Abstract

Subtractive femtosecond laser machining using multiple pulses with different spatial intensity profiles centred on the same position on a sample has been used to fabricate surface relief structuring. A digital micromirror device was used as an intensity spatial light modulator, with a fixed position relative to the sample, to ensure optimal alignment between successive masks. Up to 50 distinct layers, 335 nm lateral spatial resolution and 2.6 µm maximum depth structures were produced. The lateral dimensions of the structures are approximately 40 µm. Surface relief structuring is shown to match intended depth profiles in a nickel substrate, and highly repeatable stitching of identical features in close proximity is also demonstrated.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device

Daniel J. Heath, James A. Grant-Jacob, Matthias Feinaeugle, Ben Mills, and Robert W. Eason
Appl. Opt. 56(22) 6398-6404 (2017)

Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks

Daniel J. Heath, James A. Grant-Jacob, Robert W. Eason, and Ben Mills
Appl. Opt. 57(8) 1904-1909 (2018)

Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images

Daniel J. Heath, Ben Mills, Matthias Feinaeugle, and Robert W. Eason
Appl. Opt. 54(16) 4984-4988 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
    [Crossref]
  2. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [Crossref]
  3. B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 35005 (2013).
    [Crossref]
  4. D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5(5), 1129 (2015).
    [Crossref]
  5. D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54(16), 4984–4988 (2015).
    [Crossref] [PubMed]
  6. M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
    [Crossref]
  7. C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
    [Crossref]
  8. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
    [Crossref]
  9. R. C. Y. Auyeung, H. Kim, S. Mathews, and A. Piqué, “Spatially modulated laser pulses for printing electronics,” Appl. Opt. 54(31), F70–F77 (2015).
    [Crossref] [PubMed]
  10. B. Mills, D. J. Heath, M. Feinaeugle, J. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 41501 (2014).
    [Crossref]
  11. D. J. Heath, J. A. Grant-Jacob, M. Feinaeugle, B. Mills, and R. W. Eason, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56(22), 6398–6404 (2017).
    [Crossref] [PubMed]
  12. Texas Instruments, “DLP7000UV DLP® 0.7 UV XGA 2x LVDS Type A DMD,” http://www.ti.com/lit/ds/symlink/dlp7000.pdf .
  13. X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
    [Crossref]
  14. M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A Gray Matching Method for Cylindrical Lens Array Fabrication Based on DMD Lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).
  15. W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51(6S), 06FB05 (2012).
    [Crossref]
  16. Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77(2), 396–405 (2006).
    [Crossref] [PubMed]
  17. K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255(18), 7835–7840 (2009).
    [Crossref]
  18. K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
    [Crossref]
  19. M. V. Kessels, C. Nassour, P. Grosso, and K. Heggarty, “Direct write of optical diffractive elements and planar waveguides with a digital micromirror device based UV photoplotter,” Opt. Commun. 283(15), 3089–3094 (2010).
    [Crossref]
  20. D. J. Heath, J. A. Grant-Jacob, R. W. Eason, and B. Mills, “Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks,” Appl. Opt. 57(8), 1904–1909 (2018).
    [Crossref] [PubMed]
  21. K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” SPIE 2403, 199–202 (1995).
  22. J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
    [Crossref]
  23. A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 99–102 (2012).
    [Crossref]
  24. A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-Based Fabrication of Nanofoam inside a Hollow Capillary,” Mater. Sci. Appl. 8(12), 829–837 (2017).
    [Crossref]
  25. Texas Instruments, “DLP 0.3 WVGA Series 220 DMD,” (2014).
  26. J. Sudagar, J. Lian, and W. Sha, “Electroless nickel, alloy, composite and nano coatings - A critical review,” J. Alloys Compd. 571, 183–204 (2013).
    [Crossref]
  27. L. Yang, Y. Ding, B. Cheng, A. Mohammed, and Y. Wang, “Numerical simulation and experimental research on reduction of taper and HAZ during laser drilling using moving focal point,” Int. J. Adv. Manuf. Technol. 91(1-4), 1171–1180 (2017).
    [Crossref]
  28. M. S. Miller, M. A. Ferrato, A. Niec, M. C. Biesinger, and T. B. Carmichael, “Ultrasmooth gold surfaces prepared by chemical mechanical polishing for applications in nanoscience,” Langmuir 30(47), 14171–14178 (2014).
    [Crossref] [PubMed]
  29. J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 88–93 (2011).
    [Crossref]
  30. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 42006 (2012).
    [Crossref]
  31. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
    [Crossref]
  32. J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation,” J. Phys. D Appl. Phys. 47(5), 55105 (2014).
    [Crossref]
  33. H. Bostanci, V. Singh, J. P. Kizito, D. P. Rini, S. Seal, and L. C. Chow, “Micro Scale Surface Modifications for Heat Transfer Enhancement,” ACS Appl. Mater. Interfaces 5(19), 9572–9578 (2013).
    [Crossref] [PubMed]
  34. L. Romoli, G. Tantussi, and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng. 49(3), 419–427 (2011).
    [Crossref]
  35. T. Tamulevičius, R. Šeperys, M. Andrulevičius, and S. Tamulevičius, “Laser beam shape effect in optical control of the μ-fluidic channel depth employing scatterometry,” Opt. Lasers Eng. 48(6), 664–670 (2010).
    [Crossref]
  36. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Review General Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
    [Crossref] [PubMed]
  37. S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
    [Crossref]

