Abstract

We report a hybrid process by combining both vapor-phase and solution-doping techniques of rare-earth doped preform fabrication in conjunction with the MCVD technique, in order to fabricate highly efficient Tm-doped laser fibers. The proposed fabrication route takes advantage of co-doping silica with high alumina content through the vapor-phase doping process, which is otherwise difficult to achieve using conventional solution doping technique. In addition, by employing the solution doping method, high-purity thulium halide precursors that have low vapor pressures up to several hundred degree Celsius. These high-purity thulium halide precursors can be used to dope the fiber core region with a high thulium concentration that is optimized for an efficient two-for-one cross-relaxation process for 79xnm diode pumped thulium-doped fiber laser. Fibers fabricated using the hybrid approach show more homogeneous and flat-top dopant profiles, compared with the conventional approach, where both aluminum and thulium are incorporated in the core through solution doping. This will ensure that more doped region will take part in the cross-relaxation process. Superior laser performance with a slope efficiency of >70% in the two-micron band has been demonstrated when diode pumped at ~790nm.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient ­Tm3+ doped germanate large mode area single mode fiber laser

Fedia Ben Slimen, Shaoxiang Chen, Joris Lousteau, Yongmin Jung, Nicholas White, Shaiful Alam, David J. Richardson, and Francesco Poletti
Opt. Mater. Express 9(10) 4115-4125 (2019)

Confined-doped fiber for effective mode control fabricated by MCVD process

Lei Liao, Fangfang Zhang, Xinglong He, Yisha Chen, Yibo Wang, Haiqing Li, Jinggang Peng, Luyun Yang, Nengli Dai, and Jinyan Li
Appl. Opt. 57(12) 3244-3249 (2018)

Ytterbium-doped fibers fabricated with atomic layer deposition method

Joan J. Montiel i Ponsoda, Lars Norin, Changgeng Ye, Markus Bosund, Mikko J. Söderlund, Ari Tervonen, and Seppo Honkanen
Opt. Express 20(22) 25085-25095 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Christensen, G. Frith, and B. Samson, “Thulium-doped fiber lasers: providing eye-safer high power output,” presented at the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Newport Beach, United States, 9–13 Nov. 2008.
    [Crossref]
  2. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 1 (2010).
  3. P. Kadwani, R. Sims, J. Chia, F. Altat, L. Shah, and M. Richardson, “Atmospheric propagation testing using broadband thulium fiber systems,” Adv. Opt. Mater. (Optical Society of America, 2011), paper FWB3.
  4. V. Lemerg, D. D. Rozhetskin, and C. Jadczak, “Medium-power tissue ablation using 1940nm thulium fiber laser,” J. Biomed. Opt. (Optical Society of America, 2008), paper BTuF4.
  5. Z. Xiaonong and J. Shibin, 2 micron fiber laser Enable versatile processing of plastics Application report in Industrial Laser Solutions, (PennWell Corporation, 2016), pp. 17–23.
  6. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1–3), 197–203 (2004).
    [Crossref]
  7. P. C. Shardlow, D. Jain, R. Parker, J. Sahu, and W. A. Clarkson, “Optimising Tm-doped silica sibres for high lasing efficiency,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2015), paper. CJ_14_13.
  8. D. A. Simpson, “Spectroscopy of thulium doped silica glass,” Ph.D dissertation, School of Electrical Engineering, Victoria University, Melbourne, Australia (2006).
  9. S. D. Jackson and S. Mossman, “Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers,” Appl. Opt. 42(15), 2702–2707 (2003).
    [Crossref] [PubMed]
  10. F. Z. Tang, P. McNamara, and G. W. Barton, “Enhanced Al incorporation in solution-doped optical fibre fabrication,” presented at European Conference on Optical Communications, Cannes, France, 24–28 Sept. 2006.
    [Crossref]
  11. G. Frith, A. Carter, B. Samson, and G. Town, “Design considerations for short-wavelength operation of 790-nm-pumped Tm-doped fibers,” Appl. Opt. 48(27), 5072–5075 (2009).
    [Crossref] [PubMed]
  12. A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
    [Crossref]
  13. K. K. Strelov and I. D. Kashcheev, “Phase diagram of the system Al2O3-SiO2,” Refractories 36(8), 244–246 (1995).
    [Crossref]
  14. D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
    [Crossref]
  15. G. Frith, A. Carter, B. Samson, J. Faroni, K. Farley, K. Tankala, and G. E. Town, “Mitigation of photodegradation in 790nm-pumped Tm-doped fibers,” Proc. SPIE 7580, 75800 (2010).
    [Crossref]
  16. V. Petit, A. Carter, R. Tumminelli, A. Hemming, J. Haub, and N. Simakov, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 1051201 (2018).
  17. N. Simakov, A. V. Hemming, A. Carter, K. Farley, A. Davidson, N. Carmody, M. Hughes, J. M. O. Daniel, L. Corena, D. Stepanov, and J. Haub, “Design and experimental demonstration of a large pedestal thulium-doped fibre,” Opt. Express 23(3), 3126–3133 (2015).
    [Crossref] [PubMed]
  18. S. Yoo, A. S. Webb, A. J. Boyland, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
    [Crossref]

2018 (2)

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

V. Petit, A. Carter, R. Tumminelli, A. Hemming, J. Haub, and N. Simakov, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 1051201 (2018).

