Abstract

We designed and fabricated a graded-index (GI) multicore fiber (MCF) compatible with both standard multimode and single-mode fiber for high density optical interconnect application in large-scale data centers. The proposed fiber supports long-distance multimode transmission at 850 nm as well as quasi-single mode transmission at 1310 nm and 1550 nm. The parameters of the GI-MCF have been optimized to obtain both a small differential mode delay at 850 nm and a small mode field diameter mismatch of less than 0.5 μm with single-mode fiber at 1310 nm and 1550 nm with a negligible inter-core crosstalk. In experiment, we successfully realized the multimode operation over 1 km-long GI-MCF at 850 nm and the quasi-single mode operation over 12.4 km-long GI-MCF at 1310 nm and 1550 nm at a data rate of 7×10-Gb/s. The multi-wavelengths multicore transmission was demonstrated for the first time. The experiment results imply that the proposed GI-MCF satisfies various requirements in such as operating wavelength, accessible distance and interconnect density of large-scale data center, and can effectively reduce the fiber numbers and system complexity.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wideband multimode fiber with an optimized core size and fluorine-doped cladding for high-speed SWDM and CWDM transmission

Yinping Liu, Lin Ma, Wufeng Xiao, Runhan Wang, Junjie Xiong, Jie Luo, and Zuyuan He
Opt. Express 27(11) 15433-15443 (2019)

High data rate few-mode transmission over graded-index single-mode fiber using 850 nm single-mode VCSEL

Kangmei Li, Xin Chen, Jason E. Hurley, Jeffery S. Stone, and Ming-Jun Li
Opt. Express 27(15) 21395-21404 (2019)

Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm

Xiao Xu, Lin Ma, Shoulin Jiang, and Zuyuan He
Opt. Express 25(21) 25689-25696 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE. 100(5), 1035–1055 (2012).
    [Crossref]
  2. C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
    [Crossref]
  3. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photon. 6(4), 413–487 (2014).
    [Crossref]
  4. B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).
  5. B. G. Lee, D. M. Kuchta, F. E. Doany, C. L. Schow, P. Pepeljugoski, C. Baks, T. F. Taunay, B. Zhu, M. F. Yan, G. E. Oulundsen, D. S. Vaidya, W. Luo, and N. Li, “End-to-end multicore multimode fiber optic link operating up to 120 Gb/s,” J. Lightwave Technol. 30(6), 886–892 (2012).
    [Crossref]
  6. T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, and T. Sasaki, “125-μ m-cladding eight-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects,” J. Lightwave Technol.  34(1), 85–92 (2016).
    [Crossref]
  7. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  8. G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in European Conference on Optical Communication (2014), paper PD.2.4.
  9. X. Chen, J. Hurley, J. Stone, A. R. Zakharian, B. Chow, D. Coleman, and M.-J. Li, “Universal fibers for both single-mode and multimode transmissions in data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.2.
    [Crossref]
  10. Y. Liu, L. Ma, C. Yang, W. Tong, and Z. He, “Graded-index seven-core fiber optimized for high density and ultra-wideband parallel transmission application,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.5.
    [Crossref]
  11. D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Labs Tech. J. 52(9), 1563–1578 (1973).
    [Crossref]
  12. M. Koshiba, K. Saitoh, K. Takenaga, and T. Morioka, “Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
    [Crossref]
  13. M. Li, B. Hoover, Vladimir N. Nazarov, and Douglas L. Butler, “Multicore fiber for optical interconnect applications,” in Opto-Electronics and Communications Conference(2012), paper 5E4-2.
  14. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μ m,” Opt. Lett. 36(23), 4626–4628 (2011).
    [Crossref] [PubMed]
  15. A. Bourdine, D. Praporshchikov, and K. Yablochkin, “Investigation of defects of refractive index profile of silica graded-index multimode fibers,” in Proc. SPIE7992, 799206 (2011).
    [Crossref]
  16. R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, and C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol. 28(4), 569–586 (2010).
    [Crossref]
  17. B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
    [Crossref] [PubMed]

2016 (1)

T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, and T. Sasaki, “125-μ m-cladding eight-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects,” J. Lightwave Technol.  34(1), 85–92 (2016).
[Crossref]

2015 (1)

2014 (1)

2012 (4)

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE. 100(5), 1035–1055 (2012).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

M. Koshiba, K. Saitoh, K. Takenaga, and T. Morioka, “Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

B. G. Lee, D. M. Kuchta, F. E. Doany, C. L. Schow, P. Pepeljugoski, C. Baks, T. F. Taunay, B. Zhu, M. F. Yan, G. E. Oulundsen, D. S. Vaidya, W. Luo, and N. Li, “End-to-end multicore multimode fiber optic link operating up to 120 Gb/s,” J. Lightwave Technol. 30(6), 886–892 (2012).
[Crossref]

2011 (1)

2010 (2)

R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, and C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol. 28(4), 569–586 (2010).
[Crossref]

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).