2018 (2)

D. J. Heath, J. A. Grant-Jacob, R. W. Eason, and B. Mills, “Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks,” Appl. Opt. 57(8), 1904–1909 (2018).
[Crossref] [PubMed]

S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
[Crossref]

2017 (3)

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-Based Fabrication of Nanofoam inside a Hollow Capillary,” Mater. Sci. Appl. 8(12), 829–837 (2017).
[Crossref]

L. Yang, Y. Ding, B. Cheng, A. Mohammed, and Y. Wang, “Numerical simulation and experimental research on reduction of taper and HAZ during laser drilling using moving focal point,” Int. J. Adv. Manuf. Technol. 91(1-4), 1171–1180 (2017).
[Crossref]

D. J. Heath, J. A. Grant-Jacob, M. Feinaeugle, B. Mills, and R. W. Eason, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56(22), 6398–6404 (2017).
[Crossref] [PubMed]

2016 (2)

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A Gray Matching Method for Cylindrical Lens Array Fabrication Based on DMD Lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

2015 (4)

2014 (4)

B. Mills, D. J. Heath, M. Feinaeugle, J. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 41501 (2014).
[Crossref]

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

M. S. Miller, M. A. Ferrato, A. Niec, M. C. Biesinger, and T. B. Carmichael, “Ultrasmooth gold surfaces prepared by chemical mechanical polishing for applications in nanoscience,” Langmuir 30(47), 14171–14178 (2014).
[Crossref] [PubMed]

J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation,” J. Phys. D Appl. Phys. 47(5), 55105 (2014).
[Crossref]

2013 (4)

H. Bostanci, V. Singh, J. P. Kizito, D. P. Rini, S. Seal, and L. C. Chow, “Micro Scale Surface Modifications for Heat Transfer Enhancement,” ACS Appl. Mater. Interfaces 5(19), 9572–9578 (2013).
[Crossref] [PubMed]

J. Sudagar, J. Lian, and W. Sha, “Electroless nickel, alloy, composite and nano coatings - A critical review,” J. Alloys Compd. 571, 183–204 (2013).
[Crossref]

J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
[Crossref]

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 35005 (2013).
[Crossref]

2012 (3)

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51(6S), 06FB05 (2012).
[Crossref]

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 99–102 (2012).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 42006 (2012).
[Crossref]

2011 (2)

L. Romoli, G. Tantussi, and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng. 49(3), 419–427 (2011).
[Crossref]

J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 88–93 (2011).
[Crossref]

2010 (2)

