Abstract

High spectral purity microwave oscillators are widely exploited in science and military areas including communication, radar, and navigation. Here, we theoretically analyze and experimentally observe the application of tunable electromagnetically induced transparency (EIT) effect generated within a single quasi-cylindrical microresonator (QCMR) to a high spectral purity microwave optoelectronic oscillator (OEO). Stable single-frequency microwave oscillation with phase noise of −123 dBc/Hz at 10 kHz offset from ~5 GHz carrier and −135 dBc/Hz at 100 kHz offset is demonstrated without using any narrow-band RF filters. Moreover, we evaluate the impact of laser-mode locking state, quality factor as well as spectral lineshapes of the EIT resonance, laser coupling efficiency, and three configurations of optical energy storage elements on the spectral purity of the oscillator, so as to improve its phase noise and stability performances. Extending the concept of EIT to a microwave generator opens a promising avenue towards compact low-phase-noise oscillator systems for emerging mass applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators

Khaldoun Saleh, Rémi Henriet, Souleymane Diallo, Guoping Lin, Romain Martinenghi, Irina V. Balakireva, Patrice Salzenstein, Aurélien Coillet, and Yanne K. Chembo
Opt. Express 22(26) 32158-32173 (2014)

An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter

Fan Jiang, Jia Haur Wong, Huy Quoc Lam, Junqiang Zhou, Sheel Aditya, Peng Huei Lim, Kenneth Eng Kian Lee, Perry Ping Shum, and Xinliang Zhang
Opt. Express 21(14) 16381-16389 (2013)

Low phase noise optoelectronic oscillator based on an electroabsorption modulated laser

Siyu Zhao and Juanjuan Yan
Appl. Opt. 58(16) 4512-4517 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Khanna, “Microwave oscillators: the state of the technology,” Microwave J. 49, 22 (2006).
  2. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [Crossref]
  3. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
    [Crossref]
  4. D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
    [Crossref]
  5. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  6. R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
    [Crossref]
  7. O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express 19(7), 5839–5854 (2011).
    [Crossref] [PubMed]
  8. K. Volyanskiy, P. Salzenstein, H. Tavernier, M. Pogurmirskiy, Y. K. Chembo, and L. Larger, “Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation,” Opt. Express 18(21), 22358–22363 (2010).
    [Crossref] [PubMed]
  9. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering-gallery-mode electro-optic modulator and photonic microwave receiver,” J. Opt. Soc. Am. B 20(2), 333–342 (2003).
    [Crossref]
  10. K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22(26), 32158–32173 (2014).
    [Crossref] [PubMed]
  11. A. Coillet, R. Henriet, P. Salzenstein, K. P. Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
    [Crossref]
  12. J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
    [Crossref] [PubMed]
  13. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
    [Crossref] [PubMed]
  14. W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively mode-locked Raman laser,” Phys. Rev. Lett. 105(14), 143903 (2010).
    [Crossref] [PubMed]
  15. L. Shi, T. Zhu, D. Huang, C. Liang, M. Liu, and S. Liang, “In-fiber Mach-Zehnder interferometer and sphere whispering gallery mode resonator coupling structure,” Opt. Lett. 42(1), 167–170 (2017).
    [Crossref] [PubMed]
  16. C. Zhao, X. Gan, L. Fang, L. Han, K. Chang, D. Li, and J. Zhao, “Tunable Fano-like resonance enabled by coupling a microsphere with a fiber Mach-Zehnder interferometer,” Appl. Opt. 55(21), 5756–5760 (2016).
    [Crossref] [PubMed]
  17. J. Zhou, H. Chen, Z. Zhang, J. Tang, J. Cui, C. Xue, and S. Yan, “Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity,” AIP Adv. 7(1), 015020 (2017).
    [Crossref]
  18. X. Jin, Y. Dong, and K. Wang, “Stable controlling of electromagnetically induced transparency-like in a single quasi-cylindrical microresonator,” Opt. Express 24(26), 29773–29780 (2016).
    [Crossref] [PubMed]
  19. X. Jin, Y. Dong, and K. Wang, “Selective excitation of axial modes in a high-Q microcylindrical resonator for controlled and robust coupling,” Appl. Opt. 54(27), 8100–8107 (2015).
    [Crossref] [PubMed]
  20. Y. Dong, X. Jin, and K. Wang, “Packaged and robust microcavity device based on a microcylinder–taper coupling system,” Appl. Opt. 54(13), 4016–4022 (2015).
    [Crossref]
  21. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  22. R. M. Nguimdo, K. Saleh, A. Coillet, G. Lin, R. Martinenghi, and Y. K. Chembo, “Phase noise performance of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Quantum Electron. 51(11), 1–8 (2015).
    [Crossref]
  23. Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 44(9), 858–866 (2008).
    [Crossref]
  24. Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
    [Crossref]
  25. M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy,” Opt. Lett. 35(23), 4006–4008 (2010).
    [Crossref] [PubMed]
  26. C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
    [Crossref]
  27. B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
    [Crossref]
  28. X. Jin, Y. Dong, K. Wang, and H. Jian, “Selective Excitation and Probing of Axial Modes in a Microcylindrical Resonator for Robust Filter,” IEEE Photonics Technol. Lett. 28(15), 1649–1652 (2016).
    [Crossref]
  29. Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z. F. Han, and J. J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
    [Crossref] [PubMed]
  30. D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” in Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum,2003. Proceedings of the 2003 IEEE International (IEEE2003), pp. 405–410.
  31. K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol. 28(18), 2730–2735 (2010).
    [Crossref]

