Abstract

The first semi-quantum noise randomized cipher based on amplified spontaneous emission (ASE) light source employing Y-00 protocol is proposed and demonstrated by a proof-of-principle experiment. As the signal carrier, ASE light can provide another fundamental uncertainty, namely, self-beating noise of ASE signal, which is much bigger than quantum shot noise of mesoscopic coherent state and also inevitable. By incorporating both the shot noise and beat noise of ASE signals, the security will be improved with a larger number of masked signals (NMS) under intrinsic noise. After formulating NMS and Q-factor in theory, we investigate the impacts of key system parameters on the security and transmission performances, respectively, in order to optimize the system design. To evidence the theoretical results, an experimental setup with balanced photodetector (BPD) as decoder is constructed. The local light modulated by M/2-ary running key is applied as optical threshold signal, which is fed into BPD together with the M-ary ASE signal, outputting the binary signal. Eventually, a 128-level Y-00 realization based on ASE source is realized at 2.5Gb/s over 100-km fiber. The experimental results agree with the theory in the trend, which indicate the validity and feasibility of the proposed scheme.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Physical-layer security analysis of a quantum-noise randomized cipher based on the wire-tap channel model

Haisong Jiao, Tao Pu, Jilin Zheng, Peng Xiang, and Tao Fang
Opt. Express 25(10) 10947-10960 (2017)

Single-channel 48-Gbit/s DP PSK Y-00 quantum stream cipher transmission over 400- and 800-km SSMF

Ken Tanizawa and Fumio Futami
Opt. Express 27(18) 25357-25363 (2019)

Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km

Masato Yoshida, Toshihiko Hirooka, Keisuke Kasai, and Masataka Nakazawa
Opt. Express 24(1) 652-661 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
    [Crossref]
  2. K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. L. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
    [Crossref]
  3. G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: The marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
    [Crossref]
  4. K. Ohhata, O. Hirota, M. Honda, S. Akutsu, Y. Doi, K. Harasawa, and K. Yamashita, “10-Gb/s Optical Transceiver Using the Yuen 2000 Encryption Protocol,” J. Lightwave Technol. 28(18), 2714–2723 (2010).
    [Crossref]
  5. R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
    [Crossref]
  6. G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
    [Crossref] [PubMed]
  7. O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by the Yuen 2000 protocol: Design and experiment by an intensity-modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
    [Crossref]
  8. M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, “Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km,” Opt. Express 24(1), 652–661 (2016).
    [Crossref] [PubMed]
  9. M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM quantum noise stream cipher transmission over 100km with continuous variable quantum key distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).
  10. H. Jiao, T. Pu, P. Xiang, J. Zheng, T. Fang, and H. Zhu, “Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links,” Quantum Inform. Process. 16(8), 189 (2017).
    [Crossref]
  11. O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
    [Crossref]
  12. M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, “QAM quantum stream cipher using digital coherent optical transmission,” Opt. Express 22(4), 4098–4107 (2014).
    [Crossref] [PubMed]
  13. B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion Deployment and Compensation for Optical Steganography Based on Noise,” IEEE Photonics Technol. Lett. 28(4), 421–424 (2016).
    [Crossref]
  14. E. Desurvire, Erbium-Doped Fiber Amplifiers, Principles and Applications (John Wiley & Sons, 2002).
  15. C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991).
    [Crossref]

2017 (2)

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM quantum noise stream cipher transmission over 100km with continuous variable quantum key distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).

H. Jiao, T. Pu, P. Xiang, J. Zheng, T. Fang, and H. Zhu, “Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links,” Quantum Inform. Process. 16(8), 189 (2017).
[Crossref]

2016 (2)

M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, “Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km,” Opt. Express 24(1), 652–661 (2016).
[Crossref] [PubMed]

B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion Deployment and Compensation for Optical Steganography Based on Noise,” IEEE Photonics Technol. Lett. 28(4), 421–424 (2016).
[Crossref]

2014 (2)

M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, “QAM quantum stream cipher using digital coherent optical transmission,” Opt. Express 22(4), 4098–4107 (2014).
[Crossref] [PubMed]

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. L. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

2010 (1)

2009 (2)

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: The marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

2007 (1)

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

2006 (1)

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

2005 (1)

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by the Yuen 2000 protocol: Design and experiment by an intensity-modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

2003 (1)

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

1991 (1)

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991).
[Crossref]

Akutsu, S.

Barbosa, G. A.

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Chang, M. P.

B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion Deployment and Compensation for Optical Steganography Based on Noise,” IEEE Photonics Technol. Lett. 28(4), 421–424 (2016).
[Crossref]

Choi, I.

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. L. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

Corndorf, E.

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Desurvire, E.

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991).
[Crossref]

Doi, Y.

Dušek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Dynes, J.

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. L. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

Eguchi, T.

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

Fang, T.

H. Jiao, T. Pu, P. Xiang, J. Zheng, T. Fang, and H. Zhu, “Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links,” Quantum Inform. Process. 16(8), 189 (2017).
[Crossref]

Fuse, M.