2015 (1)

2011 (1)

S. Yoo, A. S. Webb, A. J. Boyland, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

2010 (2)

G. Frith, A. Carter, B. Samson, J. Faroni, K. Farley, K. Tankala, and G. E. Town, “Mitigation of photodegradation in 790nm-pumped Tm-doped fibers,” Proc. SPIE 7580, 75800 (2010).
[Crossref]

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 1 (2010).

2009 (1)

2006 (1)

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

2004 (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1–3), 197–203 (2004).
[Crossref]

2003 (1)

1995 (1)

K. K. Strelov and I. D. Kashcheev, “Phase diagram of the system Al2O3-SiO2,” Refractories 36(8), 244–246 (1995).
[Crossref]

Baxter, G. W.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

Blanc, W.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

Boyland, A. J.

S. Yoo, A. S. Webb, A. J. Boyland, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

Bradford, J. D.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Carmody, N.

Carter, A.

V. Petit, A. Carter, R. Tumminelli, A. Hemming, J. Haub, and N. Simakov, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 1051201 (2018).

N. Simakov, A. V. Hemming, A. Carter, K. Farley, A. Davidson, N. Carmody, M. Hughes, J. M. O. Daniel, L. Corena, D. Stepanov, and J. Haub, “Design and experimental demonstration of a large pedestal thulium-doped fibre,” Opt. Express 23(3), 3126–3133 (2015).
[Crossref] [PubMed]

G. Frith, A. Carter, B. Samson, J. Faroni, K. Farley, K. Tankala, and G. E. Town, “Mitigation of photodegradation in 790nm-pumped Tm-doped fibers,” Proc. SPIE 7580, 75800 (2010).
[Crossref]

G. Frith, A. Carter, B. Samson, and G. Town, “Design considerations for short-wavelength operation of 790-nm-pumped Tm-doped fibers,” Appl. Opt. 48(27), 5072–5075 (2009).
[Crossref] [PubMed]

Collins, S. F.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

Cook, J.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Corena, L.

Daniel, J. M. O.

Davidson, A.

Dhar, A.

S. Yoo, A. S. Webb, A. J. Boyland, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

Dussardier, B.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

Ehrenreich, T.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 1 (2010).

Farley, K.

Faroni, J.

G. Frith, A. Carter, B. Samson, J. Faroni, K. Farley, K. Tankala, and G. E. Town, “Mitigation of photodegradation in 790nm-pumped Tm-doped fibers,” Proc. SPIE 7580, 75800 (2010).
[Crossref]

Frith, G.

G. Frith, A. Carter, B. Samson, J. Faroni, K. Farley, K. Tankala, and G. E. Town, “Mitigation of photodegradation in 790nm-pumped Tm-doped fibers,” Proc. SPIE 7580, 75800 (2010).
[Crossref]

G. Frith, A. Carter, B. Samson, and G. Town, “Design considerations for short-wavelength operation of 790-nm-pumped Tm-doped fibers,” Appl. Opt. 48(27), 5072–5075 (2009).
[Crossref] [PubMed]

Gibbs, W. E. K.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

Haub, J.

Hemming, A.

V. Petit, A. Carter, R. Tumminelli, A. Hemming, J. Haub, and N. Simakov, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 1051201 (2018).

Hemming, A. V.

Hughes, M.

Jackson, S. D.

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1–3), 197–203 (2004).
[Crossref]

S. D. Jackson and S. Mossman, “Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers,” Appl. Opt. 42(15), 2702–2707 (2003).
[Crossref] [PubMed]

Kashcheev, I. D.

K. K. Strelov and I. D. Kashcheev, “Phase diagram of the system Al2O3-SiO2,” Refractories 36(8), 244–246 (1995).
[Crossref]

Leveille, R.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 1 (2010).

Majid, I.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 1 (2010).

Monnom, G.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

Mossman, S.

Moulton, P.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 1 (2010).

Petit, V.

V. Petit, A. Carter, R. Tumminelli, A. Hemming, J. Haub, and N. Simakov, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 1051201 (2018).

Richardson, M.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Rines, G.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 1 (2010).

Sahu, J. K.

S. Yoo, A. S. Webb, A. J. Boyland, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

Samson, B.

