Abstract

Considering spectrally resolved absorption and temperature distribution, a physical model is established to describe the laser kinetic and thermodynamic processes of an exciplex pumped Rb vapor laser. A comparison with Carroll’s model is made. Influences of pump intensity, temperature, reflectivity of output coupler, and number density of Kr on the performance of CW Rb-Kr XPAL with uniform temperature distribution are calculated and analyzed. Besides, with the heat accumulation considered, the temperature distribution was calculated, and the maximal optical-to-optical efficiency about 5.7% can be achieved at the condition of pump intensity I0 = 5.2 × 1010 W/m2 and flow velocity u = 250 m/s.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I

Juhong Han, You Wang, He Cai, Wei Zhang, Liangping Xue, and Hongyuan Wang
Opt. Express 22(11) 13988-14003 (2014)

Analysis of continuous wave diode pumped cesium laser with gas circulation: experimental and theoretical studies

Eyal Yacoby, Ilya Auslender, Karol Waichman, Oren Sadot, Boris D. Barmashenko, and Salman Rosenwaks
Opt. Express 26(14) 17814-17819 (2018)

Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part II)

Juhong Han, You Wang, He Cai, Guofei An, Wei Zhang, Liangping Xue, Hongyuan Wang, Jie Zhou, Zhigang Jiang, and Ming Gao
Opt. Express 23(7) 9508-9515 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
    [Crossref]
  2. J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. L. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
    [Crossref]
  3. J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D(2) blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
    [Crossref] [PubMed]
  4. J. D. Readle, “Atomic alkali lasers pumped by the dissociation of photoexcited alkali-rare gas collision pairs,” University of Illinois at Urbana-Champaign, 2010.
  5. A. E. Mironov, D. L. Carroll, J. W. Zimmerman, and J. G. Eden, “Cs D2 line laser (852.1 nm) pumped by the photoassociation of Cs-Ar, Cs-Kr, and Cs-Xe collision pairs: Impact of rare gas partner on threshold and efficiency,” Appl. Phys. Lett. 113(5), 051105 (2018).
    [Crossref]
  6. A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
    [Crossref]
  7. A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
    [Crossref]
  8. D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
    [Crossref]
  9. W. Huang, R. Tan, Z. Li, and X. Lu, “Theoretical model and simulations for a cw exciplex pumped alkali laser,” Opt. Express 23(25), 31698–31715 (2015).
    [Crossref] [PubMed]
  10. X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
    [Crossref]
  11. D. A. Steck, “Rubidium 85 D Line Data,” Available: http://steck.us/alkalidata .
  12. M. C. Heaven and A. V. Stolyarov, “Potential energy curves for alkali metal - Rare gas exciplex lasers,” Proc. 41st AIAA Conf. on Plasmadynamics and Lasers (Chicago, IL, June) AIAA Paper 2010–4877.
    [Crossref]
  13. S. J. Davis, W. T. Rawlins, K. L. Galbally-Kinney, and W. J. Kessler, “Spectroscopic and kinetic measurements of alkali atom-rare gas excimers,” Proc. 41st AIAA Conf. on Plasmadynamics and Lasers (Chicago, IL, June) AIAA Paper 2010–5044.
  14. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [Crossref]
  15. G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
    [Crossref]
  16. B. Shen, B. Pan, J. Jiao, and C. Xia, “Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers,” Opt. Express 23(15), 19500–19511 (2015).
    [Crossref] [PubMed]
  17. E. W. Lemmon, M. O. McLinden, and D. G. Friend, Thermophysical properties of fluid systems (NIST Chemistry Webbook, NIST Standard Reference Database, 2005), Available: http://webbook.nist.gov/chemistry/fluid .
  18. Z. Yang, H. Wang, Q. Lu, L. Liu, Y. Li, W. Hua, X. Xu, and J. Chen, “Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser,” J. Phys. At. Mol. Opt. Phys. 44(8), 085401 (2011).
    [Crossref]

2018 (1)

