Abstract

A self-consistent theoretical model considering both energy-transfer upconversion (ETU) and excited-state absorption (ESA) effects, as well as the couplings among the temperature distribution in the laser crystal, the thermal fractional loading, the upper state population involved in the ETU and ESA effects, the laser output and other temperature-dependent parameters, was developed to simulate the behaviors of diode-end-pumped continuous-wave (CW) single-transverse-mode (TEM00) lasers. Based on the theoretical and experimental investigations of the influences of ETU and ESA effects on laser performance, a high power CW TEM00 Nd:YVO4 1.34 μm laser dual-end pumped at 880 nm was achieved with a maximum output power of 16 W. The measured laser beam quality was M2x = M2y = 1.17 and the stability of the laser output was better than ± 0.9% in a given four hours. The theoretical predictions considering both ETU and ESA effects are in good agreement with experimental results.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Influence of energy transfer upconversion on thermal lens of Nd:YVO4 bounce laser amplifier

Ştefan A. Amarande
J. Opt. Soc. Am. B 29(8) 2138-2146 (2012)

High-power stable continuous-wave single-longitudinal-mode Nd:YVO4 laser at 1342 nm

Yayun Ma, Yuanji Li, Jinxia Feng, and Kuanshou Zhang
Opt. Express 26(2) 1538-1546 (2018)

Influence of energy-transfer-upconversion on threshold pump power in quasi-three-level solid-state lasers

J. W. Kim, J. I. Mackenzie, and W. A. Clarkson
Opt. Express 17(14) 11935-11943 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
    [Crossref] [PubMed]
  2. M. R. Huo, J. L. Qin, Z. H. Yan, X. J. Jia, and K. C. Peng, “Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal,” Appl. Phys. Lett. 109(22), 221101 (2016).
    [Crossref]
  3. Y. Yan, H. Zhang, Y. Liu, X. Yu, H. Zhang, J. He, and J. Xin, “Near-diffraction-limited,35.4 W laser-diode end-pumped Nd:YVO4 slab laser operating at 1342 nm,” Opt. Lett. 34(14), 2105–2107 (2009).
    [Crossref] [PubMed]
  4. L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
    [Crossref]
  5. Y. F. Chen, L. J. Lee, T. M. Huang, and C. L. Wang, “Study of high-power diode-end- pumped Nd:YVO4 laser at 1.34 μm: influence of Auger upconversion,” Opt. Commun. 163(4–6), 198–202 (1999).
    [Crossref]
  6. M. Okida, M. Itoh, T. Yatagai, H. Ogilvy, J. Piper, and T. Omatsu, “Heat generation in Nd doped vanadate crystals with 1.34 μm laser action,” Opt. Express 13(13), 4909–4915 (2005).
    [Crossref] [PubMed]
  7. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F 3/2→4I 11/2 and 4F 3/2→4I 13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
    [Crossref] [PubMed]
  8. F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96(4), 803–807 (2009).
    [Crossref]
  9. B. Li, X. Ding, B. Sun, Q. Sheng, J. Liu, Z. Wei, P. Jiang, C. Fan, H. Zhang, and J. Yao, “12.45 W wavelength-locked 878.6 nm laser diode in-band pumped multisegmented Nd:YVO4 laser operating at 1342 nm,” Appl. Opt. 53(29), 6778–6781 (2014).
    [Crossref] [PubMed]
  10. O. Guillot-Noël, A. Kahn-Harari, B. Viana, D. Vivien, E. Antic-Fidancev, and P. Porcher, “Optical spectra and crystal field calculations of Nd3+ doped zircon-type YMO4 laser hosts (M = V, P, As),” J. Phys. Condens. Matter 10(29), 6491–6503 (1998).
    [Crossref]
  11. Y. F. Chen, Y. P. Lan, and S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped CW lasers,” IEEE J. Quantum Electron. 36(5), 615–619 (2000).
    [Crossref]
  12. Y. Guyot and R. Moncorge, “Excited-state absorption in the infrared emission domain of Nd3+-doped Y3Al5O12, YLiF4, and LaMgAl11O19,” J. Appl. Phys. 73(12), 8526–8530 (1993).
    [Crossref]
  13. X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, and M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
    [Crossref]
  14. S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43(24), 4753–4767 (2004).
    [Crossref] [PubMed]
  15. M. D. Wei, Y. S. Lai, and K. C. Chang, “Generation of a radially polarized laser beam in a single microchip Nd:YVO4 laser,” Opt. Lett. 38(14), 2443–2445 (2013).
    [Crossref] [PubMed]
  16. M. Sabaeian, H. Nadgaran, and L. Mousave, “Analytical solution of the heat equation in a longitudinally pumped cubic solid-state laser,” Appl. Opt. 47(13), 2317–2325 (2008).
    [Crossref] [PubMed]
  17. Y. Wang, W. Yang, H. Zhou, M. Huo, and Y. Zheng, “Temperature dependence of the fractional thermal load of Nd:YVO4 at 1064 nm lasing and its influence on laser performance,” Opt. Express 21(15), 18068–18078 (2013).
    [Crossref] [PubMed]
  18. N. Ter-Gabrielyan, V. Fromzel, and M. Dubinskii, “Linear thermal expansion and thermo-optic coefficients of YVO4 crystals the 80-320 K temperature range,” Opt. Mater. Express 2(11), 1624–1631 (2012).
    [Crossref]
  19. D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt. 49(4), 644–647 (2010).
    [Crossref] [PubMed]
  20. G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bass, “Temperature-dependent stimulated emission cross section in Nd3+:YVO4 crystals,” J. Opt. Soc. Am. B 26(11), 2084–2088 (2009).
    [Crossref]
  21. Y. G. Zhao, H. H. Yu, Z. P. Wang, H. J. Zhang, X. G. Xu, and J. Y. Wang, “Homogeneous and inhomogeneous spectrum broadening in Nd3+-doped mixed vanadate crystals,” Opt. Mater. 71, 78–85 (2017).
    [Crossref]
  22. N. A. Tolstik, G. Huber, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Excited state absorption, energy levels, and thermal conductivity of Er3+:YAB,” Appl. Phys. B 92(4), 567–571 (2008).
    [Crossref]
  23. M. Laroche, S. Girard, J. K. Sahu, W. A. Clarkson, and J. Nilsson, “Accurate efficiency evaluation of energy-transfer processes in phosphosilicate Er3+-Yb3+-codoped fibers,” J. Opt. Soc. Am. B 23(2), 195–202 (2006).
    [Crossref]
  24. P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis of thermal focal length on Nd:YAG rods,” Appl. Opt. 46(26), 6655–6661 (2007).
    [Crossref] [PubMed]
  25. Y. J. Shen, M. L. Gong, E. C. Ji, X. Fu, and L. C. Sun, “Spatial dynamic thermal iteration model for 888 nm end-pumped Nd:YVO4 solid-state laser oscillators and amplifiers,” Opt. Commun. 383, 430–440 (2017).
    [Crossref]

