Abstract

A cost-efficient dual-band transmission scheme based on return-to-zero (RTZ)-mode digital-to-analog converter (DAC) and sub-Nyquist sampling analog-to-digital converter (ADC) is proposed in this paper. The scheme can increase the data rate and meanwhile halve the required sampling rate of the DAC/ADC in optical intensity modulation direct detection (IMDD) transmission system. Based on this scheme, we experimentally demonstrate a dual-band discrete Fourier transformation spread (DFT-S) OFDM intensity modulation direct detection (IMDD) system. Although the sampling rate of the DAC and ADC used in the receiver is only 5-GSa/s and there is no mixer and oscillator at the transmitter and receiver side, 22-km standard single-mode fiber (SSMF) transmission with up to 26.33-Gb/s data rate is successfully realized. The experimental results show that in the system, the first sub-band transmission based on 128-QAM mapping can achieve a bit error rate (BER) below 3.8 × 10−3. The second sub-band transmission based on 32-QAM mapping can achieve a BER below 2.4 × 10−2. The spectral efficiency (SE) of the first sub-band signal is up to 6.14 bit/s/Hz and the SE of the second sub-band signal is up to 4.39 bit/s/Hz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of 20-Gb/s dual-band Nyquist PAM-4 transmission over a short-reach IMDD system using super-Nyquist sampling technique