T. Tamulevičius, R. Šeperys, M. Andrulevičius, and S. Tamulevičius, “Laser beam shape effect in optical control of the μ-fluidic channel depth employing scatterometry,” Opt. Lasers Eng. 48(6), 664–670 (2010).
[Crossref]

M. V. Kessels, C. Nassour, P. Grosso, and K. Heggarty, “Direct write of optical diffractive elements and planar waveguides with a digital micromirror device based UV photoplotter,” Opt. Commun. 283(15), 3089–3094 (2010).
[Crossref]

2009 (2)

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255(18), 7835–7840 (2009).
[Crossref]

2006 (1)

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77(2), 396–405 (2006).
[Crossref] [PubMed]

2005 (1)

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
[Crossref]

2002 (2)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

2000 (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Review General Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

1995 (1)

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” SPIE 2403, 199–202 (1995).

Aghdam, E. N.

S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
[Crossref]

Anderson, J. R.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Review General Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Andrulevicius, M.

T. Tamulevičius, R. Šeperys, M. Andrulevičius, and S. Tamulevičius, “Laser beam shape effect in optical control of the μ-fluidic channel depth employing scatterometry,” Opt. Lasers Eng. 48(6), 664–670 (2010).
[Crossref]

Auyeung, R. C. Y.

Avci, H.

S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
[Crossref]

Biesinger, M. C.

M. S. Miller, M. A. Ferrato, A. Niec, M. C. Biesinger, and T. B. Carmichael, “Ultrasmooth gold surfaces prepared by chemical mechanical polishing for applications in nanoscience,” Langmuir 30(47), 14171–14178 (2014).
[Crossref] [PubMed]

Bonse, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 42006 (2012).
[Crossref]

Bostanci, H.

H. Bostanci, V. Singh, J. P. Kizito, D. P. Rini, S. Seal, and L. C. Chow, “Micro Scale Surface Modifications for Heat Transfer Enhancement,” ACS Appl. Mater. Interfaces 5(19), 9572–9578 (2013).
[Crossref] [PubMed]

Brambilla, G.

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-Based Fabrication of Nanofoam inside a Hollow Capillary,” Mater. Sci. Appl. 8(12), 829–837 (2017).
[Crossref]

Cao, A.

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A Gray Matching Method for Cylindrical Lens Array Fabrication Based on DMD Lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Carmichael, T. B.

M. S. Miller, M. A. Ferrato, A. Niec, M. C. Biesinger, and T. B. Carmichael, “Ultrasmooth gold surfaces prepared by chemical mechanical polishing for applications in nanoscience,” Langmuir 30(47), 14171–14178 (2014).
[Crossref] [PubMed]

Chen, S.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77(2), 396–405 (2006).
[Crossref] [PubMed]

Cheng, B.

L. Yang, Y. Ding, B. Cheng, A. Mohammed, and Y. Wang, “Numerical simulation and experimental research on reduction of taper and HAZ during laser drilling using moving focal point,” Int. J. Adv. Manuf. Technol. 91(1-4), 1171–1180 (2017).
[Crossref]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Chiu, D. T.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Review General Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Cho, M. W.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255(18), 7835–7840 (2009).
[Crossref]

Cho, S. H.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255(18), 7835–7840 (2009).
[Crossref]

Choi, B.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255(18), 7835–7840 (2009).
[Crossref]

Chow, L. C.

H. Bostanci, V. Singh, J. P. Kizito, D. P. Rini, S. Seal, and L. C. Chow, “Micro Scale Surface Modifications for Heat Transfer Enhancement,” ACS Appl. Mater. Interfaces 5(19), 9572–9578 (2013).
[Crossref] [PubMed]

Courtier, A. F.

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-Based Fabrication of Nanofoam inside a Hollow Capillary,” Mater. Sci. Appl. 8(12), 829–837 (2017).
[Crossref]

Courvoisier, F.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 99–102 (2012).
[Crossref]

Dearden, G.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Deng, Q.

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A Gray Matching Method for Cylindrical Lens Array Fabrication Based on DMD Lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Ding, Y.