2017 (2)

Y. G. Zhao, H. H. Yu, Z. P. Wang, H. J. Zhang, X. G. Xu, and J. Y. Wang, “Homogeneous and inhomogeneous spectrum broadening in Nd3+-doped mixed vanadate crystals,” Opt. Mater. 71, 78–85 (2017).
[Crossref]

Y. J. Shen, M. L. Gong, E. C. Ji, X. Fu, and L. C. Sun, “Spatial dynamic thermal iteration model for 888 nm end-pumped Nd:YVO4 solid-state laser oscillators and amplifiers,” Opt. Commun. 383, 430–440 (2017).
[Crossref]

2016 (1)

M. R. Huo, J. L. Qin, Z. H. Yan, X. J. Jia, and K. C. Peng, “Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal,” Appl. Phys. Lett. 109(22), 221101 (2016).
[Crossref]

2014 (1)

2013 (3)

2012 (1)

2010 (1)

2009 (3)

2008 (4)

M. Sabaeian, H. Nadgaran, and L. Mousave, “Analytical solution of the heat equation in a longitudinally pumped cubic solid-state laser,” Appl. Opt. 47(13), 2317–2325 (2008).
[Crossref] [PubMed]

N. A. Tolstik, G. Huber, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Excited state absorption, energy levels, and thermal conductivity of Er3+:YAB,” Appl. Phys. B 92(4), 567–571 (2008).
[Crossref]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F 3/2→4I 11/2 and 4F 3/2→4I 13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
[Crossref] [PubMed]

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, and M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

2000 (1)

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped CW lasers,” IEEE J. Quantum Electron. 36(5), 615–619 (2000).
[Crossref]

1999 (1)