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by the Yuen 2000 protocol: Design and experiment by an intensity-modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

Giles, C. R.

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991).
[Crossref]

Harasawa, K.

Hirano, T.

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM quantum noise stream cipher transmission over 100km with continuous variable quantum key distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).

Hirooka, T.

Hirota, O.

K. Ohhata, O. Hirota, M. Honda, S. Akutsu, Y. Doi, K. Harasawa, and K. Yamashita, “10-Gb/s Optical Transceiver Using the Yuen 2000 Encryption Protocol,” J. Lightwave Technol. 28(18), 2714–2723 (2010).
[Crossref]

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by the Yuen 2000 protocol: Design and experiment by an intensity-modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

Honda, M.

Ichikawa, T.

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM quantum noise stream cipher transmission over 100km with continuous variable quantum key distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).

Jiao, H.

H. Jiao, T. Pu, P. Xiang, J. Zheng, T. Fang, and H. Zhu, “Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links,” Quantum Inform. Process. 16(8), 189 (2017).
[Crossref]

Kanter, G. S.

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: The marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

Kasai, K.

Kato, K.

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by the Yuen 2000 protocol: Design and experiment by an intensity-modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

Kumar, P.

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Lucamarini, M.

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. L. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

Lütkenhaus, N.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Ma, P. Y.

B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion Deployment and Compensation for Optical Steganography Based on Noise,” IEEE Photonics Technol. Lett. 28(4), 421–424 (2016).
[Crossref]

Nair, R.

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

Nakazawa, M.

Namiki, R.

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM quantum noise stream cipher transmission over 100km with continuous variable quantum key distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).

Ohhata, K.

Patel, K.

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. L. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Penty, R.

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. L. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

Prucnal, P. R.

B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion Deployment and Compensation for Optical Steganography Based on Noise,” IEEE Photonics Technol. Lett. 28(4), 421–424 (2016).
[Crossref]

Pu, T.

H. Jiao, T. Pu, P. Xiang, J. Zheng, T. Fang, and H. Zhu, “Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links,” Quantum Inform. Process. 16(8), 189 (2017).
[Crossref]

Reilly, D.

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: The marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

Scarani, V.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Sharpe, A.

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. L. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

Shastri, B. J.

B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion Deployment and Compensation for Optical Steganography Based on Noise,” IEEE Photonics Technol. Lett. 28(4), 421–424 (2016).
[Crossref]

Shields, A.

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. L. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

Smith, N.

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: The marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

Sohma, M.

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by the Yuen 2000 protocol: Design and experiment by an intensity-modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

Wu, B.

B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion Deployment and Compensation for Optical Steganography Based on Noise,” IEEE Photonics Technol. Lett. 28(4), 421–424 (2016).
[Crossref]

Xiang, P.

H. Jiao, T. Pu, P. Xiang, J. Zheng, T. Fang, and H. Zhu, “Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links,” Quantum Inform. Process. 16(8), 189 (2017).
[Crossref]

Yamashita, K.

Yoshida, M.

Yuan, Z. L.

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. L. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

Yuen, H. P.

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Zheng, J.

H. Jiao, T. Pu, P. Xiang, J. Zheng, T. Fang, and H. Zhu, “Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links,” Quantum Inform. Process. 16(8), 189 (2017).
[Crossref]

Zhu, H.

H. Jiao, T. Pu, P. Xiang, J. Zheng, T. Fang, and H. Zhu, “Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links,” Quantum Inform. Process. 16(8), 189 (2017).
[Crossref]

Appl. Phys. Lett. (1)

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. L. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

IEEE Commun. Mag. (1)

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: The marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM quantum noise stream cipher transmission over 100km with continuous variable quantum key distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).

IEEE Photonics Technol. Lett. (1)

B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion Deployment and Compensation for Optical Steganography Based on Noise,” IEEE Photonics Technol. Lett. 28(4), 421–424 (2016).
[Crossref]

J. Lightwave Technol. (2)

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991).
[Crossref]

K. Ohhata, O. Hirota, M. Honda, S. Akutsu, Y. Doi, K. Harasawa, and K. Yamashita, “10-Gb/s Optical Transceiver Using the Yuen 2000 Encryption Protocol,” J. Lightwave Technol. 28(18), 2714–2723 (2010).
[Crossref]

Opt. Express (2)

Phys. Rev. A (3)

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by the Yuen 2000 protocol: Design and experiment by an intensity-modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

Phys. Rev. Lett. (1)

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Quantum Inform. Process. (1)

H. Jiao, T. Pu, P. Xiang, J. Zheng, T. Fang, and H. Zhu, “Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links,” Quantum Inform. Process. 16(8), 189 (2017).
[Crossref]

Rev. Mod. Phys. (1)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Other (1)

