Abstract

Configurable narrow bandwidth filters are indispensable components in optical communication networks. Here, we present an easily-integrated compact tunable filtering based on polarization-coupling process in a thin periodically poled lithium niobate (PPLN) in a reflective geometry via the transverse electro-optic (EO) effect. The structure, composed of an in-line polarizer and a thinned PPLN chip, forms a phase-shift Solc-type filter with similar mechanism to defected Bragg gratings. The filtering effect can be dynamically switched on and off by a transverse electric filed. Analogy of electromagnetically induced transparency (EIT) transmission spectrum and electrically controllable group delay is experimentally observed. The mechanism features tunable center wavelength in a wide range with respect to temperature and tunable optical delay to the applied voltage, which may offer another way for optical tunable filters or delay lines.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optic Solc-type wavelength filter in periodically poled lithium niobate

Xianfeng Chen, Jianhong Shi, Yuping Chen, Yiming Zhu, Yuxing Xia, and Yingli Chen
Opt. Lett. 28(21) 2115-2117 (2003)

Tunable Šolc-type filter in periodically poled LiNbO3 by UV-light illumination

Jianhong Shi, Jinghe Wang, Lijun Chen, Xianfeng Chen, and Yuxing Xia
Opt. Express 14(13) 6279-6284 (2006)

Electro-optical flat-top bandpass Solc-type filter in periodically poled lithium niobate

Kun Liu, Jianhong Shi, and Xianfeng Chen
Opt. Lett. 34(7) 1051-1053 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  2. R. L. W. Novikova and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
    [Crossref]
  3. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
    [Crossref] [PubMed]
  4. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107 (1990).
    [Crossref] [PubMed]
  5. S. Longhi, D. Janner, G. Galzerano, G. Valle, D. Gatti, and P. Laporta, “Optical buffering in phase-shifted fibre grating,” Electron. Lett. 41, 1075–1077 (2005).
    [Crossref]
  6. X. D. Yang, M. B. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
    [Crossref] [PubMed]
  7. C. W. Neff, L. M. Andersson, and M. Qiu, “Coupled resonator optical waveguide structures with highly dispersive media,” Opt. Express 15(16), 10362–10369 (2007).
    [Crossref] [PubMed]
  8. C. Zheng, X. S. Jiang, S. Y. Hua, L. Chang, G. Y. Li, H. B. Fan, and M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20, 18319–18325 (2012).
    [Crossref] [PubMed]
  9. Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [Crossref] [PubMed]
  10. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
    [Crossref] [PubMed]
  11. C. H. Dong, V. Fiore, M. C. Kuzyk, and H. L. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
    [Crossref] [PubMed]
  12. J. H. Kim, M. C. Kuzyk, K. W. Han, H. L. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Physics 11, 275–280 (2015).
    [Crossref]
  13. C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
    [Crossref] [PubMed]
  14. X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117 (2003).
    [Crossref] [PubMed]
  15. K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009).
    [Crossref]
  16. K. Liu, W. J. Lu, Y. P. Chen, and X. F. Chen, “Active control of group velocity by use of folded dielectric axes structures,” Appl. Phys. Lett. 97, 071104 (2010).
    [Crossref]
  17. Q. Wang, F. Xu, Z. Y. Yu, X. S. Qian, X. K. Hu, Y. Q. Lu, and H. T. Wang, “A bidirectional tunable optical diode based on periodically poled LiNbO3,” Opt. Express 18, 7340–7346 (2010).
    [Crossref] [PubMed]
  18. X. S. Song, F. Xu, and Y. Q. Lu, “Electromagnetically induced transparency-like transmission in periodically poled lithium niobate with a defect,” Opt. Lett. 36, 4434–4436 (2011).
    [Crossref] [PubMed]
  19. G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6, 125034 (2016).
    [Crossref]
  20. I. Mhaouech, V. Coda, G. Montemezzani, M. Chauvet, and L. Guilbert, “Low drive voltage electro-optic Bragg deflector using a periodically poled lithium niobate planar waveguide,” Opt. Lett. 41, 4174–4177 (2016).
    [Crossref] [PubMed]

2016 (2)

G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6, 125034 (2016).
[Crossref]

I. Mhaouech, V. Coda, G. Montemezzani, M. Chauvet, and L. Guilbert, “Low drive voltage electro-optic Bragg deflector using a periodically poled lithium niobate planar waveguide,” Opt. Lett. 41, 4174–4177 (2016).
[Crossref] [PubMed]

2015 (2)

J. H. Kim, M. C. Kuzyk, K. W. Han, H. L. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Physics 11, 275–280 (2015).
[Crossref]

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref] [PubMed]

2013 (1)

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

2012 (3)