Y. F. Chen, L. J. Lee, T. M. Huang, and C. L. Wang, “Study of high-power diode-end- pumped Nd:YVO4 laser at 1.34 μm: influence of Auger upconversion,” Opt. Commun. 163(4–6), 198–202 (1999).
[Crossref]

1998 (2)

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

O. Guillot-Noël, A. Kahn-Harari, B. Viana, D. Vivien, E. Antic-Fidancev, and P. Porcher, “Optical spectra and crystal field calculations of Nd3+ doped zircon-type YMO4 laser hosts (M = V, P, As),” J. Phys. Condens. Matter 10(29), 6491–6503 (1998).
[Crossref]

1993 (1)

Y. Guyot and R. Moncorge, “Excited-state absorption in the infrared emission domain of Nd3+-doped Y3Al5O12, YLiF4, and LaMgAl11O19,” J. Appl. Phys. 73(12), 8526–8530 (1993).
[Crossref]

Antic-Fidancev, E.

O. Guillot-Noël, A. Kahn-Harari, B. Viana, D. Vivien, E. Antic-Fidancev, and P. Porcher, “Optical spectra and crystal field calculations of Nd3+ doped zircon-type YMO4 laser hosts (M = V, P, As),” J. Phys. Condens. Matter 10(29), 6491–6503 (1998).
[Crossref]

Bartschke, J.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96(4), 803–807 (2009).
[Crossref]

Bass, M.

Bauer, T.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96(4), 803–807 (2009).
[Crossref]

Bjurshagen, S.

Chai, B. H. T.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

Chang, K. C.

Chang, Y. T.

Chen, W.

Chen, Y. F.

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F 3/2→4I 11/2 and 4F 3/2→4I 13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
[Crossref] [PubMed]

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped CW lasers,” IEEE J. Quantum Electron. 36(5), 615–619 (2000).
[Crossref]

Y. F. Chen, L. J. Lee, T. M. Huang, and C. L. Wang, “Study of high-power diode-end- pumped Nd:YVO4 laser at 1.34 μm: influence of Auger upconversion,” Opt. Commun. 163(4–6), 198–202 (1999).
[Crossref]

Clarkson, W. A.

Cornacchia, F.

Currin, K. M.

Ding, X.

Dubinskii, M.

Fan, C.

Fornasiero, L.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

Fromzel, V.

Fu, X.

Y. J. Shen, M. L. Gong, E. C. Ji, X. Fu, and L. C. Sun, “Spatial dynamic thermal iteration model for 888 nm end-pumped Nd:YVO4 solid-state laser oscillators and amplifiers,” Opt. Commun. 383, 430–440 (2017).
[Crossref]

Gan, A.

Girard, S.

Gong, M.

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, and M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[Crossref]

Gong, M. L.

Y. J. Shen, M. L. Gong, E. C. Ji, X. Fu, and L. C. Sun, “Spatial dynamic thermal iteration model for 888 nm end-pumped Nd:YVO4 solid-state laser oscillators and amplifiers,” Opt. Commun. 383, 430–440 (2017).
[Crossref]

Guillot-Noël, O.

O. Guillot-Noël, A. Kahn-Harari, B. Viana, D. Vivien, E. Antic-Fidancev, and P. Porcher, “Optical spectra and crystal field calculations of Nd3+ doped zircon-type YMO4 laser hosts (M = V, P, As),” J. Phys. Condens. Matter 10(29), 6491–6503 (1998).
[Crossref]

Guyot, Y.

Y. Guyot and R. Moncorge, “Excited-state absorption in the infrared emission domain of Nd3+-doped Y3Al5O12, YLiF4, and LaMgAl11O19,” J. Appl. Phys. 73(12), 8526–8530 (1993).
[Crossref]

He, J.

Huang, L.

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, and M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[Crossref]

Huang, T. M.

Y. F. Chen, L. J. Lee, T. M. Huang, and C. L. Wang, “Study of high-power diode-end- pumped Nd:YVO4 laser at 1.34 μm: influence of Auger upconversion,” Opt. Commun. 163(4–6), 198–202 (1999).
[Crossref]

Huang, X.

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, and M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[Crossref]

Huang, Y. P.

Huber, G.

N. A. Tolstik, G. Huber, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Excited state absorption, energy levels, and thermal conductivity of Er3+:YAB,” Appl. Phys. B 92(4), 567–571 (2008).
[Crossref]

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

Huo, M.