E. Desurvire, Erbium-Doped Fiber Amplifiers, Principles and Applications (John Wiley & Sons, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of ISK semi-QNRC based on ASE source. PRNG: pseudo-random number generator.
Fig. 2
Fig. 2 NMS and symbol error rate versus the number of signal levels M = 2l, with η = 1 for Eve.
Fig. 3
Fig. 3 (a) NMS versus output power, with Be = R/2; (b) NMS versus Be of eavesdropper receiver/bit rate, with average output PSD S ¯ ASE = −107dBm/Hz. M = 128 and η = 1 for both (a)(b).
Fig. 4
Fig. 4 (a) Q-factor versus optical bandwidth; (b) Q-factor versus average output PSD, S ¯ ASE , with 20 relay EDFAs. For both, M = 128, Be = 2.7GHz, G0 = 30dB and =0.9.
Fig. 5
Fig. 5 Q-factor versus optical amplifier stages corresponding to transmission distance, with M = 128, Bo = 500GHz, G0 = 30dB and =0.9.
Fig. 6
Fig. 6 Experimental setup of ISK-QNRC based on ASE source. PC, polarization controller.
Fig. 7
Fig. 7 (a) Full spectrum of ASE source; (b) different spectra of WSS filtering.
Fig. 8
Fig. 8 Measured eye diagrams and waveforms. (a)-(d) measured directly by optical port of OSCP. (e)-(t) results of BPD: (e)(g)(q)(s) Y-00 encrypted signals and (f) (h)-(p) (r)(t) corresponding decrypted signals. (e)-(h) Bo = 2.5T, B2B, Be = 2.7G; (i)-(n) Bo = 5T, B2B, Be = 2.7G; (o)(p) Bo = 5T, B2B, Be = 27G; (q)(r) Bo = 5T, 100km, Be = 2.7G; (s)(t) Bo = 5T, 100km, Be = 27G. 132ps/div for all eye diagrams.
Fig. 9
Fig. 9 Measured BER curves. (a) BER versus the number of signal levels M = 2l, with Bo = 2.5THz; (b) BER versus Bo, with Be = 2.7G. For both, P ¯ ASE,0 =-2.67dBm and =0.75 of BPD .
Fig. 10
Fig. 10 Measured BER versus the average received power. M = 128, Bo = 5THz and Be = 2.7GHz.

Tables (1)

Tables Icon

Table 1 Simulation parameters.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P ¯ ASE,0 = 1 M m=1 M P 0m = 1 2 ( P 01 + P 0M )= 1 2 ( P 01 +ext P 01 ) ,
I m = P m0 = 2 S ¯ ASE B o 1+ext [ 1+( m1 ) ext1 M ],m=1~M .
δI= ext1 M 2 P ¯ ASE,0 1+ext .
σ shot,m 2 =2q I m B e = 4q S ¯ ASE B o 1+ext [ 1+( m1 ) ext1 M ] B e σ ASEASE,m 2 = I m 2 B e 2 B o 2 ( 2 B o B e )=2 ( S ¯ ASE 1+ext ) 2 ( 1+( m1 ) ext1 M ) 2 B e ( 2 B o B e ),
Δ I avg = 1 M m=1 M σ shot,m 2 + σ ASEASE,m 2 .
Γ ASE E = Δ I avg δI = m=1 M ( 1+( m1 ) ext1 M ) B e [ 2q B o +( S ¯ ASE 1+ext )( 1+( m1 ) ext1 M )( 2 B o B e ) ] ( ext1 ) B o 2 S ¯ ASE 1+ext .
P ¯ ASE,i = G i L i P ¯ ASE,i1 + N i ,1iz N i =2hν n sp ( G i 1 ) B o .
P ¯ ASE,s =( i=1 z G i L i ) S ¯ ASE B o P ASE,N =( i=2 z G i L i ) N 1 +( i=3 z G i L i ) N 2 ++ N Z = j=1 Z ( N j i=j+1 z G i L i ) .
S ASE,m =( 1+( m1 ) ext1 M ) 2 S ¯ ASE 1+ext +2hν n sp i=1 Z ( G i 1 ) ,
σ T 2 = 4 k B T R L B e σ shot,m 2 =2q[ ( 1+( m1 ) ext1 M ) 2 S ¯ ASE 1+ext +2hν n sp i=1 Z ( G i 1 ) ] B o B e σ ASEASE,m 2 = 2 [ ( ( 1+( m1 ) ext1 M ) 2 S ¯ ASE 1+ext +hν n sp i=1 Z ( G i 1 ) ) 2 + ( hν n sp i=1 Z ( G i 1 ) ) 2 ] B e ( 2 B o B e ) 2 .
Q= 2 M m=1 M/2 I m+M/2 I m σ m+M/2 + σ m = m=1 M/2 2 M ( ext1 ext+1 ) S ¯ ASE B o σ T 2 + σ shot,M/2 +m 2 + σ ASEASE,M/2 +m 2 + σ T 2 + σ shot,m 2 + σ ASEASE,m 2 .

Metrics