R. L. W. Novikova and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

C. Zheng, X. S. Jiang, S. Y. Hua, L. Chang, G. Y. Li, H. B. Fan, and M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20, 18319–18325 (2012).
[Crossref] [PubMed]

C. H. Dong, V. Fiore, M. C. Kuzyk, and H. L. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

K. Liu, W. J. Lu, Y. P. Chen, and X. F. Chen, “Active control of group velocity by use of folded dielectric axes structures,” Appl. Phys. Lett. 97, 071104 (2010).
[Crossref]

Q. Wang, F. Xu, Z. Y. Yu, X. S. Qian, X. K. Hu, Y. Q. Lu, and H. T. Wang, “A bidirectional tunable optical diode based on periodically poled LiNbO3,” Opt. Express 18, 7340–7346 (2010).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref] [PubMed]

2009 (2)

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009).
[Crossref]

X. D. Yang, M. B. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (1)

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

2005 (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

S. Longhi, D. Janner, G. Galzerano, G. Valle, D. Gatti, and P. Laporta, “Optical buffering in phase-shifted fibre grating,” Electron. Lett. 41, 1075–1077 (2005).
[Crossref]

2003 (1)

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107 (1990).
[Crossref] [PubMed]

Andersson, L. M.

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref] [PubMed]

Bahl, G.

J. H. Kim, M. C. Kuzyk, K. W. Han, H. L. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Physics 11, 275–280 (2015).
[Crossref]

Chang, L.

Chauvet, M.

Chen, X. F.

K. Liu, W. J. Lu, Y. P. Chen, and X. F. Chen, “Active control of group velocity by use of folded dielectric axes structures,” Appl. Phys. Lett. 97, 071104 (2010).
[Crossref]

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009).
[Crossref]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117 (2003).
[Crossref] [PubMed]

Chen, Y. L.

Chen, Y. P.

K. Liu, W. J. Lu, Y. P. Chen, and X. F. Chen, “Active control of group velocity by use of folded dielectric axes structures,” Appl. Phys. Lett. 97, 071104 (2010).
[Crossref]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117 (2003).
[Crossref] [PubMed]

Coda, V.

Cui, G. X.

G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6, 125034 (2016).
[Crossref]

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref] [PubMed]

Dong, C. H.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref] [PubMed]

C. H. Dong, V. Fiore, M. C. Kuzyk, and H. L. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Fan, H. B.

Fan, S. H.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107 (1990).
[Crossref] [PubMed]

Fiore, V.

C. H. Dong, V. Fiore, M. C. Kuzyk, and H. L. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Fu, W.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref] [PubMed]

Galzerano, G.

S. Longhi, D. Janner, G. Galzerano, G. Valle, D. Gatti, and P. Laporta, “Optical buffering in phase-shifted fibre grating,” Electron. Lett. 41, 1075–1077 (2005).
[Crossref]

Gatti, D.

S. Longhi, D. Janner, G. Galzerano, G. Valle, D. Gatti, and P. Laporta, “Optical buffering in phase-shifted fibre grating,” Electron. Lett. 41, 1075–1077 (2005).
[Crossref]

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref] [PubMed]

Guilbert, L.

Guo, G. C.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref] [PubMed]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

Han, K. W.

J. H. Kim, M. C. Kuzyk, K. W. Han, H. L. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Physics 11, 275–280 (2015).
[Crossref]

Harris, S. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107 (1990).
[Crossref] [PubMed]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

Hu, X. K.

Hua, S. Y.

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107 (1990).
[Crossref] [PubMed]

Janner, D.

S. Longhi, D. Janner, G. Galzerano, G. Valle, D. Gatti, and P. Laporta, “Optical buffering in phase-shifted fibre grating,” Electron. Lett. 41, 1075–1077 (2005).
[Crossref]

Jiang, X. S.

Kim, J. H.

J. H. Kim, M. C. Kuzyk, K. W. Han, H. L. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Physics 11, 275–280 (2015).
[Crossref]

Kippenberg, T. J.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref] [PubMed]

Kuzyk, M. C.

J. H. Kim, M. C. Kuzyk, K. W. Han, H. L. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Physics 11, 275–280 (2015).
[Crossref]

C. H. Dong, V. Fiore, M. C. Kuzyk, and H. L. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Kwong, D. L.

X. D. Yang, M. B. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Laporta, P.

S. Longhi, D. Janner, G. Galzerano, G. Valle, D. Gatti, and P. Laporta, “Optical buffering in phase-shifted fibre grating,” Electron. Lett. 41, 1075–1077 (2005).
[Crossref]

Li, G. Y.

Lipson, M.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Liu, K.