Rui Deng, Jing He, Jianjun Yu, Xin Xiao, Kai Lyu, and Xiangjun Xin
Opt. Lett. 43(11) 2640-2643 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Mei, K. Li, A. Ouyang, and K. Li, “A Profit Maximization Scheme with Guaranteed Quality of Service in Cloud Computing,” IEEE Trans. Comput. 64(11), 3064–3078 (2015).
    [Crossref]
  2. Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal Stopping Model-Based Early SKIP Mode Decision for High-Efficiency Video Coding,” IEEE Trans. Multimed. 19(7), 1431–1441 (2017).
    [Crossref]
  3. Y. Chen, R. Hu, Q. Yang, M. Luo, S. Yu, and W. Li, “Two orthogonal carriers assisted 101-Gb/s dual-band DDO-OFDM transmission over 320-km SSMF,” Opt. Express 23(9), 12065–12071 (2015).
    [Crossref] [PubMed]
  4. J. L. Wei, K. Grobe, C. Wagner, E. Giacoumidis and H. Griesser, “40 Gb/s lane rate NG-PON using electrical/optical duobinary, PAM-4 and low complex equalizations,” in proceeding of OFC 2016.
  5. X. Li, S. Zhou, F. Gao, M. Luo, Q. Yang, Q. Mo, Y. Yu and S. Fu, “4×28 Gb/s PAM4 long-reach PON using low complexity nonlinear compensation,” in proceeding of OFC 2017.
  6. J. Yu, M. F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photonics Technol. Lett. 20(18), 1545–1547 (2008).
    [Crossref]
  7. M. Chen, J. He, Q. Fan, Z. Dong, and L. Chen, “Experimental Demonstration of Real-Time High-Level QAM-Encoded Direct-Detection Optical OFDM Systems,” J. Lightwave Technol. 33(22), 4632–4639 (2015).
    [Crossref]
  8. M. Chen, J. He, and L. Chen, “Real-time optical OFDM long-reach PON system over 100 km SSMF using a directly modulated DFB laser,” J. Opt. Commun. Netw. 6(1), 18–25 (2014).
    [Crossref]
  9. J. Shi, J. Zhang, N. Chi, and J. Yu, “Comparison of 100G PAM-8, CAP-64 and DFT-S OFDM with a bandwidth-limited direct-detection receiver,” Opt. Express 25(26), 32254–32262 (2017).
    [Crossref]
  10. J. He, L. Shi, L. Deng, M. Cheng, M. Tang, S. Fu, M. Zhang, P. P. Shum, and D. Liu, “Novel design of N-dimensional CAP filters for 10 Gb/s CAP-PON system,” Opt. Lett. 40(10), 2409–2412 (2015).
    [Crossref] [PubMed]
  11. L. Shi, D. Li, J. He, L. Deng, M. Cheng, M. Tang, S. Fu, M. Zhang, P. P. Shum, and D. Liu, “Experimental demonstration of a 10 Gb/s non-orthogonal multi-dimensional CAP-PON system based on the ISI and CCI cancellation algorithm,” Opt. Lett. 41(17), 3988–3991 (2016).
    [Crossref] [PubMed]
  12. J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, and X. Li, “11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express 21(16), 18842–18848 (2013).
    [Crossref] [PubMed]
  13. J. Zhou and Y. Qiao, “Low-peak-to-average power ratio and low-complexity asymmetrically clipped optical orthogonal frequency-division multiplexing uplink transmission scheme for long-reach passive optical network,” Opt. Lett. 40(17), 4034–4037 (2015).
    [Crossref] [PubMed]
  14. Y. Xiao, Z. Wang, J. Cao, R. Deng, Y. Liu, J. He, and L. Chen, “Time–Frequency Domain Encryption With SLM Scheme for Physical-Layer Security in an OFDM-PON System,” J. Opt. Commun. Netw. 10(1), 46–51 (2018).
    [Crossref]
  15. Y. Qin and J. Zhang, “Novel toggle-rate based energy-efficient scheme for heavy load real-time IM-DD OFDM-PON with ONU LLID identification in time-domain using amplitude decision,” Opt. Express 25(14), 16771–16782 (2017).
    [Crossref] [PubMed]
  16. Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
    [Crossref] [PubMed]
  17. C. C. Wei, H. C. Liu, C. T. Lin, and S. Chi, “Analog-to-Digital Conversion Using Sub-Nyquist Sampling Rate in Flexible Delay-Division Multiplexing OFDMA PONs,” J. Lightwave Technol. 34(10), 2381–2390 (2016).
    [Crossref]
  18. R. P. Giddings, E. Hugues-Salas, S. Ben-Ezra and J. M. Tang, “First experimental demonstration of real-time dual-band optical OFDM transmission at 17.5Gb/s over an EML-based 25km SSMF IMDD system using 4GS/s DAC/ADCs,” in proceeding of ECOC 2012.
  19. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
    [Crossref] [PubMed]
  20. Q. W. Zhang, E. Hugues-Salas, R. P. Giddings, M. Wang, and J. M. Tang, “Experimental demonstrations of record high REAM intensity modulator-enabled 19.25Gb/s real-time end-to-end dual-band optical OFDM colorless transmissions over 25km SSMF IMDD systems,” Opt. Express 21(7), 9167–9179 (2013).
    [Crossref] [PubMed]
  21. Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
    [Crossref] [PubMed]
  22. C. H. Lin, C. T. Lin, C. C. Wei, and S. Chi, “DFT/IDFT-free receiving scheme for spread-OFDM signals employing low-sampling-rate ADCs,” Opt. Express 25(22), 27750–27757 (2017).
    [Crossref] [PubMed]
  23. K. Ajay and O. Geir, “High-Speed DACs ease transmitter designs,” Microw. RF 49(8), 66–71 (2010).
  24. R. E. Crochiere and L. R. Rabiner, “Interpolation and decimation of digital signals—A tutorial review,” Proc. IEEE 69(3), 300–331 (1981).
    [Crossref]
  25. Q. Yang, N. Kaneda, X. Liu, and W. Shieh, “Demonstration of Frequency-Domain Averaging Based Channel Estimation for 40-Gb/s CO-OFDM With High PMD,” IEEE Photonics Technol. Lett. 21(20), 1544–1546 (2009).
    [Crossref]
  26. X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
    [Crossref] [PubMed]

2018 (1)

2017 (4)

2016 (2)

2015 (5)

2014 (3)

2013 (2)

2012 (1)

2010 (1)

