J. Kremmel, T. Lamprecht, N. Crameri, and M. Michler, “Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides,” Opt. Eng. 56, 026115 (2017).
[Crossref]
B. Espinoza, T. Dallakyan, and P. Dinh, “Laser Microfabrication Techniques Move Rapid Prototyping to the Mainstream,” Industrial Photonics 4, 14–17 (2017).
N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]
I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref]
[PubMed]
L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]
[PubMed]
M.-j. Yin, B. Huang, S. Gao, A. P. Zhang, and X. Ye, “Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection,” Biomed. Opt. Express 7, 2067–2077 (2016).
[Crossref]
[PubMed]
M. B. M. Meddens, S. Liu, P. S. Finnegan, T. L. Edwards, C. D. James, and K. A. Lidke, “Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution,” Biomed. Opt. Express 7, 2219–2236 (2016).
[Crossref]
[PubMed]
C. Chakraborty, K. M. Goodfellow, and A. N. Vamivakas, “Localized emission from defects in MoSe2 layers,” Opt. Mater. Express 6, 2081–2087 (2016).
[Crossref]
S. C. Kuhn, A. Knorr, S. Reitzenstein, and M. Richter, “Cavity assisted emission of single, paired and heralded photons from a single quantum dot device,” Opt. Express 24, 25446–25461 (2016).
[Crossref]
[PubMed]
J. S. Oakdale, J. Ye, W. L. Smith, and J. Biener, “Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography,” Opt. Express 24, 27077–27086 (2016).
[Crossref]
[PubMed]
M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref]
[PubMed]
K. Kurselis, R. Kiyan, V. N. Bagratashvili, V. K. Popov, and B. N. Chichkov, “3D fabrication of all-polymer conductive microstructures by two photon polymerization,” Opt. Express 21, 31029–31035 (2013).
[Crossref]
K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]
C.-N. Hu, H.-T. Hsieh, and G.-D. J. Su, “Fabrication of microlens arrays by a rolling process with soft polydimethyl-siloxane molds,” J. Micromechanics Microengineering 21, 065013 (2011).
[Crossref]
I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]
Z. Ling, C. Liu, and K. Lian, “Design and fabrication of SU-8 micro optic fiber holder with cantilever-type elastic microclips,” Microsyst. Technol. 15, 429–435 (2009).
[Crossref]
M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nature Photon. 3, 450 (2009).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]
R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]
T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[Crossref]
D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]
H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79, 1411–1413 (2001).
[Crossref]
R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]
S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272, 85–87 (1996).
[Crossref]
A. Sasaki, T. Baba, and K. Iga, “Put-in microconnectors for alignment-free coupling of optical fiber arrays,” IEEE Photon. Technol. Lett. 4, 908–911 (1992).
[Crossref]
H. M. Presby, S. Yang, A. E. Willner, and C. A. Edwards, “Connectorized integrated star couplers on silicon,” Opt. Eng. 31, 1323–1328 (1992).
[Crossref]
Y. Ando, “Statistical Analysis of Insertion-Loss Improvement for Optical Connectors Using the Orientation Method for Fiber-Core Offset,” IEEE Photon. Technol. Lett. 3, 939–941 (1991).
[Crossref]
H. Nagata and A. Kawai, “Characteristics of Adhesion between Photoresist and Inorganic Substrate,” Jpn. J. Appl. Phys. 28, 2137 (1989).
[Crossref]
S. Nemoto and T. Makimoto, “Analysis of Splice Loss in Single-Mode Fibers Using a Gaussian Field Approximation,” Opt. Quant. Electron. 11, 447–457 (1979).
[Crossref]
N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]
Y. Ando, “Statistical Analysis of Insertion-Loss Improvement for Optical Connectors Using the Orientation Method for Fiber-Core Offset,” IEEE Photon. Technol. Lett. 3, 939–941 (1991).
[Crossref]
R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]
A. Sasaki, T. Baba, and K. Iga, “Put-in microconnectors for alignment-free coupling of optical fiber arrays,” IEEE Photon. Technol. Lett. 4, 908–911 (1992).