L. Yang, Y. Ding, B. Cheng, A. Mohammed, and Y. Wang, “Numerical simulation and experimental research on reduction of taper and HAZ during laser drilling using moving focal point,” Int. J. Adv. Manuf. Technol. 91(1-4), 1171–1180 (2017).
[Crossref]

Dini, G.

L. Romoli, G. Tantussi, and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng. 49(3), 419–427 (2011).
[Crossref]

Dokmeci, M. R.

S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
[Crossref]

Dudley, J. M.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 99–102 (2012).
[Crossref]

Duffy, D. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Review General Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Eason, R. W.

D. J. Heath, J. A. Grant-Jacob, R. W. Eason, and B. Mills, “Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks,” Appl. Opt. 57(8), 1904–1909 (2018).
[Crossref] [PubMed]

D. J. Heath, J. A. Grant-Jacob, M. Feinaeugle, B. Mills, and R. W. Eason, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56(22), 6398–6404 (2017).
[Crossref] [PubMed]

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-Based Fabrication of Nanofoam inside a Hollow Capillary,” Mater. Sci. Appl. 8(12), 829–837 (2017).
[Crossref]

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54(16), 4984–4988 (2015).
[Crossref] [PubMed]

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5(5), 1129 (2015).
[Crossref]

B. Mills, D. J. Heath, M. Feinaeugle, J. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 41501 (2014).
[Crossref]

J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation,” J. Phys. D Appl. Phys. 47(5), 55105 (2014).
[Crossref]

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 35005 (2013).
[Crossref]

J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
[Crossref]

Edwardson, S.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Fang, N.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
[Crossref]

Fearon, E.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Feinaeugle, M.

D. J. Heath, J. A. Grant-Jacob, M. Feinaeugle, B. Mills, and R. W. Eason, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56(22), 6398–6404 (2017).
[Crossref] [PubMed]

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5(5), 1129 (2015).
[Crossref]

D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54(16), 4984–4988 (2015).
[Crossref] [PubMed]

B. Mills, D. J. Heath, M. Feinaeugle, J. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 41501 (2014).
[Crossref]

J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
[Crossref]

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 35005 (2013).
[Crossref]

Ferrato, M. A.

M. S. Miller, M. A. Ferrato, A. Niec, M. C. Biesinger, and T. B. Carmichael, “Ultrasmooth gold surfaces prepared by chemical mechanical polishing for applications in nanoscience,” Langmuir 30(47), 14171–14178 (2014).
[Crossref] [PubMed]

Froehly, L.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 99–102 (2012).
[Crossref]

Furfaro, L.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 99–102 (2012).
[Crossref]

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Gao, Y.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Ghavifekr, H. B.

S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
[Crossref]

Grant-Jacob, J.

B. Mills, D. J. Heath, M. Feinaeugle, J. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 41501 (2014).
[Crossref]

Grant-Jacob, J. A.

D. J. Heath, J. A. Grant-Jacob, R. W. Eason, and B. Mills, “Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks,” Appl. Opt. 57(8), 1904–1909 (2018).
[Crossref] [PubMed]

D. J. Heath, J. A. Grant-Jacob, M. Feinaeugle, B. Mills, and R. W. Eason, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56(22), 6398–6404 (2017).
[Crossref] [PubMed]

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-Based Fabrication of Nanofoam inside a Hollow Capillary,” Mater. Sci. Appl. 8(12), 829–837 (2017).
[Crossref]

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5(5), 1129 (2015).
[Crossref]

J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation,” J. Phys. D Appl. Phys. 47(5), 55105 (2014).
[Crossref]

J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
[Crossref]

Grosso, P.

M. V. Kessels, C. Nassour, P. Grosso, and K. Heggarty, “Direct write of optical diffractive elements and planar waveguides with a digital micromirror device based UV photoplotter,” Opt. Commun. 283(15), 3089–3094 (2010).
[Crossref]

Heath, D. J.