K. Ajay and O. Geir, “High-Speed DACs ease transmitter designs,” Microw. RF 49(8), 66–71 (2010).

2009 (1)

Q. Yang, N. Kaneda, X. Liu, and W. Shieh, “Demonstration of Frequency-Domain Averaging Based Channel Estimation for 40-Gb/s CO-OFDM With High PMD,” IEEE Photonics Technol. Lett. 21(20), 1544–1546 (2009).
[Crossref]

2008 (2)

X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
[Crossref] [PubMed]

J. Yu, M. F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photonics Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

1981 (1)

R. E. Crochiere and L. R. Rabiner, “Interpolation and decimation of digital signals—A tutorial review,” Proc. IEEE 69(3), 300–331 (1981).
[Crossref]

Ajay, K.

K. Ajay and O. Geir, “High-Speed DACs ease transmitter designs,” Microw. RF 49(8), 66–71 (2010).

Buchali, F.

Cao, J.

Chang, G.-K.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photonics Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

Chen, L.

Chen, M.

Chen, Y.

Cheng, M.

Chi, N.

Chi, S.

Crochiere, R. E.

R. E. Crochiere and L. R. Rabiner, “Interpolation and decimation of digital signals—A tutorial review,” Proc. IEEE 69(3), 300–331 (1981).
[Crossref]

Deng, L.

Deng, R.

Ding, X.

Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal Stopping Model-Based Early SKIP Mode Decision for High-Efficiency Video Coding,” IEEE Trans. Multimed. 19(7), 1431–1441 (2017).
[Crossref]

Dong, Z.

Fan, Q.

Fu, S.

Geir, O.

K. Ajay and O. Geir, “High-Speed DACs ease transmitter designs,” Microw. RF 49(8), 66–71 (2010).

Giddings, R. P.

He, J.

Hu, R.

Huang, M. F.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photonics Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

Hugues-Salas, E.

Kaneda, N.

Q. Yang, N. Kaneda, X. Liu, and W. Shieh, “Demonstration of Frequency-Domain Averaging Based Channel Estimation for 40-Gb/s CO-OFDM With High PMD,” IEEE Photonics Technol. Lett. 21(20), 1544–1546 (2009).
[Crossref]

Li, D.

Li, F.

Li, K.

J. Mei, K. Li, A. Ouyang, and K. Li, “A Profit Maximization Scheme with Guaranteed Quality of Service in Cloud Computing,” IEEE Trans. Comput. 64(11), 3064–3078 (2015).
[Crossref]

J. Mei, K. Li, A. Ouyang, and K. Li, “A Profit Maximization Scheme with Guaranteed Quality of Service in Cloud Computing,” IEEE Trans. Comput. 64(11), 3064–3078 (2015).
[Crossref]

Li, W.

Li, X.

Li, Y.

Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal Stopping Model-Based Early SKIP Mode Decision for High-Efficiency Video Coding,” IEEE Trans. Multimed. 19(7), 1431–1441 (2017).
[Crossref]

Lin, C. H.

Lin, C. T.

Ling, Y.

Liu, D.

Liu, H. C.

Liu, X.

Q. Yang, N. Kaneda, X. Liu, and W. Shieh, “Demonstration of Frequency-Domain Averaging Based Channel Estimation for 40-Gb/s CO-OFDM With High PMD,” IEEE Photonics Technol. Lett. 21(20), 1544–1546 (2009).
[Crossref]

X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
[Crossref] [PubMed]

Liu, Y.

Luo, M.

Mei, J.

J. Mei, K. Li, A. Ouyang, and K. Li, “A Profit Maximization Scheme with Guaranteed Quality of Service in Cloud Computing,” IEEE Trans. Comput. 64(11), 3064–3078 (2015).
[Crossref]

Ouyang, A.

J. Mei, K. Li, A. Ouyang, and K. Li, “A Profit Maximization Scheme with Guaranteed Quality of Service in Cloud Computing,” IEEE Trans. Comput. 64(11), 3064–3078 (2015).
[Crossref]

Qian, D.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photonics Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

Qiao, Y.