[Crossref]
I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref]
[PubMed]
I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref]
[PubMed]
J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]
J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]
L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]
[PubMed]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]
K. Kurselis, R. Kiyan, V. N. Bagratashvili, V. K. Popov, and B. N. Chichkov, “3D fabrication of all-polymer conductive microstructures by two photon polymerization,” Opt. Express 21, 31029–31035 (2013).
[Crossref]
I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]
M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nature Photon. 3, 450 (2009).
[Crossref]
N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]
S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272, 85–87 (1996).
[Crossref]
K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]
J. Kremmel, T. Lamprecht, N. Crameri, and M. Michler, “Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides,” Opt. Eng. 56, 026115 (2017).
[Crossref]
B. Espinoza, T. Dallakyan, and P. Dinh, “Laser Microfabrication Techniques Move Rapid Prototyping to the Mainstream,” Industrial Photonics 4, 14–17 (2017).
J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]
B. Espinoza, T. Dallakyan, and P. Dinh, “Laser Microfabrication Techniques Move Rapid Prototyping to the Mainstream,” Industrial Photonics 4, 14–17 (2017).
H. M. Presby, S. Yang, A. E. Willner, and C. A. Edwards, “Connectorized integrated star couplers on silicon,” Opt. Eng. 31, 1323–1328 (1992).
[Crossref]
M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref]
[PubMed]
B. Espinoza, T. Dallakyan, and P. Dinh, “Laser Microfabrication Techniques Move Rapid Prototyping to the Mainstream,” Industrial Photonics 4, 14–17 (2017).
N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]
I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]
M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nature Photon. 3, 450 (2009).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]
I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref]
[PubMed]
I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]
I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]
I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]
I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]
R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]
R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]
R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]
M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref]
[PubMed]
X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
[Crossref]
C.-N. Hu, H.-T. Hsieh, and G.-D. J. Su, “Fabrication of microlens arrays by a rolling process with soft polydimethyl-siloxane molds,” J. Micromechanics Microengineering 21, 065013 (2011).
[Crossref]
C.-N. Hu, H.-T. Hsieh, and G.-D. J. Su, “Fabrication of microlens arrays by a rolling process with soft polydimethyl-siloxane molds,” J. Micromechanics Microengineering 21, 065013 (2011).
[Crossref]
Y. Aoki, T. Kato, R. J. Mizuno, and K. Iga, “Micro-optical bench for alignment-free optical coupling,” Appl. Opt. 38, 963–965 (1999).
[Crossref]
A. Sasaki, T. Baba, and K. Iga, “Put-in microconnectors for alignment-free coupling of optical fiber arrays,” IEEE Photon. Technol. Lett. 4, 908–911 (1992).
[Crossref]
R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]
T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[Crossref]
H. Nagata and A. Kawai, “Characteristics of Adhesion between Photoresist and Inorganic Substrate,” Jpn. J. Appl. Phys. 28, 2137 (1989).
[Crossref]
T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[Crossref]
H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79, 1411–1413 (2001).
[Crossref]
N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]
K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]
S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272, 85–87 (1996).
[Crossref]
J. Kremmel, T. Lamprecht, N. Crameri, and M. Michler, “Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides,” Opt. Eng. 56, 026115 (2017).
[Crossref]
R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]
R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]
J. Kremmel, T. Lamprecht, N. Crameri, and M. Michler, “Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides,” Opt. Eng. 56, 026115 (2017).
[Crossref]
L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]
[PubMed]
L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]
[PubMed]
J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]
L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]
[PubMed]
K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]
Z. Ling, C. Liu, and K. Lian, “Design and fabrication of SU-8 micro optic fiber holder with cantilever-type elastic microclips,” Microsyst. Technol. 15, 429–435 (2009).
[Crossref]
R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]
X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
[Crossref]
Z. Ling, C. Liu, and K. Lian, “Design and fabrication of SU-8 micro optic fiber holder with cantilever-type elastic microclips,” Microsyst. Technol. 15, 429–435 (2009).