2017 (2)

J. Zhou, H. Chen, Z. Zhang, J. Tang, J. Cui, C. Xue, and S. Yan, “Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity,” AIP Adv. 7(1), 015020 (2017).
[Crossref]

L. Shi, T. Zhu, D. Huang, C. Liang, M. Liu, and S. Liang, “In-fiber Mach-Zehnder interferometer and sphere whispering gallery mode resonator coupling structure,” Opt. Lett. 42(1), 167–170 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (4)

R. M. Nguimdo, K. Saleh, A. Coillet, G. Lin, R. Martinenghi, and Y. K. Chembo, “Phase noise performance of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Quantum Electron. 51(11), 1–8 (2015).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref] [PubMed]

Y. Dong, X. Jin, and K. Wang, “Packaged and robust microcavity device based on a microcylinder–taper coupling system,” Appl. Opt. 54(13), 4016–4022 (2015).
[Crossref]

X. Jin, Y. Dong, and K. Wang, “Selective excitation of axial modes in a high-Q microcylindrical resonator for controlled and robust coupling,” Appl. Opt. 54(27), 8100–8107 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (2)

A. Coillet, R. Henriet, P. Salzenstein, K. P. Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref] [PubMed]

2012 (1)

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

2011 (3)

2010 (4)

2009 (3)

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
[Crossref]

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

2008 (2)

Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 44(9), 858–866 (2008).
[Crossref]

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

2006 (1)

A. Khanna, “Microwave oscillators: the state of the technology,” Microwave J. 49, 22 (2006).

2003 (1)

1996 (2)

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

Adles, E. J.

Balakireva, I. V.

Carter, G. M.

Chang, K.

Chembo, Y. K.

R. M. Nguimdo, K. Saleh, A. Coillet, G. Lin, R. Martinenghi, and Y. K. Chembo, “Phase noise performance of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Quantum Electron. 51(11), 1–8 (2015).
[Crossref]

K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22(26), 32158–32173 (2014).
[Crossref] [PubMed]

A. Coillet, R. Henriet, P. Salzenstein, K. P. Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

K. Volyanskiy, P. Salzenstein, H. Tavernier, M. Pogurmirskiy, Y. K. Chembo, and L. Larger, “Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation,” Opt. Express 18(21), 22358–22363 (2010).
[Crossref] [PubMed]

K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol. 28(18), 2730–2735 (2010).
[Crossref]

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
[Crossref]

Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 44(9), 858–866 (2008).
[Crossref]

Chen, H.