Qin, Y.

Rabiner, L. R.

R. E. Crochiere and L. R. Rabiner, “Interpolation and decimation of digital signals—A tutorial review,” Proc. IEEE 69(3), 300–331 (1981).
[Crossref]

Shi, J.

Shi, L.

Shieh, W.

Q. Yang, N. Kaneda, X. Liu, and W. Shieh, “Demonstration of Frequency-Domain Averaging Based Channel Estimation for 40-Gb/s CO-OFDM With High PMD,” IEEE Photonics Technol. Lett. 21(20), 1544–1546 (2009).
[Crossref]

Shum, P. P.

Sun, X.

Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal Stopping Model-Based Early SKIP Mode Decision for High-Efficiency Video Coding,” IEEE Trans. Multimed. 19(7), 1431–1441 (2017).
[Crossref]

Tang, J. M.

Tang, M.

Wang, M.

Wang, Z.

Wei, C. C.

Xiao, Y.

Yang, G.

Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal Stopping Model-Based Early SKIP Mode Decision for High-Efficiency Video Coding,” IEEE Trans. Multimed. 19(7), 1431–1441 (2017).
[Crossref]

Yang, Q.

Y. Chen, R. Hu, Q. Yang, M. Luo, S. Yu, and W. Li, “Two orthogonal carriers assisted 101-Gb/s dual-band DDO-OFDM transmission over 320-km SSMF,” Opt. Express 23(9), 12065–12071 (2015).
[Crossref] [PubMed]

Q. Yang, N. Kaneda, X. Liu, and W. Shieh, “Demonstration of Frequency-Domain Averaging Based Channel Estimation for 40-Gb/s CO-OFDM With High PMD,” IEEE Photonics Technol. Lett. 21(20), 1544–1546 (2009).
[Crossref]

Yu, J.

Yu, S.

Zhang, H. B.

Zhang, J.

Zhang, J. J.

Zhang, M.

Zhang, Q. W.

Zhou, J.

Zhu, Y.

Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal Stopping Model-Based Early SKIP Mode Decision for High-Efficiency Video Coding,” IEEE Trans. Multimed. 19(7), 1431–1441 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Yu, M. F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photonics Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

Q. Yang, N. Kaneda, X. Liu, and W. Shieh, “Demonstration of Frequency-Domain Averaging Based Channel Estimation for 40-Gb/s CO-OFDM With High PMD,” IEEE Photonics Technol. Lett. 21(20), 1544–1546 (2009).
[Crossref]

IEEE Trans. Comput. (1)

J. Mei, K. Li, A. Ouyang, and K. Li, “A Profit Maximization Scheme with Guaranteed Quality of Service in Cloud Computing,” IEEE Trans. Comput. 64(11), 3064–3078 (2015).
[Crossref]

IEEE Trans. Multimed. (1)

Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal Stopping Model-Based Early SKIP Mode Decision for High-Efficiency Video Coding,” IEEE Trans. Multimed. 19(7), 1431–1441 (2017).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (2)

Microw. RF (1)

K. Ajay and O. Geir, “High-Speed DACs ease transmitter designs,” Microw. RF 49(8), 66–71 (2010).

Opt. Express (10)

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

Y. Chen, R. Hu, Q. Yang, M. Luo, S. Yu, and W. Li, “Two orthogonal carriers assisted 101-Gb/s dual-band DDO-OFDM transmission over 320-km SSMF,” Opt. Express 23(9), 12065–12071 (2015).
[Crossref] [PubMed]

X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
[Crossref] [PubMed]

Q. W. Zhang, E. Hugues-Salas, R. P. Giddings, M. Wang, and J. M. Tang, “Experimental demonstrations of record high REAM intensity modulator-enabled 19.25Gb/s real-time end-to-end dual-band optical OFDM colorless transmissions over 25km SSMF IMDD systems,” Opt. Express 21(7), 9167–9179 (2013).
[Crossref] [PubMed]

