossref] [PubMed]

D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16(18), 14004–14014 (2008).
[Crossref] [PubMed]

K. K. C. Lee, A. Mariampillai, M. Haque, B. A. Standish, V. X. D. Yang, and P. R. Herman, “Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides,” Opt. Express 21(20), 24076–24086 (2013).
[Crossref] [PubMed]

S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24(1), 30–40 (2016).
[Crossref] [PubMed]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
[Crossref] [PubMed]

J. R. Grenier, L. A. Fernandes, and P. R. Herman, “Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics,” Opt. Express 23(13), 16760–16771 (2015).
[Crossref] [PubMed]

J. R. Grenier, L. A. Fernandes, and P. R. Herman, “Femtosecond laser writing of optical edge filters in fused silica optical waveguides,” Opt. Express 21(4), 4493–4502 (2013).
[Crossref] [PubMed]

L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express 20(22), 24103–24114 (2012).
[Crossref] [PubMed]

Z. Cai, F. Liu, T. Guo, B.-O. Guan, G.-D. Peng, and J. Albert, “Evanescently coupled optical fiber refractometer based a tilted fiber Bragg grating and a D-shaped fiber,” Opt. Express 23(16), 20971–20976 (2015).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Opt. Lett. (6)

Proc. SPIE (2)

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fiber Bragg gratings,” Proc. SPIE 7589, 75890J (2010).
[Crossref]

G. H. Cheng, Y. J. Zhang, and Q. Liu, “Transmitting volume Bragg gratings in PTR glass written with femtosecond Bessel beams,” Proc. SPIE 10173, 1017322 (2017).
[Crossref]

Prog. Quantum Electron. (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

Other (6)

C. Liao, J. He, Q. Wang, C. Zhang, Z. Li, C. Wang, and Y. Wang, “Fiber Bragg gratings Fabricated by Femtosecond Laser Micromachining Methods,” in Opto-electronics and Communications Conference (IEEE, 2015).
[Crossref]

J. R. Grenier, M. Haque, A. Fernandes, K. K. C. Lee, and R. Herman, “Femtosecond Laser Inscription of Photonic and Optofluidic Devices in Fiber Cladding,” in Planar Waveguides and Other Confined Geometries (2015).

B. Huang and X. Shu, “Line-by-Line inscription of phase-shifted fiber Bragg gratings with femtosecond laser,” in Asia Commun. Photonics Conf. (2015), paper ASu2A.60.
[Crossref]

W. H. Glenn, G. Meltz, and E. Snitzer, “Method for impressing gratings within fiber optics,” (1988).

A. Cusano, A. Cutolo, and J. Albert, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers, 2011).

R. Kashyap, Fiber Bragg Gratings (Academic Press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the oil-immersion focusing arrangement for eliminating astigmatic aberration during femtosecond laser writing of filament track Bragg gratings in the fiber core waveguide.
Fig. 2
Fig. 2 Optical microscope images of isolated filamentation tracks (a-b) and Bragg grating arrays of 0.536 µm spacing (c-f), aligned inside the core waveguide of fiber, formed with a) 1.5, 3 and 6 µJ pulse energy (left to right) at same focal depth position, b) 3 µJ pulse energy at various focal depths, (c) 1 µJ pulse energy, and 360 nJ pulse energy, where scattering of red waveguiding light confirms formation of a narrow grating structure fully through the core waveguide in d) side view, e) top view, and f) end facet view.
Fig. 3
Fig. 3 Spectral responses of FBGs formed in single mode optical fiber with femtosecond laser self-focusing filaments: a) transmission spectra for increasing grating length at 480 nJ pulse energy, and inset shows the change in the reflectivity as a function of grating length; and transmission and reflection spectra for b) a strong 1.6 mm long FBG by 1 µJ pulse energy and c) a weak 5 mm long FBG by 316 nJ pulse energy. d) Pulse energy dependency of AC coupling coefficient КAC and 3dB bandwidth of Bragg resonance.
Fig. 4
Fig. 4 Transmission (a,c) and reflection (a,b) spectra of a π-phase-shifted FBG formed over 4 mm length with 360 nJ/pulse energy, probed with unpolarized light (a) and with linear polarized light (b,c) aligned parallel and perpendicular with the filament grating.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=tan h 2 ( К AC L g ).

Metrics