J. Zhou, H. Chen, Z. Zhang, J. Tang, J. Cui, C. Xue, and S. Yan, “Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity,” AIP Adv. 7(1), 015020 (2017).
[Crossref]

Chen, Y.-L.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Coillet, A.

R. M. Nguimdo, K. Saleh, A. Coillet, G. Lin, R. Martinenghi, and Y. K. Chembo, “Phase noise performance of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Quantum Electron. 51(11), 1–8 (2015).
[Crossref]

K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22(26), 32158–32173 (2014).
[Crossref] [PubMed]

A. Coillet, R. Henriet, P. Salzenstein, K. P. Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

Colet, P.

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
[Crossref]

Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 44(9), 858–866 (2008).
[Crossref]

Cui, J.

J. Zhou, H. Chen, Z. Zhang, J. Tang, J. Cui, C. Xue, and S. Yan, “Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity,” AIP Adv. 7(1), 015020 (2017).
[Crossref]

Cui, J.-M.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Diallo, S.

Dong, C.-H.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Dong, Y.

Dulashko, Y.

Eliyahu, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref] [PubMed]

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

Fang, L.

Gan, X.

Gong, Q.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Guo, G.-C.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Han, L.

Han, Z. F.

Han, Z.-F.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Henriet, R.

K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22(26), 32158–32173 (2014).
[Crossref] [PubMed]

A. Coillet, R. Henriet, P. Salzenstein, K. P. Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

Horowitz, M.

Huang, D.

Huy, K. P.

A. Coillet, R. Henriet, P. Salzenstein, K. P. Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

Ilchenko, V. S.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively mode-locked Raman laser,” Phys. Rev. Lett. 105(14), 143903 (2010).
[Crossref] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering-gallery-mode electro-optic modulator and photonic microwave receiver,” J. Opt. Soc. Am. B 20(2), 333–342 (2003).
[Crossref]

Ji, Z.

Jian, H.

X. Jin, Y. Dong, K. Wang, and H. Jian, “Selective Excitation and Probing of Axial Modes in a Microcylindrical Resonator for Robust Filter,” IEEE Photonics Technol. Lett. 28(15), 1649–1652 (2016).
[Crossref]

Jiang, X.-F.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Jin, X.

Khanna, A.

A. Khanna, “Microwave oscillators: the state of the technology,” Microwave J. 49, 22 (2006).

Larger, L.

A. Coillet, R. Henriet, P. Salzenstein, K. P. Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol. 28(18), 2730–2735 (2010).
[Crossref]

K. Volyanskiy, P. Salzenstein, H. Tavernier, M. Pogurmirskiy, Y. K. Chembo, and L. Larger, “Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation,” Opt. Express 18(21), 22358–22363 (2010).
[Crossref] [PubMed]

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
[Crossref]

Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 44(9), 858–866 (2008).
[Crossref]

Lee, H.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref] [PubMed]

Levy, E. C.

Li, B.-B.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Li, D.

Li, J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref] [PubMed]

Li, Y.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Liang, C.

Liang, S.

Liang, W.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively mode-locked Raman laser,” Phys. Rev. Lett. 105(14), 143903 (2010).
[Crossref] [PubMed]

Lin, G.

R. M. Nguimdo, K. Saleh, A. Coillet, G. Lin, R. Martinenghi, and Y. K. Chembo, “Phase noise performance of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Quantum Electron. 51(11), 1–8 (2015).
[Crossref]

K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22(26), 32158–32173 (2014).
[Crossref] [PubMed]

Liu, J.

Liu, M.