K. Liu, W. J. Lu, Y. P. Chen, and X. F. Chen, “Active control of group velocity by use of folded dielectric axes structures,” Appl. Phys. Lett. 97, 071104 (2010).
[Crossref]

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009).
[Crossref]

Longhi, S.

S. Longhi, D. Janner, G. Galzerano, G. Valle, D. Gatti, and P. Laporta, “Optical buffering in phase-shifted fibre grating,” Electron. Lett. 41, 1075–1077 (2005).
[Crossref]

Lu, W. J.

K. Liu, W. J. Lu, Y. P. Chen, and X. F. Chen, “Active control of group velocity by use of folded dielectric axes structures,” Appl. Phys. Lett. 97, 071104 (2010).
[Crossref]

Lu, Y. Q.

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Mhaouech, I.

Montemezzani, G.

Neff, C. W.

Novikova, R. L. W.

R. L. W. Novikova and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Povinelli, M. L.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Qian, X. S.

Qiu, M.

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref] [PubMed]

Ruan, Y. P.

G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6, 125034 (2016).
[Crossref]

Sandhu, S.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref] [PubMed]

Shakya, J.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Shao, G. H.

G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6, 125034 (2016).
[Crossref]

Shen, Z.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref] [PubMed]

Shi, J. H.

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009).
[Crossref]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117 (2003).
[Crossref] [PubMed]

Song, J.

G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6, 125034 (2016).
[Crossref]

Song, X. S.

Valle, G.

S. Longhi, D. Janner, G. Galzerano, G. Valle, D. Gatti, and P. Laporta, “Optical buffering in phase-shifted fibre grating,” Electron. Lett. 41, 1075–1077 (2005).
[Crossref]

Wang, H. L.

J. H. Kim, M. C. Kuzyk, K. W. Han, H. L. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Physics 11, 275–280 (2015).
[Crossref]

C. H. Dong, V. Fiore, M. C. Kuzyk, and H. L. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Wang, H. T.

Wang, Q.

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref] [PubMed]

Wong, C. W.

X. D. Yang, M. B. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Xia, Y. X.

Xiao, M.

Xiao, Y.

R. L. W. Novikova and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Xu, F.

Xu, Q. F.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Yang, X. D.

X. D. Yang, M. B. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Yu, M. B.

X. D. Yang, M. B. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Yu, Z. Y.

Zhang, Y. L.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref] [PubMed]

Zheng, C.

Zhu, Y. M.

Zou, C. L.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref] [PubMed]

AIP Adv. (1)

G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6, 125034 (2016).
[Crossref]

Appl. Phys. Lett. (2)

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009).
[Crossref]

K. Liu, W. J. Lu, Y. P. Chen, and X. F. Chen, “Active control of group velocity by use of folded dielectric axes structures,” Appl. Phys. Lett. 97, 071104 (2010).
[Crossref]

Electron. Lett. (1)

S. Longhi, D. Janner, G. Galzerano, G. Valle, D. Gatti, and P. Laporta, “Optical buffering in phase-shifted fibre grating,” Electron. Lett. 41, 1075–1077 (2005).
[Crossref]

Laser Photonics Rev. (1)

R. L. W. Novikova and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Nat. Commun. (1)

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref] [PubMed]

Nat. Physics (1)

J. H. Kim, M. C. Kuzyk, K. W. Han, H. L. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Physics 11, 275–280 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (4)

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107 (1990).
[Crossref] [PubMed]

X. D. Yang, M. B. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Science (2)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref] [PubMed]

C. H. Dong, V. Fiore, M. C. Kuzyk, and H. L. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Phase-shifted Solc-type filter based on PPLN in a reflective geometry. (a) Schematic of the experimental setup. (b) Photograph of the device components, compared with a coin. (c) Beam profile after passing the PPLN in the far field.
Fig. 2
Fig. 2 (a) The PPLN based Solc-type transmission characteristics in single-pass geometry. The applied voltage is 90 V. (b) The transmission at the central wavelength varied with the applied voltage. (c) The central wavelength of Solc filtering varied with temperature.
Fig. 3
Fig. 3 The transmission of the PPLN in the reflective geometry, showing tunable EIT-like spectra under different applied voltages.
Fig. 4
Fig. 4 (a) Experimentally measured temporal delay in a reflective Bragg grating at different wavelengths at the photonic gap edge of 1549.85 nm. (b) Experimentally measured temporal delay in PPLN in reflective geometry controlled by external voltage.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M i = R ( θ ) W i R ( θ ) = [ cos θ sin θ sin θ cos θ ] [ e i δ ϕ / 2 0 0 e i δ ϕ / 2 ] [ cos θ sin θ sin θ cos θ ] .

Metrics