A. E. Mironov, D. L. Carroll, J. W. Zimmerman, and J. G. Eden, “Cs D2 line laser (852.1 nm) pumped by the photoassociation of Cs-Ar, Cs-Kr, and Cs-Xe collision pairs: Impact of rare gas partner on threshold and efficiency,” Appl. Phys. Lett. 113(5), 051105 (2018).
[Crossref]

2017 (1)

X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
[Crossref]

2015 (2)

2014 (1)

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

2013 (1)

D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
[Crossref]

2011 (2)

Z. Yang, H. Wang, Q. Lu, L. Liu, Y. Li, W. Hua, X. Xu, and J. Chen, “Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser,” J. Phys. At. Mol. Opt. Phys. 44(8), 085401 (2011).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

2010 (2)

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

2009 (1)

2008 (1)

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. L. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

2004 (1)

Beach, R. J.

Carroll, D. L.

A. E. Mironov, D. L. Carroll, J. W. Zimmerman, and J. G. Eden, “Cs D2 line laser (852.1 nm) pumped by the photoassociation of Cs-Ar, Cs-Kr, and Cs-Xe collision pairs: Impact of rare gas partner on threshold and efficiency,” Appl. Phys. Lett. 113(5), 051105 (2018).
[Crossref]

D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. L. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

Chen, J.

Z. Yang, H. Wang, Q. Lu, L. Liu, Y. Li, W. Hua, X. Xu, and J. Chen, “Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser,” J. Phys. At. Mol. Opt. Phys. 44(8), 085401 (2011).
[Crossref]

Davis, S. J.

Dubinskii, M. A.

Eden, J. G.

A. E. Mironov, D. L. Carroll, J. W. Zimmerman, and J. G. Eden, “Cs D2 line laser (852.1 nm) pumped by the photoassociation of Cs-Ar, Cs-Kr, and Cs-Xe collision pairs: Impact of rare gas partner on threshold and efficiency,” Appl. Phys. Lett. 113(5), 051105 (2018).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D(2) blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
[Crossref] [PubMed]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. L. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

Gabally-Kinney, K. L.

Hager, G. D.

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

Heaven, M. C.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Hostutler, D. A.

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

Hua, W.

Z. Yang, H. Wang, Q. Lu, L. Liu, Y. Li, W. Hua, X. Xu, and J. Chen, “Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser,” J. Phys. At. Mol. Opt. Phys. 44(8), 085401 (2011).
[Crossref]

Huang, W.

Jiao, J.

Kanz, V. K.

Kessler, W. J.

Krupke, W. F.

Li, Y.

Z. Yang, H. Wang, Q. Lu, L. Liu, Y. Li, W. Hua, X. Xu, and J. Chen, “Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser,” J. Phys. At. Mol. Opt. Phys. 44(8), 085401 (2011).
[Crossref]

Li, Z.

Liu, L.

Z. Yang, H. Wang, Q. Lu, L. Liu, Y. Li, W. Hua, X. Xu, and J. Chen, “Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser,” J. Phys. At. Mol. Opt. Phys. 44(8), 085401 (2011).
[Crossref]

Lu, Q.

Z. Yang, H. Wang, Q. Lu, L. Liu, Y. Li, W. Hua, X. Xu, and J. Chen, “Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser,” J. Phys. At. Mol. Opt. Phys. 44(8), 085401 (2011).
[Crossref]

Lu, X.

Merkle, L. D.

Mironov, A. E.

A. E. Mironov, D. L. Carroll, J. W. Zimmerman, and J. G. Eden, “Cs D2 line laser (852.1 nm) pumped by the photoassociation of Cs-Ar, Cs-Kr, and Cs-Xe collision pairs: Impact of rare gas partner on threshold and efficiency,” Appl. Phys. Lett. 113(5), 051105 (2018).
[Crossref]

Palla, A. D.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Pan, B.

X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
[Crossref]

B. Shen, B. Pan, J. Jiao, and C. Xia, “Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers,” Opt. Express 23(15), 19500–19511 (2015).
[Crossref] [PubMed]

Payne, S. A.

Perram, G. P.

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

Pitz, G. A.

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

Rawlins, W. T.