2006 (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

1973 (1)

D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Labs Tech. J. 52(9), 1563–1578 (1973).
[Crossref]

Amezcua-Correa, R.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Antonio-Lopez, E.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Arakawa, Y.

Bai, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photon. 6(4), 413–487 (2014).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Baks, C.

Bourdine, A.

A. Bourdine, D. Praporshchikov, and K. Yablochkin, “Investigation of defects of refractive index profile of silica graded-index multimode fibers,” in Proc. SPIE7992, 799206 (2011).
[Crossref]

Bunge, C. A.

Butler, Douglas L.

M. Li, B. Hoover, Vladimir N. Nazarov, and Douglas L. Butler, “Multicore fiber for optical interconnect applications,” in Opto-Electronics and Communications Conference(2012), paper 5E4-2.

Caspar, C.

Chen, A.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in European Conference on Optical Communication (2014), paper PD.2.4.

Chen, X.

X. Chen, J. Hurley, J. Stone, A. R. Zakharian, B. Chow, D. Coleman, and M.-J. Li, “Universal fibers for both single-mode and multimode transmissions in data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.2.
[Crossref]

Chow, B.

X. Chen, J. Hurley, J. Stone, A. R. Zakharian, B. Chow, D. Coleman, and M.-J. Li, “Universal fibers for both single-mode and multimode transmissions in data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.2.
[Crossref]

Coleman, D.

X. Chen, J. Hurley, J. Stone, A. R. Zakharian, B. Chow, D. Coleman, and M.-J. Li, “Universal fibers for both single-mode and multimode transmissions in data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.2.
[Crossref]

Deng, L.

Denoyer, G.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in European Conference on Optical Communication (2014), paper PD.2.4.

Doany, F. E.

Essiambre, R. J.

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE. 100(5), 1035–1055 (2012).
[Crossref]

Feng, Z.

Fishteyn, M.

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).

Freund, R. E.

Fu, S.

Furuya, A.

T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, and T. Sasaki, “125-μ m-cladding eight-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects,” J. Lightwave Technol.  34(1), 85–92 (2016).
[Crossref]

Gloge, D.

D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Labs Tech. J. 52(9), 1563–1578 (1973).
[Crossref]

Hayashi, T.

T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, and T. Sasaki, “125-μ m-cladding eight-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects,” J. Lightwave Technol.  34(1), 85–92 (2016).
[Crossref]

He, Z.

Y. Liu, L. Ma, C. Yang, W. Tong, and Z. He, “Graded-index seven-core fiber optimized for high density and ultra-wideband parallel transmission application,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.5.
[Crossref]

Hirashima, K.

T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, and T. Sasaki, “125-μ m-cladding eight-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects,” J. Lightwave Technol.  34(1), 85–92 (2016).
[Crossref]

Hoover, B.

M. Li, B. Hoover, Vladimir N. Nazarov, and Douglas L. Butler, “Multicore fiber for optical interconnect applications,” in Opto-Electronics and Communications Conference(2012), paper 5E4-2.

Hurley, J.

X. Chen, J. Hurley, J. Stone, A. R. Zakharian, B. Chow, D. Coleman, and M.-J. Li, “Universal fibers for both single-mode and multimode transmissions in data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.2.
[Crossref]

Koshiba, M.

M. Koshiba, K. Saitoh, K. Takenaga, and T. Morioka, “Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μ m,” Opt. Lett. 36(23), 4626–4628 (2011).
[Crossref] [PubMed]

Koyama, K.

T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, and T. Sasaki, “125-μ m-cladding eight-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects,” J. Lightwave Technol.  34(1), 85–92 (2016).
[Crossref]

Kuchta, D. M.

Ledentsov, N. N.

Lee, B. G.

Li, B.

Li, G.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photon. 6(4), 413–487 (2014).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Li, M.

M. Li, B. Hoover, Vladimir N. Nazarov, and Douglas L. Butler, “Multicore fiber for optical interconnect applications,” in Opto-Electronics and Communications Conference(2012), paper 5E4-2.

Li, M.-J.

X. Chen, J. Hurley, J. Stone, A. R. Zakharian, B. Chow, D. Coleman, and M.-J. Li, “Universal fibers for both single-mode and multimode transmissions in data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.2.
[Crossref]

Li, N.

Linares, J.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Liu, S.

Liu, Y.