D. J. Heath, J. A. Grant-Jacob, R. W. Eason, and B. Mills, “Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks,” Appl. Opt. 57(8), 1904–1909 (2018).
[Crossref] [PubMed]

D. J. Heath, J. A. Grant-Jacob, M. Feinaeugle, B. Mills, and R. W. Eason, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56(22), 6398–6404 (2017).
[Crossref] [PubMed]

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-Based Fabrication of Nanofoam inside a Hollow Capillary,” Mater. Sci. Appl. 8(12), 829–837 (2017).
[Crossref]

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54(16), 4984–4988 (2015).
[Crossref] [PubMed]

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5(5), 1129 (2015).
[Crossref]

B. Mills, D. J. Heath, M. Feinaeugle, J. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 41501 (2014).
[Crossref]

Heggarty, K.

M. V. Kessels, C. Nassour, P. Grosso, and K. Heggarty, “Direct write of optical diffractive elements and planar waveguides with a digital micromirror device based UV photoplotter,” Opt. Commun. 283(15), 3089–3094 (2010).
[Crossref]

Hirai, Y.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Höhm, S.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 42006 (2012).
[Crossref]

Hoppenbrouwers, M. B.

Hu, S.

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A Gray Matching Method for Cylindrical Lens Array Fabrication Based on DMD Lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Ismaeel, R.

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-Based Fabrication of Nanofoam inside a Hollow Capillary,” Mater. Sci. Appl. 8(12), 829–837 (2017).
[Crossref]

Iwasaki, W.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51(6S), 06FB05 (2012).
[Crossref]

Jacquot, M.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 99–102 (2012).
[Crossref]

Kaakkunen, J. J. J.

J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 88–93 (2011).
[Crossref]

Kang, N. H.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255(18), 7835–7840 (2009).
[Crossref]

Kato, Y.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Kempen, F.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Kessels, M. V.

M. V. Kessels, C. Nassour, P. Grosso, and K. Heggarty, “Direct write of optical diffractive elements and planar waveguides with a digital micromirror device based UV photoplotter,” Opt. Commun. 283(15), 3089–3094 (2010).
[Crossref]

Keulen, F.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Khademhosseini, A.

S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
[Crossref]

Kim, H.

Kim, K. R.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255(18), 7835–7840 (2009).
[Crossref]

Kizito, J. P.

H. Bostanci, V. Singh, J. P. Kizito, D. P. Rini, S. Seal, and L. C. Chow, “Micro Scale Surface Modifications for Heat Transfer Enhancement,” ACS Appl. Mater. Interfaces 5(19), 9572–9578 (2013).
[Crossref] [PubMed]

Krüger, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 42006 (2012).
[Crossref]

Kuang, Z.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Kudo, Y.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51(6S), 06FB05 (2012).
[Crossref]

Lacourt, P. A.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 99–102 (2012).
[Crossref]

Li, F.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Lian, J.

J. Sudagar, J. Lian, and W. Sha, “Electroless nickel, alloy, composite and nano coatings - A critical review,” J. Alloys Compd. 571, 183–204 (2013).
[Crossref]

Liu, D.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Lu, Y.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77(2), 396–405 (2006).
[Crossref] [PubMed]

Luo, N.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Ma, X.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Maeda, R.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51(6S), 06FB05 (2012).
[Crossref]

Mapili, G.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77(2), 396–405 (2006).
[Crossref] [PubMed]

Mashanovich, G. Z.

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

Mathews, S.

Mathis, A.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 99–102 (2012).
[Crossref]

McDonald, J. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Review General Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Miller, M. S.

M. S. Miller, M. A. Ferrato, A. Niec, M. C. Biesinger, and T. B. Carmichael, “Ultrasmooth gold surfaces prepared by chemical mechanical polishing for applications in nanoscience,” Langmuir 30(47), 14171–14178 (2014).
[Crossref] [PubMed]

Mills, B.