Readle, J. D.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D(2) blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
[Crossref] [PubMed]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. L. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

Shen, B.

X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
[Crossref]

B. Shen, B. Pan, J. Jiao, and C. Xia, “Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers,” Opt. Express 23(15), 19500–19511 (2015).
[Crossref] [PubMed]

Spinka, T. M.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

Tafoya, T. B.

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

Tan, R.

Verdeyen, J. T.

D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D(2) blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
[Crossref] [PubMed]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. L. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

Wagner, C. J.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. L. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

Wang, H.

Z. Yang, H. Wang, Q. Lu, L. Liu, Y. Li, W. Hua, X. Xu, and J. Chen, “Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser,” J. Phys. At. Mol. Opt. Phys. 44(8), 085401 (2011).
[Crossref]

Xia, C.

X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
[Crossref]

B. Shen, B. Pan, J. Jiao, and C. Xia, “Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers,” Opt. Express 23(15), 19500–19511 (2015).
[Crossref] [PubMed]

Xu, X.

X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
[Crossref]

Z. Yang, H. Wang, Q. Lu, L. Liu, Y. Li, W. Hua, X. Xu, and J. Chen, “Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser,” J. Phys. At. Mol. Opt. Phys. 44(8), 085401 (2011).
[Crossref]

Yang, Z.

Z. Yang, H. Wang, Q. Lu, L. Liu, Y. Li, W. Hua, X. Xu, and J. Chen, “Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser,” J. Phys. At. Mol. Opt. Phys. 44(8), 085401 (2011).
[Crossref]

Young, J. W.

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

Zimmerman, J. W.

A. E. Mironov, D. L. Carroll, J. W. Zimmerman, and J. G. Eden, “Cs D2 line laser (852.1 nm) pumped by the photoassociation of Cs-Ar, Cs-Kr, and Cs-Xe collision pairs: Impact of rare gas partner on threshold and efficiency,” Appl. Phys. Lett. 113(5), 051105 (2018).
[Crossref]

Appl. Phys. Lett. (1)

A. E. Mironov, D. L. Carroll, J. W. Zimmerman, and J. G. Eden, “Cs D2 line laser (852.1 nm) pumped by the photoassociation of Cs-Ar, Cs-Kr, and Cs-Xe collision pairs: Impact of rare gas partner on threshold and efficiency,” Appl. Phys. Lett. 113(5), 051105 (2018).
[Crossref]

Electron. Lett. (1)

J. D. Readle, C. J. Wagner, J. T. Verdeyen, D. L. Carroll, and J. G. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44(25), 1466–1467 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Xu, B. Shen, C. Xia, and B. Pan, “Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser,” IEEE J. Quantum Electron. 53(2), 1–7 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (2)

D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
[Crossref]

Z. Yang, H. Wang, Q. Lu, L. Liu, Y. Li, W. Hua, X. Xu, and J. Chen, “Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser,” J. Phys. At. Mol. Opt. Phys. 44(8), 085401 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (4)

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

Other (5)

E. W. Lemmon, M. O. McLinden, and D. G. Friend, Thermophysical properties of fluid systems (NIST Chemistry Webbook, NIST Standard Reference Database, 2005), Available: http://webbook.nist.gov/chemistry/fluid .

J. D. Readle, “Atomic alkali lasers pumped by the dissociation of photoexcited alkali-rare gas collision pairs,” University of Illinois at Urbana-Champaign, 2010.

D. A. Steck, “Rubidium 85 D Line Data,” Available: http://steck.us/alkalidata .

M. C. Heaven and A. V. Stolyarov, “Potential energy curves for alkali metal - Rare gas exciplex lasers,” Proc. 41st AIAA Conf. on Plasmadynamics and Lasers (Chicago, IL, June) AIAA Paper 2010–4877.
[Crossref]