G. Frith, A. Carter, B. Samson, J. Faroni, K. Farley, K. Tankala, and G. E. Town, “Mitigation of photodegradation in 790nm-pumped Tm-doped fibers,” Proc. SPIE 7580, 75800 (2010).
[Crossref]

G. Frith, A. Carter, B. Samson, and G. Town, “Design considerations for short-wavelength operation of 790-nm-pumped Tm-doped fibers,” Appl. Opt. 48(27), 5072–5075 (2009).
[Crossref] [PubMed]

Shah, L.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Simakov, N.

Simpson, D. A.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

Sincore, A.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Standish, R. J.

S. Yoo, A. S. Webb, A. J. Boyland, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

Stepanov, D.

Strelov, K. K.

K. K. Strelov and I. D. Kashcheev, “Phase diagram of the system Al2O3-SiO2,” Refractories 36(8), 244–246 (1995).
[Crossref]

Tankala, K.

G. Frith, A. Carter, B. Samson, J. Faroni, K. Farley, K. Tankala, and G. E. Town, “Mitigation of photodegradation in 790nm-pumped Tm-doped fibers,” Proc. SPIE 7580, 75800 (2010).
[Crossref]

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 1 (2010).

Town, G.

Town, G. E.

G. Frith, A. Carter, B. Samson, J. Faroni, K. Farley, K. Tankala, and G. E. Town, “Mitigation of photodegradation in 790nm-pumped Tm-doped fibers,” Proc. SPIE 7580, 75800 (2010).
[Crossref]

Tumminelli, R.

V. Petit, A. Carter, R. Tumminelli, A. Hemming, J. Haub, and N. Simakov, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 1051201 (2018).

Webb, A. S.

S. Yoo, A. S. Webb, A. J. Boyland, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

Yoo, S.

S. Yoo, A. S. Webb, A. J. Boyland, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

J. Non-Cryst. Solids (1)

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[Crossref]

Laser Phys. Lett. (1)

S. Yoo, A. S. Webb, A. J. Boyland, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

Opt. Commun. (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1–3), 197–203 (2004).
[Crossref]

Opt. Express (1)

Proc. SPIE (3)

G. Frith, A. Carter, B. Samson, J. Faroni, K. Farley, K. Tankala, and G. E. Town, “Mitigation of photodegradation in 790nm-pumped Tm-doped fibers,” Proc. SPIE 7580, 75800 (2010).
[Crossref]

V. Petit, A. Carter, R. Tumminelli, A. Hemming, J. Haub, and N. Simakov, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 1051201 (2018).

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 1 (2010).

Refractories (1)

K. K. Strelov and I. D. Kashcheev, “Phase diagram of the system Al2O3-SiO2,” Refractories 36(8), 244–246 (1995).
[Crossref]

Other (7)

S. Christensen, G. Frith, and B. Samson, “Thulium-doped fiber lasers: providing eye-safer high power output,” presented at the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Newport Beach, United States, 9–13 Nov. 2008.
[Crossref]

P. Kadwani, R. Sims, J. Chia, F. Altat, L. Shah, and M. Richardson, “Atmospheric propagation testing using broadband thulium fiber systems,” Adv. Opt. Mater. (Optical Society of America, 2011), paper FWB3.

V. Lemerg, D. D. Rozhetskin, and C. Jadczak, “Medium-power tissue ablation using 1940nm thulium fiber laser,” J. Biomed. Opt. (Optical Society of America, 2008), paper BTuF4.

Z. Xiaonong and J. Shibin, 2 micron fiber laser Enable versatile processing of plastics Application report in Industrial Laser Solutions, (PennWell Corporation, 2016), pp. 17–23.

P. C. Shardlow, D. Jain, R. Parker, J. Sahu, and W. A. Clarkson, “Optimising Tm-doped silica sibres for high lasing efficiency,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2015), paper. CJ_14_13.

D. A. Simpson, “Spectroscopy of thulium doped silica glass,” Ph.D dissertation, School of Electrical Engineering, Victoria University, Melbourne, Australia (2006).

F. Z. Tang, P. McNamara, and G. W. Barton, “Enhanced Al incorporation in solution-doped optical fibre fabrication,” presented at European Conference on Optical Communications, Cannes, France, 24–28 Sept. 2006.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Thulium distribution overlapped with fiber refractive index profile (FRIP).
Fig. 2
Fig. 2 Laser characteristics of HGS-01 and SD-01 fibers. (Inset: laser spectrum at maximum output power from HGS-01)
Fig. 3
Fig. 3 The laser efficiency and the corresponding laser emission wavelength (shown within the brackets) as a function of the thulium concentration.
Fig. 4
Fig. 4 Emission spectra and laser efficiencies for HGS-03 (3.5wt%) and HGS-02 (5.6wt%) fibers.

Tables (2)

Tables Icon

Table 1 Thulium-doped fibers characteristics.

Tables Icon

Table 2 Performance of thulium-doped fibers fabricated using hybrid process.

Metrics