D. J. Heath, J. A. Grant-Jacob, R. W. Eason, and B. Mills, “Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks,” Appl. Opt. 57(8), 1904–1909 (2018).
[Crossref] [PubMed]

D. J. Heath, J. A. Grant-Jacob, M. Feinaeugle, B. Mills, and R. W. Eason, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56(22), 6398–6404 (2017).
[Crossref] [PubMed]

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-Based Fabrication of Nanofoam inside a Hollow Capillary,” Mater. Sci. Appl. 8(12), 829–837 (2017).
[Crossref]

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54(16), 4984–4988 (2015).
[Crossref] [PubMed]

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5(5), 1129 (2015).
[Crossref]

B. Mills, D. J. Heath, M. Feinaeugle, J. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 41501 (2014).
[Crossref]

J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation,” J. Phys. D Appl. Phys. 47(5), 55105 (2014).
[Crossref]

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 35005 (2013).
[Crossref]

J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
[Crossref]

Mohammed, A.

L. Yang, Y. Ding, B. Cheng, A. Mohammed, and Y. Wang, “Numerical simulation and experimental research on reduction of taper and HAZ during laser drilling using moving focal point,” Int. J. Adv. Manuf. Technol. 91(1-4), 1171–1180 (2017).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Mostafalu, P.

S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
[Crossref]

Nabavinia, M.

S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
[Crossref]

Nassour, C.

M. V. Kessels, C. Nassour, P. Grosso, and K. Heggarty, “Direct write of optical diffractive elements and planar waveguides with a digital micromirror device based UV photoplotter,” Opt. Commun. 283(15), 3089–3094 (2010).
[Crossref]

Ngoi, B. K. A.

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” SPIE 2403, 199–202 (1995).

Niec, A.

M. S. Miller, M. A. Ferrato, A. Niec, M. C. Biesinger, and T. B. Carmichael, “Ultrasmooth gold surfaces prepared by chemical mechanical polishing for applications in nanoscience,” Langmuir 30(47), 14171–14178 (2014).
[Crossref] [PubMed]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Ogino, H.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51(6S), 06FB05 (2012).
[Crossref]

Oosterhuis, G.

Paivasaari, K.

J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 88–93 (2011).
[Crossref]

Pang, H.

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A Gray Matching Method for Cylindrical Lens Array Fabrication Based on DMD Lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Peng, Y.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51(6S), 06FB05 (2012).
[Crossref]

Perrie, W.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Piqué, A.

Pourmand, A.

S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
[Crossref]

Rini, D. P.

H. Bostanci, V. Singh, J. P. Kizito, D. P. Rini, S. Seal, and L. C. Chow, “Micro Scale Surface Modifications for Heat Transfer Enhancement,” ACS Appl. Mater. Interfaces 5(19), 9572–9578 (2013).
[Crossref] [PubMed]

Rizvi, N.

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 35005 (2013).
[Crossref]

Rode, A. V.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Romoli, L.

L. Romoli, G. Tantussi, and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng. 49(3), 419–427 (2011).
[Crossref]

Rosenfeld, A.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 42006 (2012).
[Crossref]

Roy, K.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77(2), 396–405 (2006).
[Crossref] [PubMed]

Sawada, R.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51(6S), 06FB05 (2012).
[Crossref]

Schueller, O. J.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Review General Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Seal, S.

H. Bostanci, V. Singh, J. P. Kizito, D. P. Rini, S. Seal, and L. C. Chow, “Micro Scale Surface Modifications for Heat Transfer Enhancement,” ACS Appl. Mater. Interfaces 5(19), 9572–9578 (2013).
[Crossref] [PubMed]

Šeperys, R.

T. Tamulevičius, R. Šeperys, M. Andrulevičius, and S. Tamulevičius, “Laser beam shape effect in optical control of the μ-fluidic channel depth employing scatterometry,” Opt. Lasers Eng. 48(6), 664–670 (2010).
[Crossref]

Sha, W.

J. Sudagar, J. Lian, and W. Sha, “Electroless nickel, alloy, composite and nano coatings - A critical review,” J. Alloys Compd. 571, 183–204 (2013).
[Crossref]

Shaegh, S. A. M.

S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
[Crossref]

Sharp, M.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Shi, L.

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A Gray Matching Method for Cylindrical Lens Array Fabrication Based on DMD Lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Shibata, H.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51(6S), 06FB05 (2012).
[Crossref]

Shin, B. S.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255(18), 7835–7840 (2009).
[Crossref]

Silvennoinen, M.