Huo, M. R.

M. R. Huo, J. L. Qin, Z. H. Yan, X. J. Jia, and K. C. Peng, “Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal,” Appl. Phys. Lett. 109(22), 221101 (2016).
[Crossref]

Itoh, M.

Jensen, T.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

Jenssen, H. P.

Ji, E. C.

Y. J. Shen, M. L. Gong, E. C. Ji, X. Fu, and L. C. Sun, “Spatial dynamic thermal iteration model for 888 nm end-pumped Nd:YVO4 solid-state laser oscillators and amplifiers,” Opt. Commun. 383, 430–440 (2017).
[Crossref]

Jia, X. J.

M. R. Huo, J. L. Qin, Z. H. Yan, X. J. Jia, and K. C. Peng, “Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal,” Appl. Phys. Lett. 109(22), 221101 (2016).
[Crossref]

Jiang, P.

Kahn-Harari, A.

O. Guillot-Noël, A. Kahn-Harari, B. Viana, D. Vivien, E. Antic-Fidancev, and P. Porcher, “Optical spectra and crystal field calculations of Nd3+ doped zircon-type YMO4 laser hosts (M = V, P, As),” J. Phys. Condens. Matter 10(29), 6491–6503 (1998).
[Crossref]

Koch, R.

Kück, S.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

Kuleshov, N. V.

N. A. Tolstik, G. Huber, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Excited state absorption, energy levels, and thermal conductivity of Er3+:YAB,” Appl. Phys. B 92(4), 567–571 (2008).
[Crossref]

L’huillier, J. A.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96(4), 803–807 (2009).
[Crossref]

Lai, Y. S.

Lan, Y. P.

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped CW lasers,” IEEE J. Quantum Electron. 36(5), 615–619 (2000).
[Crossref]

Laroche, M.

Lee, J. J.

Lee, L. J.

Y. F. Chen, L. J. Lee, T. M. Huang, and C. L. Wang, “Study of high-power diode-end- pumped Nd:YVO4 laser at 1.34 μm: influence of Auger upconversion,” Opt. Commun. 163(4–6), 198–202 (1999).
[Crossref]

Lenhardt, F.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96(4), 803–807 (2009).
[Crossref]

Leonyuk, N. I.

N. A. Tolstik, G. Huber, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Excited state absorption, energy levels, and thermal conductivity of Er3+:YAB,” Appl. Phys. B 92(4), 567–571 (2008).
[Crossref]

Li, B.

Li, L.

Liu, J.

Liu, Q.

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, and M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[Crossref]

Liu, Y.

Majaron, B.

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
[Crossref] [PubMed]

Maltsev, V. V.

N. A. Tolstik, G. Huber, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Excited state absorption, energy levels, and thermal conductivity of Er3+:YAB,” Appl. Phys. B 92(4), 567–571 (2008).
[Crossref]

Milanic, M.

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
[Crossref] [PubMed]

Moncorge, R.

Y. Guyot and R. Moncorge, “Excited-state absorption in the infrared emission domain of Nd3+-doped Y3Al5O12, YLiF4, and LaMgAl11O19,” J. Appl. Phys. 73(12), 8526–8530 (1993).
[Crossref]

Mousave, L.

Nadgaran, H.

Nilsson, J.

Nittmann, M.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96(4), 803–807 (2009).
[Crossref]

Northridge, J. M.

Ogilvy, H.

Okida, M.

Omatsu, T.

Peng, K. C.

M. R. Huo, J. L. Qin, Z. H. Yan, X. J. Jia, and K. C. Peng, “Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal,” Appl. Phys. Lett. 109(22), 221101 (2016).
[Crossref]

Perlov, D.

Piper, J.

Porcher, P.

O. Guillot-Noël, A. Kahn-Harari, B. Viana, D. Vivien, E. Antic-Fidancev, and P. Porcher, “Optical spectra and crystal field calculations of Nd3+ doped zircon-type YMO4 laser hosts (M = V, P, As),” J. Phys. Condens. Matter 10(29), 6491–6503 (1998).
[Crossref]

Qin, J. L.

M. R. Huo, J. L. Qin, Z. H. Yan, X. J. Jia, and K. C. Peng, “Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal,” Appl. Phys. Lett. 109(22), 221101 (2016).
[Crossref]

Sabaeian, M.