S. J. Davis, W. T. Rawlins, K. L. Galbally-Kinney, and W. J. Kessler, “Spectroscopic and kinetic measurements of alkali atom-rare gas excimers,” Proc. 41st AIAA Conf. on Plasmadynamics and Lasers (Chicago, IL, June) AIAA Paper 2010–5044.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Energy levels and kinetic processes in the Rb-Kr system.
Fig. 2
Fig. 2 Schematic diagram of the end-pumped Rb-Kr XPAL system
Fig. 3
Fig. 3 Lateral view of a vapor cell.
Fig. 4
Fig. 4 The non-uniformity of four energy states (a) and simulated optical-to-optical efficiency (b) versus cell temperature at a pump intensity of 1 × 1011 W/m2.
Fig. 5
Fig. 5 Dependences of performances with some factors in Rb-Kr XPAL systems. Figure 5(a) shows the optical-to-optical efficiency versus pump intensity at different cell temperatures. Figure 5(b) shows optimal pump intensity and maximum optical-to-optical efficiency versus temperature.
Fig. 6
Fig. 6 Optical-to-optical efficiency versus the reflectivity of output coupler.
Fig. 7
Fig. 7 Dependences of the optical-to-optical efficiency and absorption efficiency on the number density of Kr at temperature of 475 K, 525 K, and 575 K.
Fig. 8
Fig. 8 The influence of flow velocity on Rb-Kr performances. Figures 8(a) and 8(b) show predicted optical-to-optical efficiency and absorption efficiency versus pump intensity with difference flow velocities. Figures 8(c) and 8(d) draw the longitudinal and radial temperature distributions with pump intensity I0 = 6 × 1010 W/m2.

Tables (1)

Tables Icon

Table 1 Main parameters for the Rb–Kr XPAL system

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

d n 0 dt = k xa n 0 + k xd n 1 +( n 3 2 n 0 ) σ 30 ( I l + + I l ) h v l + A 31 n 3 ,
d n 1 dt = k xd n 1 + k xa n 0 ( n 1 n 2 ) 0 σ 12 (v) I p (v) h v p dv,
d n 2 dt =( n 1 n 2 ) 0 σ 12 (v) I p (v) h v p dv k bd n 2 + k ba n 3 ,
d n 3 dt = k bd n 2 k ba n 3 ( n 3 2 n 0 ) σ 30 ( I l + + I l ) h v l A 31 n 3 ,
n Rb = n 0 + n 1 + n 2 + n 3 ,
k xa =π υ RbKr d RbKr 2 M,
k bd = k xd 1 2 exp{ [ ( E 1 E 0 )( E 3 E 2 ) ]/ k b T },
k xd = k xa n 0 n 1 ,
k ba = k bd n 2 n 3 ,
f 10 = n 1 n 0 = g 1 g 0 4π R 0 2 ΔRexp( Δ E 10 k b T )M,
f 23 = n 2 n 3 = g 2 g 3 4π R 0 2 ΔRexp( Δ E 23 k b T )M,
( n 1 n 2 ) 0 σ 12 (v) I ne (v) h v p dv= k xa n 0 ,
I p (ν)= I 0 ln2 π 2 Δ ν p exp[ 4ln2 (ν ν p ) 2 Δ ν p 2 ],
σ p =k abs n 0 n 1 M,
σ 12 (ν)= σ p (Δ ν abs /2) 2 (ν ν abs ) 2 + (Δ ν abs /2) 2 ,
σ 30 = g 3 g 0 λ l 2 2π 1 2π t 3 Δν ,
I p ± (z+Δz,ν)= I p ± (z,ν)exp{ [ n 1 (z) n 2 (z)] σ 12 (ν)Δz },
I l ± (z+Δz)= I l ± (z)exp{ ±[ n 3 (z)2 n 0 (z)] σ 30 Δz },
Ω k,j =[ ( k xa n 0 (k,j) k xd n 1 (k,j))Δ E 10 +( k bd n 2 (k,j) k ba n 3 (k,j))Δ E 23 ]×ΔV,
F k,j =u S k n( T k ) N A T k,j1 T k,j C P (T)dT,0<z<L ,
Φ k,j = K Kr (2π r k Δz) T k,j T k-1,j r k r k-1 ,
Ω k,j + Φ k-1,j = F k,j + Φ k,j .

Metrics