[Crossref]
K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]
R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]
Z. Ling, C. Liu, and K. Lian, “Design and fabrication of SU-8 micro optic fiber holder with cantilever-type elastic microclips,” Microsyst. Technol. 15, 429–435 (2009).
[Crossref]
J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]
L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]
[PubMed]
M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref]
[PubMed]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]
S. Nemoto and T. Makimoto, “Analysis of Splice Loss in Single-Mode Fibers Using a Gaussian Field Approximation,” Opt. Quant. Electron. 11, 447–457 (1979).
[Crossref]
D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[Crossref]
I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref]
[PubMed]
I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref]
[PubMed]
J. Kremmel, T. Lamprecht, N. Crameri, and M. Michler, “Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides,” Opt. Eng. 56, 026115 (2017).
[Crossref]
K. L. Mittal, “Factors Affecting Adhesion of Lithographic Materials,” in “Durability of Macromolecular Materials,”, vol. 95 R. K. Eby, ed. (American Chemical Society, Washington, D.C., 1979), pp. 371–391.
R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]
H. Nagata and A. Kawai, “Characteristics of Adhesion between Photoresist and Inorganic Substrate,” Jpn. J. Appl. Phys. 28, 2137 (1989).
[Crossref]
M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref]
[PubMed]
S. Nemoto and T. Makimoto, “Analysis of Splice Loss in Single-Mode Fibers Using a Gaussian Field Approximation,” Opt. Quant. Electron. 11, 447–457 (1979).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]
I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]
R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]
M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref]
[PubMed]
M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref]
[PubMed]
H. M. Presby, S. Yang, A. E. Willner, and C. A. Edwards, “Connectorized integrated star couplers on silicon,” Opt. Eng. 31, 1323–1328 (1992).
[Crossref]
D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]
D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]
S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272, 85–87 (1996).
[Crossref]
I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]
A. Sasaki, T. Baba, and K. Iga, “Put-in microconnectors for alignment-free coupling of optical fiber arrays,” IEEE Photon. Technol. Lett. 4, 908–911 (1992).
[Crossref]
N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]
R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]
R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]
M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref]
[PubMed]
K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]
R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]
C.-N. Hu, H.-T. Hsieh, and G.-D. J. Su, “Fabrication of microlens arrays by a rolling process with soft polydimethyl-siloxane molds,” J. Micromechanics Microengineering 21, 065013 (2011).
[Crossref]
H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79, 1411–1413 (2001).
[Crossref]
M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref]
[PubMed]
H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79, 1411–1413 (2001).
[Crossref]
T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[Crossref]
H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79, 1411–1413 (2001).
[Crossref]
K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]
I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref]
[PubMed]
I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]
L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]
[PubMed]
H. M. Presby, S. Yang, A. E. Willner, and C. A. Edwards, “Connectorized integrated star couplers on silicon,” Opt. Eng. 31, 1323–1328 (1992).
[Crossref]
D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]
H. M. Presby, S. Yang, A. E. Willner, and C. A. Edwards, “Connectorized integrated star couplers on silicon,” Opt. Eng. 31, 1323–1328 (1992).
[Crossref]
N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]
J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]
M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref]
[PubMed]
L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]
[PubMed]
J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]
L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]
[PubMed]
X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
[Crossref]
J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]
I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref]
[PubMed]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]
N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]
X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
[Crossref]
H. Tsuchiya, H. Nakagome, N. Shimizu, and S. Ohara, “Double eccentric connectors for optical fibers,” Appl. Opt. 16, 1323–1331 (1977).
[Crossref]
[PubMed]
Y. Aoki, T. Kato, R. J. Mizuno, and K. Iga, “Micro-optical bench for alignment-free optical coupling,” Appl. Opt. 38, 963–965 (1999).
[Crossref]
I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]
H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79, 1411–1413 (2001).
[Crossref]
T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[Crossref]
R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]
D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[Crossref]
M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref]
[PubMed]
M.-j. Yin, B. Huang, S. Gao, A. P. Zhang, and X. Ye, “Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection,” Biomed. Opt. Express 7, 2067–2077 (2016).