Sahu, J. K.

Shen, Y. J.

Y. J. Shen, M. L. Gong, E. C. Ji, X. Fu, and L. C. Sun, “Spatial dynamic thermal iteration model for 888 nm end-pumped Nd:YVO4 solid-state laser oscillators and amplifiers,” Opt. Commun. 383, 430–440 (2017).
[Crossref]

Sheng, Q.

Shi, P.

Su, K. W.

Sun, B.

Sun, L. C.

Y. J. Shen, M. L. Gong, E. C. Ji, X. Fu, and L. C. Sun, “Spatial dynamic thermal iteration model for 888 nm end-pumped Nd:YVO4 solid-state laser oscillators and amplifiers,” Opt. Commun. 383, 430–440 (2017).
[Crossref]

Ter-Gabrielyan, N.

Tolstik, N. A.

N. A. Tolstik, G. Huber, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Excited state absorption, energy levels, and thermal conductivity of Er3+:YAB,” Appl. Phys. B 92(4), 567–571 (2008).
[Crossref]

Tonelli, M.

Turri, G.

Viana, B.

O. Guillot-Noël, A. Kahn-Harari, B. Viana, D. Vivien, E. Antic-Fidancev, and P. Porcher, “Optical spectra and crystal field calculations of Nd3+ doped zircon-type YMO4 laser hosts (M = V, P, As),” J. Phys. Condens. Matter 10(29), 6491–6503 (1998).
[Crossref]

Vivien, D.

O. Guillot-Noël, A. Kahn-Harari, B. Viana, D. Vivien, E. Antic-Fidancev, and P. Porcher, “Optical spectra and crystal field calculations of Nd3+ doped zircon-type YMO4 laser hosts (M = V, P, As),” J. Phys. Condens. Matter 10(29), 6491–6503 (1998).
[Crossref]

Wang, C. L.

Y. F. Chen, L. J. Lee, T. M. Huang, and C. L. Wang, “Study of high-power diode-end- pumped Nd:YVO4 laser at 1.34 μm: influence of Auger upconversion,” Opt. Commun. 163(4–6), 198–202 (1999).
[Crossref]

Wang, D.

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, and M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[Crossref]

Wang, J. Y.

Y. G. Zhao, H. H. Yu, Z. P. Wang, H. J. Zhang, X. G. Xu, and J. Y. Wang, “Homogeneous and inhomogeneous spectrum broadening in Nd3+-doped mixed vanadate crystals,” Opt. Mater. 71, 78–85 (2017).
[Crossref]

Wang, S. C.

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped CW lasers,” IEEE J. Quantum Electron. 36(5), 615–619 (2000).
[Crossref]

Wang, Y.

Y. Wang, W. Yang, H. Zhou, M. Huo, and Y. Zheng, “Temperature dependence of the fractional thermal load of Nd:YVO4 at 1064 nm lasing and its influence on laser performance,” Opt. Express 21(15), 18068–18078 (2013).
[Crossref] [PubMed]

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, and M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[Crossref]

Wang, Z. P.

Y. G. Zhao, H. H. Yu, Z. P. Wang, H. J. Zhang, X. G. Xu, and J. Y. Wang, “Homogeneous and inhomogeneous spectrum broadening in Nd3+-doped mixed vanadate crystals,” Opt. Mater. 71, 78–85 (2017).
[Crossref]

Wei, M. D.

Wei, Z.

Xin, J.

Xu, X. G.

Y. G. Zhao, H. H. Yu, Z. P. Wang, H. J. Zhang, X. G. Xu, and J. Y. Wang, “Homogeneous and inhomogeneous spectrum broadening in Nd3+-doped mixed vanadate crystals,” Opt. Mater. 71, 78–85 (2017).
[Crossref]

Yan, X.

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, and M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[Crossref]

Yan, Y.

Yan, Z. H.

M. R. Huo, J. L. Qin, Z. H. Yan, X. J. Jia, and K. C. Peng, “Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal,” Appl. Phys. Lett. 109(22), 221101 (2016).
[Crossref]

Yang, W.

Yao, J.

Yatagai, T.

Yu, H. H.

Y. G. Zhao, H. H. Yu, Z. P. Wang, H. J. Zhang, X. G. Xu, and J. Y. Wang, “Homogeneous and inhomogeneous spectrum broadening in Nd3+-doped mixed vanadate crystals,” Opt. Mater. 71, 78–85 (2017).
[Crossref]

Yu, X.