Liu, Y.-C.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Maleki, L.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively mode-locked Raman laser,” Phys. Rev. Lett. 105(14), 143903 (2010).
[Crossref] [PubMed]

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering-gallery-mode electro-optic modulator and photonic microwave receiver,” J. Opt. Soc. Am. B 20(2), 333–342 (2003).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

Martinenghi, R.

R. M. Nguimdo, K. Saleh, A. Coillet, G. Lin, R. Martinenghi, and Y. K. Chembo, “Phase noise performance of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Quantum Electron. 51(11), 1–8 (2015).
[Crossref]

K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22(26), 32158–32173 (2014).
[Crossref] [PubMed]

Matsko, A. B.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively mode-locked Raman laser,” Phys. Rev. Lett. 105(14), 143903 (2010).
[Crossref] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering-gallery-mode electro-optic modulator and photonic microwave receiver,” J. Opt. Soc. Am. B 20(2), 333–342 (2003).
[Crossref]

Menyuk, C. R.

Nguimdo, R. M.

R. M. Nguimdo, K. Saleh, A. Coillet, G. Lin, R. Martinenghi, and Y. K. Chembo, “Phase noise performance of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Quantum Electron. 51(11), 1–8 (2015).
[Crossref]

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

Okusaga, O.

Pogurmirskiy, M.

Rubiola, E.

K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol. 28(18), 2730–2735 (2010).
[Crossref]

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
[Crossref]

Saleh, K.

R. M. Nguimdo, K. Saleh, A. Coillet, G. Lin, R. Martinenghi, and Y. K. Chembo, “Phase noise performance of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Quantum Electron. 51(11), 1–8 (2015).
[Crossref]

K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22(26), 32158–32173 (2014).
[Crossref] [PubMed]

Salzenstein, P.

Savchenkov, A. A.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively mode-locked Raman laser,” Phys. Rev. Lett. 105(14), 143903 (2010).
[Crossref] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering-gallery-mode electro-optic modulator and photonic microwave receiver,” J. Opt. Soc. Am. B 20(2), 333–342 (2003).
[Crossref]

Seidel, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively mode-locked Raman laser,” Phys. Rev. Lett. 105(14), 143903 (2010).
[Crossref] [PubMed]

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

Shi, L.

Sumetsky, M.

Sun, F.-W.

Tang, J.

J. Zhou, H. Chen, Z. Zhang, J. Tang, J. Cui, C. Xue, and S. Yan, “Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity,” AIP Adv. 7(1), 015020 (2017).
[Crossref]

Tavernier, H.

Vahala, K. J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref] [PubMed]

Volyanskiy, K.

Wang, K.

Wang, L.

Xiao, Y.-F.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Xiong, J. J.

Xue, C.

J. Zhou, H. Chen, Z. Zhang, J. Tang, J. Cui, C. Xue, and S. Yan, “Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity,” AIP Adv. 7(1), 015020 (2017).
[Crossref]

Xue, C.-Y.

Yan, S.

J. Zhou, H. Chen, Z. Zhang, J. Tang, J. Cui, C. Xue, and S. Yan, “Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity,” AIP Adv. 7(1), 015020 (2017).
[Crossref]

Yan, S.-B.

Yan, Y.-Z.

Yao, J.

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

Zhang, W.-D.

Zhang, Y.-G.

Zhang, Z.

J. Zhou, H. Chen, Z. Zhang, J. Tang, J. Cui, C. Xue, and S. Yan, “Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity,” AIP Adv. 7(1), 015020 (2017).
[Crossref]

Zhao, C.

Zhao, J.

Zhou, J.

J. Zhou, H. Chen, Z. Zhang, J. Tang, J. Cui, C. Xue, and S. Yan, “Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity,” AIP Adv. 7(1), 015020 (2017).
[Crossref]

Zhou, W.

Zhu, T.

Zou, C.-L.