[Crossref]
[PubMed]
M. B. M. Meddens, S. Liu, P. S. Finnegan, T. L. Edwards, C. D. James, and K. A. Lidke, “Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution,” Biomed. Opt. Express 7, 2219–2236 (2016).
[Crossref]
[PubMed]
Y. Ando, “Statistical Analysis of Insertion-Loss Improvement for Optical Connectors Using the Orientation Method for Fiber-Core Offset,” IEEE Photon. Technol. Lett. 3, 939–941 (1991).
[Crossref]
A. Sasaki, T. Baba, and K. Iga, “Put-in microconnectors for alignment-free coupling of optical fiber arrays,” IEEE Photon. Technol. Lett. 4, 908–911 (1992).
[Crossref]
R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]
B. Espinoza, T. Dallakyan, and P. Dinh, “Laser Microfabrication Techniques Move Rapid Prototyping to the Mainstream,” Industrial Photonics 4, 14–17 (2017).
K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]
C.-N. Hu, H.-T. Hsieh, and G.-D. J. Su, “Fabrication of microlens arrays by a rolling process with soft polydimethyl-siloxane molds,” J. Micromechanics Microengineering 21, 065013 (2011).
[Crossref]
H. Nagata and A. Kawai, “Characteristics of Adhesion between Photoresist and Inorganic Substrate,” Jpn. J. Appl. Phys. 28, 2137 (1989).
[Crossref]
J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]
Z. Ling, C. Liu, and K. Lian, “Design and fabrication of SU-8 micro optic fiber holder with cantilever-type elastic microclips,” Microsyst. Technol. 15, 429–435 (2009).
[Crossref]
D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nature Photon. 3, 450 (2009).
[Crossref]
J. Kremmel, T. Lamprecht, N. Crameri, and M. Michler, “Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides,” Opt. Eng. 56, 026115 (2017).
[Crossref]
H. M. Presby, S. Yang, A. E. Willner, and C. A. Edwards, “Connectorized integrated star couplers on silicon,” Opt. Eng. 31, 1323–1328 (1992).
[Crossref]
J. S. Oakdale, J. Ye, W. L. Smith, and J. Biener, “Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography,” Opt. Express 24, 27077–27086 (2016).
[Crossref]
[PubMed]
K. Kurselis, R. Kiyan, V. N. Bagratashvili, V. K. Popov, and B. N. Chichkov, “3D fabrication of all-polymer conductive microstructures by two photon polymerization,” Opt. Express 21, 31029–31035 (2013).
[Crossref]
S. C. Kuhn, A. Knorr, S. Reitzenstein, and M. Richter, “Cavity assisted emission of single, paired and heralded photons from a single quantum dot device,” Opt. Express 24, 25446–25461 (2016).
[Crossref]
[PubMed]
L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]
[PubMed]
S. Werzinger and C.-A. Bunge, “Statistical analysis of intrinsic and extrinsic coupling losses for step-index polymer optical fibers,” Opt. Express 23, 22318 (2015).
[Crossref]
[PubMed]
S. Nemoto and T. Makimoto, “Analysis of Splice Loss in Single-Mode Fibers Using a Gaussian Field Approximation,” Opt. Quant. Electron. 11, 447–457 (1979).
[Crossref]
S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272, 85–87 (1996).
[Crossref]
K. L. Mittal, “Factors Affecting Adhesion of Lithographic Materials,” in “Durability of Macromolecular Materials,”, vol. 95 R. K. Eby, ed. (American Chemical Society, Washington, D.C., 1979), pp. 371–391.
LightFab GmbH, “3D Printer - LightFab,” https://www.lightfab.de/index.php/id-3d_printer_standard.html (2017).
Nanoscribe GmbH, “3D Printing on the Micrometer Scale,” https://www.nanoscribe.de/en/media-press/press-releases/3d-printing-micrometer-scale/ (2013).
TETRA, “Nano 3D printer by TETRA Gesellschaft für Sensorik, Robotik und Automation mbH,” http://www.nano-3d-drucker.de/nano-3d-printer/ (2015).