Zelmon, D. E.

Zhang, H.

Zhang, H. J.

Y. G. Zhao, H. H. Yu, Z. P. Wang, H. J. Zhang, X. G. Xu, and J. Y. Wang, “Homogeneous and inhomogeneous spectrum broadening in Nd3+-doped mixed vanadate crystals,” Opt. Mater. 71, 78–85 (2017).
[Crossref]

Zhao, Y. G.

Y. G. Zhao, H. H. Yu, Z. P. Wang, H. J. Zhang, X. G. Xu, and J. Y. Wang, “Homogeneous and inhomogeneous spectrum broadening in Nd3+-doped mixed vanadate crystals,” Opt. Mater. 71, 78–85 (2017).
[Crossref]

Zheng, Y.

Zhou, H.

Appl. Opt. (5)

Appl. Phys. B (3)

N. A. Tolstik, G. Huber, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Excited state absorption, energy levels, and thermal conductivity of Er3+:YAB,” Appl. Phys. B 92(4), 567–571 (2008).
[Crossref]

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96(4), 803–807 (2009).
[Crossref]

Appl. Phys. Lett. (1)

M. R. Huo, J. L. Qin, Z. H. Yan, X. J. Jia, and K. C. Peng, “Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal,” Appl. Phys. Lett. 109(22), 221101 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped CW lasers,” IEEE J. Quantum Electron. 36(5), 615–619 (2000).
[Crossref]

J. Appl. Phys. (1)

Y. Guyot and R. Moncorge, “Excited-state absorption in the infrared emission domain of Nd3+-doped Y3Al5O12, YLiF4, and LaMgAl11O19,” J. Appl. Phys. 73(12), 8526–8530 (1993).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Condens. Matter (1)

O. Guillot-Noël, A. Kahn-Harari, B. Viana, D. Vivien, E. Antic-Fidancev, and P. Porcher, “Optical spectra and crystal field calculations of Nd3+ doped zircon-type YMO4 laser hosts (M = V, P, As),” J. Phys. Condens. Matter 10(29), 6491–6503 (1998).
[Crossref]

Laser Phys. Lett. (1)

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, and M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[Crossref]

Lasers Surg. Med. (1)

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
[Crossref] [PubMed]

Opt. Commun. (2)

Y. F. Chen, L. J. Lee, T. M. Huang, and C. L. Wang, “Study of high-power diode-end- pumped Nd:YVO4 laser at 1.34 μm: influence of Auger upconversion,” Opt. Commun. 163(4–6), 198–202 (1999).
[Crossref]

Y. J. Shen, M. L. Gong, E. C. Ji, X. Fu, and L. C. Sun, “Spatial dynamic thermal iteration model for 888 nm end-pumped Nd:YVO4 solid-state laser oscillators and amplifiers,” Opt. Commun. 383, 430–440 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

Y. G. Zhao, H. H. Yu, Z. P. Wang, H. J. Zhang, X. G. Xu, and J. Y. Wang, “Homogeneous and inhomogeneous spectrum broadening in Nd3+-doped mixed vanadate crystals,” Opt. Mater. 71, 78–85 (2017).
[Crossref]

Opt. Mater. Express (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Energy-level diagram of Nd:YVO4 involving levels and processes relative to the laser transition at 1.34 μm.
Fig. 2
Fig. 2 Temperature dependences of (a) stimulated emission cross-section and ESA cross-section, (b) ETU parameter.
Fig. 3
Fig. 3 Iteration procedure used for the simulations of the temperature distribution inside the laser crystal, the thermal focal length of laser crystal and laser performance.
Fig. 4
Fig. 4 Simulated temperature distributions at x = y = 1.5 mm along z-direction (a) with and (b) without the effects of ETU and ESA taken into account.
Fig. 5
Fig. 5 Simulated distributions of OPD (a) with and (b) without the effects of ETU and ESA taken into account.
Fig. 6
Fig. 6 Simulated relationships between (Netu + Nesa)/N0 and Tb at different Toc.
Fig. 7
Fig. 7 Simulated relationships between laser output and Tb at different Toc.
Fig. 8
Fig. 8 Experimental setup of a diode-end-pumped 1.34 μm Nd:YVO4 laser
Fig. 9
Fig. 9 Thermal focal length of laser crystal versus incident pump power at different pump schemes and boundary temperatures of laser crystal.
Fig. 10
Fig. 10 Output power of 1.34 μm laser versus incident pump power at different pump schemes and boundary temperatures of laser crystal.
Fig. 11
Fig. 11 1.34 μm output power versus boundary temperatures of laser crystal under dual-end pumping.
Fig. 12
Fig. 12 1.34 μm output power versus transmission of output coupler.
Fig. 13
Fig. 13 Stability of 1.34 μm laser output.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