J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 88–93 (2011).
[Crossref]

Singh, V.

H. Bostanci, V. Singh, J. P. Kizito, D. P. Rini, S. Seal, and L. C. Chow, “Micro Scale Surface Modifications for Heat Transfer Enhancement,” ACS Appl. Mater. Interfaces 5(19), 9572–9578 (2013).
[Crossref] [PubMed]

Sones, C. L.

Stewart, W. J.

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-Based Fabrication of Nanofoam inside a Hollow Capillary,” Mater. Sci. Appl. 8(12), 829–837 (2017).
[Crossref]

Sudagar, J.

J. Sudagar, J. Lian, and W. Sha, “Electroless nickel, alloy, composite and nano coatings - A critical review,” J. Alloys Compd. 571, 183–204 (2013).
[Crossref]

Suhali, G.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77(2), 396–405 (2006).
[Crossref] [PubMed]

Sun, C.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
[Crossref]

Tabata, O.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Takeshita, T.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51(6S), 06FB05 (2012).
[Crossref]

Tamayol, A.

S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
[Crossref]

Tamulevicius, S.

T. Tamulevičius, R. Šeperys, M. Andrulevičius, and S. Tamulevičius, “Laser beam shape effect in optical control of the μ-fluidic channel depth employing scatterometry,” Opt. Lasers Eng. 48(6), 664–670 (2010).
[Crossref]

Tamulevicius, T.

T. Tamulevičius, R. Šeperys, M. Andrulevičius, and S. Tamulevičius, “Laser beam shape effect in optical control of the μ-fluidic channel depth employing scatterometry,” Opt. Lasers Eng. 48(6), 664–670 (2010).
[Crossref]

Tan, B.

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” SPIE 2403, 199–202 (1995).

Tantussi, G.

L. Romoli, G. Tantussi, and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng. 49(3), 419–427 (2011).
[Crossref]

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Tsuchiya, T.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Vahimaa, P.

J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 88–93 (2011).
[Crossref]

Venkatakrishnan, K.

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” SPIE 2403, 199–202 (1995).

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Wang, Y.

L. Yang, Y. Ding, B. Cheng, A. Mohammed, and Y. Wang, “Numerical simulation and experimental research on reduction of taper and HAZ during laser drilling using moving focal point,” Int. J. Adv. Manuf. Technol. 91(1-4), 1171–1180 (2017).
[Crossref]

Watkins, K.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Whitesides, G. M.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Review General Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Wu, D. M.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
[Crossref]

Wu, H.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Review General Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Yang, L.

L. Yang, Y. Ding, B. Cheng, A. Mohammed, and Y. Wang, “Numerical simulation and experimental research on reduction of taper and HAZ during laser drilling using moving focal point,” Int. J. Adv. Manuf. Technol. 91(1-4), 1171–1180 (2017).
[Crossref]

Yi, J.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255(18), 7835–7840 (2009).
[Crossref]

Zhang, M.

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A Gray Matching Method for Cylindrical Lens Array Fabrication Based on DMD Lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Zhang, W.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Zhang, X.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
[Crossref]

Zhang, Y. S.

S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
[Crossref]

Zhong, K.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H. Bostanci, V. Singh, J. P. Kizito, D. P. Rini, S. Seal, and L. C. Chow, “Micro Scale Surface Modifications for Heat Transfer Enhancement,” ACS Appl. Mater. Interfaces 5(19), 9572–9578 (2013).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 99–102 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

Appl. Surf. Sci. (2)

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255(18), 7835–7840 (2009).
[Crossref]

Electrophoresis (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Review General Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Int. J. Adv. Manuf. Technol. (1)

L. Yang, Y. Ding, B. Cheng, A. Mohammed, and Y. Wang, “Numerical simulation and experimental research on reduction of taper and HAZ during laser drilling using moving focal point,” Int. J. Adv. Manuf. Technol. 91(1-4), 1171–1180 (2017).
[Crossref]