Y. Liu, L. Ma, C. Yang, W. Tong, and Z. He, “Graded-index seven-core fiber optimized for high density and ultra-wideband parallel transmission application,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.5.
[Crossref]

Luo, W.

Ma, L.

Y. Liu, L. Ma, C. Yang, W. Tong, and Z. He, “Graded-index seven-core fiber optimized for high density and ultra-wideband parallel transmission application,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.5.
[Crossref]

Marcatili, E. A. J.

D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Labs Tech. J. 52(9), 1563–1578 (1973).
[Crossref]

Mateo, E.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Matsuo, S.

May Arrioja, D.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Molin, D.

Montero, C.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Morioka, T.

M. Koshiba, K. Saitoh, K. Takenaga, and T. Morioka, “Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

Murakami, Y.

T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, and T. Sasaki, “125-μ m-cladding eight-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects,” J. Lightwave Technol.  34(1), 85–92 (2016).
[Crossref]

Nakanishi, T.

T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, and T. Sasaki, “125-μ m-cladding eight-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects,” J. Lightwave Technol.  34(1), 85–92 (2016).
[Crossref]

Nazarov, Vladimir N.

M. Li, B. Hoover, Vladimir N. Nazarov, and Douglas L. Butler, “Multicore fiber for optical interconnect applications,” in Opto-Electronics and Communications Conference(2012), paper 5E4-2.

Oulundsen, G.

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).

Oulundsen, G. E.

Park, B.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in European Conference on Optical Communication (2014), paper PD.2.4.

Pepeljugoski, P.

Praporshchikov, D.

A. Bourdine, D. Praporshchikov, and K. Yablochkin, “Investigation of defects of refractive index profile of silica graded-index multimode fibers,” in Proc. SPIE7992, 799206 (2011).
[Crossref]

Richardson, M. C.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Russo, R.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in European Conference on Optical Communication (2014), paper PD.2.4.

Saitoh, K.

M. Koshiba, K. Saitoh, K. Takenaga, and T. Morioka, “Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μ m,” Opt. Lett. 36(23), 4626–4628 (2011).
[Crossref] [PubMed]

Santipo, A.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in European Conference on Optical Communication (2014), paper PD.2.4.

Sasaki, T.

T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, and T. Sasaki, “125-μ m-cladding eight-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects,” J. Lightwave Technol.  34(1), 85–92 (2016).
[Crossref]

Sasaki, Y.

Sato, F.

T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, and T. Sasaki, “125-μ m-cladding eight-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects,” J. Lightwave Technol.  34(1), 85–92 (2016).
[Crossref]

Schow, C. L.

Schülzgen, A.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Shimakawa, O.

T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, and T. Sasaki, “125-μ m-cladding eight-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects,” J. Lightwave Technol.  34(1), 85–92 (2016).
[Crossref]

Shum, P. P.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Stone, J.

X. Chen, J. Hurley, J. Stone, A. R. Zakharian, B. Chow, D. Coleman, and M.-J. Li, “Universal fibers for both single-mode and multimode transmissions in data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.2.
[Crossref]

Takenaga, K.

M. Koshiba, K. Saitoh, K. Takenaga, and T. Morioka, “Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μ m,” Opt. Lett. 36(23), 4626–4628 (2011).
[Crossref] [PubMed]

Tang, M.

Tanigawa, S.

Taunay, T. F.

B. G. Lee, D. M. Kuchta, F. E. Doany, C. L. Schow, P. Pepeljugoski, C. Baks, T. F. Taunay, B. Zhu, M. F. Yan, G. E. Oulundsen, D. S. Vaidya, W. Luo, and N. Li, “End-to-end multicore multimode fiber optic link operating up to 120 Gb/s,” J. Lightwave Technol. 30(6), 886–892 (2012).
[Crossref]

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).

Tkach, R. W.

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE. 100(5), 1035–1055 (2012).
[Crossref]

Tong, W.

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Y. Liu, L. Ma, C. Yang, W. Tong, and Z. He, “Graded-index seven-core fiber optimized for high density and ultra-wideband parallel transmission application,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.5.
[Crossref]

Vaidya, D.

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).

Vaidya, D. S.

Wu, Q.

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photon. 6(4), 413–487 (2014).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Xu, Z.

Yablochkin, K.

A. Bourdine, D. Praporshchikov, and K. Yablochkin, “Investigation of defects of refractive index profile of silica graded-index multimode fibers,” in Proc. SPIE7992, 799206 (2011).
[Crossref]

Yan, M. F.