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z. F. Han, and J. J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

AIP Adv. (1)

J. Zhou, H. Chen, Z. Zhang, J. Tang, J. Cui, C. Xue, and S. Yan, “Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity,” AIP Adv. 7(1), 015020 (2017).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

IEEE J. Quantum Electron. (5)

R. M. Nguimdo, K. Saleh, A. Coillet, G. Lin, R. Martinenghi, and Y. K. Chembo, “Phase noise performance of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Quantum Electron. 51(11), 1–8 (2015).
[Crossref]

Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 44(9), 858–866 (2008).
[Crossref]

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Coillet, R. Henriet, P. Salzenstein, K. P. Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Jin, Y. Dong, K. Wang, and H. Jian, “Selective Excitation and Probing of Axial Modes in a Microcylindrical Resonator for Robust Filter,” IEEE Photonics Technol. Lett. 28(15), 1649–1652 (2016).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Microwave J. (1)

A. Khanna, “Microwave oscillators: the state of the technology,” Microwave J. 49, 22 (2006).

Nat. Commun. (2)

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref] [PubMed]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively mode-locked Raman laser,” Phys. Rev. Lett. 105(14), 143903 (2010).
[Crossref] [PubMed]

Other (2)

D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” in Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum,2003. Proceedings of the 2003 IEEE International (IEEE2003), pp. 405–410.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup and performance characterization. (a) Experimental setup illustrating the EIT-based microwave oscillator device. The tunable EIT is generated within a single QCMR. EDFA, erbium-doped fiber amplifier; MZM, Mach-Zehnder modulator; PC, polarization controller; PD, photodetector; BPF, wideband bandpass filter; OSA, optical spectrum analyzer; ESA, electrical signal and spectrum analyzer. (b) Experimental transmission spectra of the QCMR-microfiber coupling system, showing three types of controlled lineshapes: EIT peak, Fano, and Lorentzian dip. (c) RF signal and the corresponding phase noise performance generated by the device. (Resolution Bandwidth (RBW) is 50 kHz). (d) Optical spectrum of the generated signal.
Fig. 2
Fig. 2 (a) Schematic of EIT generation in a single QCMR: two fiber modes coupled with one WGM. (b) Four kinds of transmission lineshapes with different phase shifts Δφ0. Other parameters are set: κ 0 =2 κ ex1 = κ ex2 , E2/E1 = 1. (b) Four kinds of transmission lineshapes with different distribution radios E2/E1. Other parameters are set: κ 0 =2 κ ex1 = κ ex2 , Δφ0 = π.
Fig. 3
Fig. 3 (a) Theoretical phase noise spectra for different mode detuning σ/2π = 40.85 MHz, 70.98 MHz, and 95.12 MHz. (b) Theoretical phase noise spectra for different mode quality factor Q = 3.13 × 107, 1.95 × 107, 9.19 × 106, and 4.88 × 106.
Fig. 4
Fig. 4 (a) Comparison between the theoretical phase noise performance of QCMR-DL-OEO for different delay line: T = 2 μs and T = 2 ns. (b) Comparison of the theoretical phase noise performance of three different configurations of OEOs: QCMR-OEO, DL-OEO, and QCMR-DL-OEO. The DL is a 4 km long fiber delay line. The spurious peaks are highly rejected in a QCMR-DL-OEO system attributed to the narrow bandwidth filtering effect of EIT resonance.
Fig. 5
Fig. 5 Comparison between the experimental lineshapes (a) and the theoretical lineshapes (b). Normalized transmission spectra with six different coupling positions ∆x = 0, 2 μm, 4 μm, 6 μm, 8 μm, and 10 μm. ∆x = 0 corresponds to an assigned relative zero point in the taper waist region. The simulation parameters are κ0 = 8 × 107, κex1 = κ0/2, κex2 = κ0, Δφ0 = 0, 0.76π, 0.82π, 0.88π, 0.90π, π, and E2/E1 = 0.6, 0.7, 0.8, 0.9, 1.0, 1.2. (c) Optical characterization of EIT resonances with different coupling efficiencies. The inset on the left sketches the tuning process in the experiment.
Fig. 6
Fig. 6 (a) Three typical measured RF signal (left panel) and their corresponding phase noise spectra (right panel) at ~5 GHz for different laser-mode locking states (see Fig. 6(b)). (b) Normalized EIT spectrum recorded at a slow PD monitored by an oscilloscope for a silica QCMR, where multiple optical modes are excited within ~0.3 nm wavelength range. The inset shows five different laser-mode locking state (S1, S2,…S5) in our experiment using a servo controller (LB1005, New Focus). (c) Extracted phase noise data versus laser-mode locking position for 10 kHz and 100 kHz frequency offset at ~5 GHz carrier RF signal.
Fig. 7
Fig. 7 Limitations on oscillator RF signal and phase noise. (a)−(b) Influence of WGMR quality factor on the generated RF signal (a) and phase noise (b). (c)−(d) Influence of coupling efficiency on the generated RF signal (c) and phase noise (d). (e)−(f) Influence of transmission lineshape on the phase noise (f). (e) Optical characterization of EIT resonances with three typical lineshapes, namely EIT, Fano, and Lorentzian dip.
Fig. 8
Fig. 8 Comparison of oscillation RF signals (a) and phase noise spectra (b) of three types of OEOs based on different optical storage element: a silica QCMR (QCMR-OEO, yellow curve), a 4 km long delay line (DL-OEO, blue curve), and a silica QCMR combined with a delay line (DL-QCMR-OEO, red curve).
Fig. 9
Fig. 9 (a) Stability of generated oscillation signal recorded over half an hour. (b) Stability of phase noise at 10 kHz and 100 kHz offset frequency.
Fig. 10
Fig. 10 Origin of excess noise peaks. RF signal (a) and phase noise spectra (b) of a RF synthesizer signal at 5 GHz: directly measured and then measured after the signal was transmitted through different optical links. The OEO setup is designed in open loop configuration.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