dn(x,y,z) dt = R p r p (x,y,z) c n e σ e n(x,y,z)Φ ϕ 0 (x,y,z) n(x,y,z) τ γn (x,y,z) 2 ,
dΦ dt = c n e ( σ e σ esa l )Φ Crystal n(x,y,z) ϕ 0 (x,y,z) dV Φ τ c ,
τ c = 2 l eff c 1 δ 0 ln(1 T oc ) ,
r p ( x,y,z )=2 2 α(exp(α( z l 0 l 2 ))+exp(α(lz+ l 0 l 2 ))) ( Γ[ 1 4 ]Γ[ 1 4 ,2 ( A x 2 ω pa ) 4 ] )( Γ[ 1 4 ]Γ[ 1 4 ,2 ( A y 2 ω pa ) 4 ] ) ω pa 2 η α ×exp[ 2( ( x A x 2 ω pa ) 4 + ( y A y 2 ω pa ) 4 ) ],
ϕ 0 ( x,y,z )= 2 π ω 0 2 l eff exp[ 2 x 2 + y 2 ω 0 2 ],
n(x,y,z)= 2 R p r p (x,y,z) [ c n e σ e Φ ϕ 0 (x,y,z)+ 1 τ ]+ { [ c n e σ e Φ ϕ 0 (x,y,z)+ 1 τ ] 2 +4γ R p r p (x,y,z)} 1/2 .
R p = P in η α h ν p ,
P out = ln(1 T oc )Φch ν l 2 l eff ,
Crystal 2 ϕ 0 (x,y,z) r p (x,y,z) A 1 + A 1 2 + A 2 dV= n e h ν p ( δ 0 ln(1 T oc ) ) 2 l eff P in ( σ e σ esa l ) η α τ ,
A 1 = 2 h ν l σ e τ n e P out l eff ln(1 T oc ) ϕ 0 (x,y,z)+1, A 2 = 4 h ν p γ τ 2 P in η α r p (x,y,z).
ξ= ξ 0 + λ p λ l N etu + N esa N 0 ,
N etu =τγ Crystal n (x,y,z) 2 dV ,
N esa = cτ n e σ esa l Φ Crystal n(x,y,z) ϕ 0 (x,y,z) dV.
f ti = f 1 2 l2 f 1 ,
f 1 = 2π K c,a ω pa 2 ξ P in η α 1 d n e /dT+( n e 1) α T ,
K c 2 T( x,y,z ) x 2 + K a 2 T( x,y,z ) y 2 + K a 2 T( x,y,z ) z 2 =ξ P in η α r p ( x,y,z ).
K a T z | z=0 =H[ T( z=0 ) T a ],
K a T z | z= l 0 =H[ T( z= l 0 ) T a ],
T( x=0, A x )=T( y=0, A y )= T b ,
K c = K c,g T g T , K a = K a,g T g T ,
α T =( 0.60786+0.00896*T )* 10 6 ( K 1 ).
α=3.88* 10 4 *T+1.408 (cm 1 ).
n e =2.15478+0.72* 10 5 *( T296 )+0.309* 10 8 * ( T296 ) 2 .
τ( T )= 1+exp( 25.9156/T ) 1/90.3+( 1/107.1 )exp( 25.9156/T ) ( μs ).
σ e ( T )=10.3675× 10 19 ( cm 2 )1.95× 10 21 ( cm 2 /K )×T,
σ esa l ( T )=0.6786× 10 19 ( cm 2 )0.095× 10 21 ( cm 2 /K )×T.
γ( T )=[3.054×exp( 0.02156×T )+217.63]× 10 19 ( cm 3 /s ).
OPD( x,y )= 0 l c [ d n e dT +( n e 1 ) α T ]T( x,y,z )dz .
f t = 2 ω pa 2 OPD( A/2,A/2 )OPD( A/2+2 ω pa ,A/2+2 ω pa ) .

Metrics