J. Alloys Compd. (1)

J. Sudagar, J. Lian, and W. Sha, “Electroless nickel, alloy, composite and nano coatings - A critical review,” J. Alloys Compd. 571, 183–204 (2013).
[Crossref]

J. Biomed. Mater. Res. A (1)

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77(2), 396–405 (2006).
[Crossref] [PubMed]

J. Laser Appl. (2)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 42006 (2012).
[Crossref]

B. Mills, D. J. Heath, M. Feinaeugle, J. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 41501 (2014).
[Crossref]

J. Micromech. Microeng. (1)

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 35005 (2013).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation,” J. Phys. D Appl. Phys. 47(5), 55105 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51(6S), 06FB05 (2012).
[Crossref]

Langmuir (1)

M. S. Miller, M. A. Ferrato, A. Niec, M. C. Biesinger, and T. B. Carmichael, “Ultrasmooth gold surfaces prepared by chemical mechanical polishing for applications in nanoscience,” Langmuir 30(47), 14171–14178 (2014).
[Crossref] [PubMed]

Manip. Manuf. Meas. Nanoscale (1)

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A Gray Matching Method for Cylindrical Lens Array Fabrication Based on DMD Lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Mater. Sci. Appl. (1)

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-Based Fabrication of Nanofoam inside a Hollow Capillary,” Mater. Sci. Appl. 8(12), 829–837 (2017).
[Crossref]

Opt. Commun. (1)

M. V. Kessels, C. Nassour, P. Grosso, and K. Heggarty, “Direct write of optical diffractive elements and planar waveguides with a digital micromirror device based UV photoplotter,” Opt. Commun. 283(15), 3089–3094 (2010).
[Crossref]

Opt. Laser Technol. (1)

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Opt. Lasers Eng. (2)

L. Romoli, G. Tantussi, and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng. 49(3), 419–427 (2011).
[Crossref]

T. Tamulevičius, R. Šeperys, M. Andrulevičius, and S. Tamulevičius, “Laser beam shape effect in optical control of the μ-fluidic channel depth employing scatterometry,” Opt. Lasers Eng. 48(6), 664–670 (2010).
[Crossref]

Opt. Mater. Express (2)

Phys. Plasmas (2)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Phys. Procedia (1)

J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 88–93 (2011).
[Crossref]

Procedia Eng. (1)

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Sens. Actuators A Phys. (1)

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
[Crossref]

Sens. Actuators B Chem. (1)

S. A. M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H. B. Ghavifekr, E. N. Aghdam, M. R. Dokmeci, A. Khademhosseini, and Y. S. Zhang, “Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding,” Sens. Actuators B Chem. 255, 100–109 (2018).
[Crossref]

SPIE (1)

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” SPIE 2403, 199–202 (1995).

Other (2)

Texas Instruments, “DLP7000UV DLP® 0.7 UV XGA 2x LVDS Type A DMD,” http://www.ti.com/lit/ds/symlink/dlp7000.pdf .

Texas Instruments, “DLP 0.3 WVGA Series 220 DMD,” (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (left) Schematic of the technique. (centre) Four sequentially smaller square DMD masks used for shaping the laser pulses. (right) Resultant inverted pyramid relief structure.
Fig. 2
Fig. 2 Stages of production of a 20-layer inverted pyramid, with SEM images shown in (a-c) after a) 1, b) 10 and c) 20 layers. (d-f) show the corresponding interometrically measured depth profiles of the structures. The colour scale has been set equally across each image (d-f), to highlight the change in depth achieved with successive pulses.
Fig. 3
Fig. 3 SEM images for a) a 50-layer upright pyramid at the bottom of a sloped walled trench, b) a 17-layer inverted dome, c) a 17-layer inverted spire. Also showing the associated d-f) measured and ideal profiles and g-i) interferometric measurements for the produced structures.
Fig. 4
Fig. 4 The interferometric measurement of the machined array of 10 × 10 pyramid structures, with a close-up view of a single structure within the array shown as an inset to the figure.

Metrics