da dt =( iσ+ κ 0 + κ ex1 + κ ex2 2 )a+ κ ex1 E 1 + κ ex2 e iΔ φ 0 E 2 ,
T 0 = | iσ+ κ 0 κ ex1 + κ ex2 2 κ ex1 κ ex2 e iΔ φ 0 E 2 / E 1 iσ+ κ 0 + κ ex1 + κ ex2 2 | 2 .
d G n dt =[ iσ+ κ 2 ] G n + 2 κ ex1 ζ n (t)+ Γ n (ϕ)[ 1+ η n (t) ] J n (A(tT)) e in( φ(tT) ω L T ) ,
A(t)=2β e iυ n= + G n+1 G n * ,
Γ n (ϕ)=E[ e iϕ + (1) n e iϕ ] i n /2,
E=iσ+ κ 0 κ ex1 + κ ex2 2 κ ex1 κ ex2 e iΔ φ 0 E 2 / E 1 .
G n st = 2 Γ n (ϕ) J n ( A st ) 4 σ 2 + κ 2 ,
A st =Γ J 1 ( 2 A st ),
Γ=β| sin(2ϕ) | T 0 .
d Ψ n dt =σ η n ( t )+ κ 2 [ nφ( tT ) Ψ n ]+ 2 κ ex1 ζ n,Ψ ( t ) G n st ,
0= n= + G n+1 st G n st [ Ψ n+1 Ψ n φ ] .
| Φ( ω ) | 2 = 2 σ 2 α 1 2 | η( ω ) | 2 +4 D a κ ex1 α 2 2 | iω+ κ 2 ( 1 e iωT ) | 2 ,
α 1 2 = 2 n=0 + J n 2 ( A st ) J n+1 2 ( A st ) J 1 2 (2 A st ) ,
α 2 2 = 1 J 1 2 (2 A st ) sin 2 (2ϕ) .
| Φ( ω ) | 2 = μ 2 4 Q f 2 | η( ω ) | 2 + 2 μ 2 | A st | 2 D a | iω+μ( 1 e iωT ) | 2 .

Metrics