J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, and X. Li, “11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express 21(16), 18842–18848 (2013).
[Crossref] [PubMed]

Y. Qin and J. Zhang, “Novel toggle-rate based energy-efficient scheme for heavy load real-time IM-DD OFDM-PON with ONU LLID identification in time-domain using amplitude decision,” Opt. Express 25(14), 16771–16782 (2017).
[Crossref] [PubMed]

C. H. Lin, C. T. Lin, C. C. Wei, and S. Chi, “DFT/IDFT-free receiving scheme for spread-OFDM signals employing low-sampling-rate ADCs,” Opt. Express 25(22), 27750–27757 (2017).
[Crossref] [PubMed]

J. Shi, J. Zhang, N. Chi, and J. Yu, “Comparison of 100G PAM-8, CAP-64 and DFT-S OFDM with a bandwidth-limited direct-detection receiver,” Opt. Express 25(26), 32254–32262 (2017).
[Crossref]

Opt. Lett. (3)

Proc. IEEE (1)

R. E. Crochiere and L. R. Rabiner, “Interpolation and decimation of digital signals—A tutorial review,” Proc. IEEE 69(3), 300–331 (1981).
[Crossref]

Other (3)

J. L. Wei, K. Grobe, C. Wagner, E. Giacoumidis and H. Griesser, “40 Gb/s lane rate NG-PON using electrical/optical duobinary, PAM-4 and low complex equalizations,” in proceeding of OFC 2016.

X. Li, S. Zhou, F. Gao, M. Luo, Q. Yang, Q. Mo, Y. Yu and S. Fu, “4×28 Gb/s PAM4 long-reach PON using low complexity nonlinear compensation,” in proceeding of OFC 2017.

R. P. Giddings, E. Hugues-Salas, S. Ben-Ezra and J. M. Tang, “First experimental demonstration of real-time dual-band optical OFDM transmission at 17.5Gb/s over an EML-based 25km SSMF IMDD system using 4GS/s DAC/ADCs,” in proceeding of ECOC 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The diagram of the proposed dual-band transmission scheme for optical IMDD system with advanced modulation format.
Fig. 2
Fig. 2 (a) The impulse response of the NRZ-mode DAC; (b) the impulse response of the RTZ-mode DAC; (c) the frequency response of the RTZ-mode DAC and NRZ-mode DAC.
Fig. 3
Fig. 3 (a) The equivalent model of the signal shaping process of the RTZ-mode DAC; (2) the spectrum evolution of the proposed dual-band transmission scheme.
Fig. 4
Fig. 4 The experimental setup of the dual-band DFT-S OFDM transmission system with the proposed scheme. (a) The DSP flowchart of the DFT-S OFDM transmitter; (b) The DSP flowchart of the DFT-S OFDM receiver. Synchro.: Synchronization. CP remov.: CP removal; Channel Est.: Channel Estimation; Channel Eq.: Channel Equalization; BER ana.: BER analyzer.
Fig. 5
Fig. 5 The power spectral density (PSD) evolution of the signal in the experiment.
Fig. 6
Fig. 6 (a) The BER performance of the system versus ROP; (b) the recorded constellation sample of the first sub-band DFT-S OFDM signal when the ROP is 2 dBm; (c) the recorded constellation sample of the second sub-band DFT-S OFDM signal when the ROP is 2 dBm.

Tables (1)

Tables Icon

Table 1 The parameters for the DFT-S OFDM generation

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F NRZ ( f OUT )= A 0 [sin(π f OUT T s )/(π f OUT T s )]
F RTZ ( f OUT )= A 0 /2[sin(π f OUT T s /2)/(π f OUT T s /2)]
x z ( n )=x( n/2 ), n=0,2,4,
X z (f)= n= x z (n) e j2πfn = n= x(n) e j2πfn2 =X(2f)
Y u (f)= m= y(2m) e j2πfm = m= y(m) e j2πfm/2 =Y(f/2)

Metrics