B. G. Lee, D. M. Kuchta, F. E. Doany, C. L. Schow, P. Pepeljugoski, C. Baks, T. F. Taunay, B. Zhu, M. F. Yan, G. E. Oulundsen, D. S. Vaidya, W. Luo, and N. Li, “End-to-end multicore multimode fiber optic link operating up to 120 Gb/s,” J. Lightwave Technol. 30(6), 886–892 (2012).
[Crossref]

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).

Yang, C.

Y. Liu, L. Ma, C. Yang, W. Tong, and Z. He, “Graded-index seven-core fiber optimized for high density and ultra-wideband parallel transmission application,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.5.
[Crossref]

Zakharian, A. R.

X. Chen, J. Hurley, J. Stone, A. R. Zakharian, B. Chow, D. Coleman, and M.-J. Li, “Universal fibers for both single-mode and multimode transmissions in data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.2.
[Crossref]

Zhao, N.

Zhou, X.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Zhou, Y.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in European Conference on Optical Communication (2014), paper PD.2.4.

Zhu, B.

B. G. Lee, D. M. Kuchta, F. E. Doany, C. L. Schow, P. Pepeljugoski, C. Baks, T. F. Taunay, B. Zhu, M. F. Yan, G. E. Oulundsen, D. S. Vaidya, W. Luo, and N. Li, “End-to-end multicore multimode fiber optic link operating up to 120 Gb/s,” J. Lightwave Technol. 30(6), 886–892 (2012).
[Crossref]

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).

Adv. Opt. Photon. (1)

Bell Labs Tech. J. (1)

D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Labs Tech. J. 52(9), 1563–1578 (1973).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).

IEEE Photonics J. (1)

M. Koshiba, K. Saitoh, K. Takenaga, and T. Morioka, “Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

J. Lightwave Technol (1)

T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, and T. Sasaki, “125-μ m-cladding eight-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects,” J. Lightwave Technol.  34(1), 85–92 (2016).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE. (1)

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE. 100(5), 1035–1055 (2012).
[Crossref]

Other (5)

M. Li, B. Hoover, Vladimir N. Nazarov, and Douglas L. Butler, “Multicore fiber for optical interconnect applications,” in Opto-Electronics and Communications Conference(2012), paper 5E4-2.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in European Conference on Optical Communication (2014), paper PD.2.4.

X. Chen, J. Hurley, J. Stone, A. R. Zakharian, B. Chow, D. Coleman, and M.-J. Li, “Universal fibers for both single-mode and multimode transmissions in data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.2.
[Crossref]

Y. Liu, L. Ma, C. Yang, W. Tong, and Z. He, “Graded-index seven-core fiber optimized for high density and ultra-wideband parallel transmission application,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2018), paper W3C.5.
[Crossref]

A. Bourdine, D. Praporshchikov, and K. Yablochkin, “Investigation of defects of refractive index profile of silica graded-index multimode fibers,” in Proc. SPIE7992, 799206 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of (a) the cross session of GI-MCF, and (b) the index profile of the core structure.
Fig. 2
Fig. 2 (a) The relationship between the DMD and α, and the dependence of the (b) MFD, and (c) DMD of LP11 mode on R and Δ.
Fig. 3
Fig. 3 Inter-core crosstalk as a function of (a) Λ and (b) bending radius.
Fig. 4
Fig. 4 The measured refractive index profile of the designed GI-MCF.
Fig. 5
Fig. 5 Misalignment tolerance of the GI-MCF at the wavelengths of (a) 850 nm, (b) 1310 nm, and (c) 1550 nm.
Fig. 6
Fig. 6 The responses of the input pulse over 1-km long GI-MCF at (a) 850nm, (b) 1310 nm, and (c) 1550 nm.
Fig. 7
Fig. 7 The experiment setup. PPG: pulse pattern generator; Amp: amplifier; IM: intensity modulator; VOA: variable optical attenuator; MCF: multicore fiber; PD: photodiode; ED: error detector.
Fig. 8
Fig. 8 The BER performance and eye diagrams over 1 km-long GI-MCF at 850 nm.
Fig. 9
Fig. 9 The BER performance and eye diagrams over 12.4 km-long GI-MCF at (a) 1310 nm and (b) 1550 nm.

Tables (1)

Tables Icon

Table 1 Main parameters of the fabricated GI-MCF

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = n 0 1 2 Δ ( r / R ) α ,
κ m n = ω ε 0 + + ( N 2 N n ) E m * E n d x d y + + u z ( E m * × H m + E m × H m * ) d x d y ,
h ¯ m n = 2 K m n 2 R b β m Λ ,
X T = 10 lg [ tanh ( h ¯ m n L ) ] .
X T w o r s t = X T 10 lg ( N c o r e s ) ,

Metrics