Abstract

Near-infrared light is commonly used to move small objects floating on water by exploiting the Bénard-Marangoni convection. This is because infrared light is absorbed well by water and the induced thermal gradients are responsible for the objects’ motion. However, visible light was recently used to move macroscopic objects on the free liquid surfaces. In this work, we show the use of visible light to rotate symmetric millimeter-sized objects. Those objects represent light-driven macro motors that are able to work in a continuous or step-by-step mode. We studied light intensity’s effects on our system’s angular velocity and estimated the entire process’s conversion efficiency.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermovision applied to Benard-Marangoni convection

P. Cerisier, J. Pantaloni, G. Finiels, and R. Amalric
Appl. Opt. 21(12) 2153-2159 (1982)

Flow visualization of Bénard convection using holographic interferometry

Masahiro Ueda, Kiichiro Kagawa, Koichi Yamada, Chiyozo Yamaguchi, and Yoshifumi Harada
Appl. Opt. 21(18) 3269-3272 (1982)

Precise subnanometer control of the position of a macro object by light pressure

Victor Petrov, Julia Hahn, Juergen Petter, Mikhail Petrov, and Theo Tschudi
Opt. Lett. 30(23) 3138-3140 (2005)

References

  • View by:
  • |
  • |
  • |

  1. C. Marangoni, “Sul principio della viscosità superficiale dei liquidi stabili,” Nuovo Cimento Ser 2(5/6), 239–273 (1872).
  2. L. E. Scriven and C. V. Sternling, “The Marangoni effects,” Nature 187(4733), 186–188 (1960).
    [Crossref]
  3. A. Goel and V. Vogel, “Harnessing biological motors to engineer systems for nanoscale transport and assembly,” Nat. Nanotechnol. 3(8), 465–475 (2008).
    [Crossref] [PubMed]
  4. D. Okawa, S. J. Pastine, A. Zettl, and J. M. J. Fréchet, “Surface tension mediated conversion of light to work,” J. Am. Chem. Soc. 131(15), 5396–5398 (2009).
    [Crossref] [PubMed]
  5. A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, and D. Baigl, “Photomanipulation of a droplet by the chromocapillary effect,” Angew. Chem. Int. Ed. Engl. 48(49), 9281–9284 (2009).
    [Crossref] [PubMed]
  6. E. Lauga and T. R. Powers, “The hydrodynamics of swimming microorganisms,” Rep. Prog. Phys. 72(9), 096601 (2009).
    [Crossref]
  7. D. E. Lucchetta, F. Simoni, L. Nucara, and R. Castagna, “Controlled-motion of floating macro-objects induced by light,” AIP Adv. 5(7), 77147 (2015).
    [Crossref]
  8. R. T. Mallea, A. Bolopion, J.-C. Beugnot, P. Lambert, and M. Gauthier, “Laser-induced thermocapillary convective flows: a new approach for non-contact actuation at microscale at the fluid/gas interface,” IEEE/ASME Trans. Mechatron. 22(2), 693–704 (2017).
    [Crossref]
  9. C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis, and R. Di Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6(1), 7855–7860 (2015).
    [Crossref] [PubMed]
  10. O. Emile and J. Emile, “Rotation of millimeter-sized objects using ordinary light,” Opt. Lett. 41(2), 211–214 (2016).
    [Crossref] [PubMed]
  11. E. Hendarto, and Y. B. Gianchandani “Thermocapillary actuation of millimeter-scale rotary structures,” J. Microelectromech. Syst. 23, 2 494–499 (2014).
  12. J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R. M. Ma, and T. Li, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Phys. Rev. Lett. 121(3), 033603 (2018).
    [Crossref] [PubMed]

2018 (1)

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R. M. Ma, and T. Li, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Phys. Rev. Lett. 121(3), 033603 (2018).
[Crossref] [PubMed]

2017 (1)

R. T. Mallea, A. Bolopion, J.-C. Beugnot, P. Lambert, and M. Gauthier, “Laser-induced thermocapillary convective flows: a new approach for non-contact actuation at microscale at the fluid/gas interface,” IEEE/ASME Trans. Mechatron. 22(2), 693–704 (2017).
[Crossref]

2016 (1)

2015 (2)

C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis, and R. Di Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6(1), 7855–7860 (2015).
[Crossref] [PubMed]

D. E. Lucchetta, F. Simoni, L. Nucara, and R. Castagna, “Controlled-motion of floating macro-objects induced by light,” AIP Adv. 5(7), 77147 (2015).
[Crossref]

2009 (3)

D. Okawa, S. J. Pastine, A. Zettl, and J. M. J. Fréchet, “Surface tension mediated conversion of light to work,” J. Am. Chem. Soc. 131(15), 5396–5398 (2009).
[Crossref] [PubMed]

A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, and D. Baigl, “Photomanipulation of a droplet by the chromocapillary effect,” Angew. Chem. Int. Ed. Engl. 48(49), 9281–9284 (2009).
[Crossref] [PubMed]

E. Lauga and T. R. Powers, “The hydrodynamics of swimming microorganisms,” Rep. Prog. Phys. 72(9), 096601 (2009).
[Crossref]

2008 (1)

A. Goel and V. Vogel, “Harnessing biological motors to engineer systems for nanoscale transport and assembly,” Nat. Nanotechnol. 3(8), 465–475 (2008).
[Crossref] [PubMed]

1960 (1)

L. E. Scriven and C. V. Sternling, “The Marangoni effects,” Nature 187(4733), 186–188 (1960).
[Crossref]

1872 (1)

C. Marangoni, “Sul principio della viscosità superficiale dei liquidi stabili,” Nuovo Cimento Ser 2(5/6), 239–273 (1872).

Ahn, J.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R. M. Ma, and T. Li, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Phys. Rev. Lett. 121(3), 033603 (2018).
[Crossref] [PubMed]

Baigl, D.

A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, and D. Baigl, “Photomanipulation of a droplet by the chromocapillary effect,” Angew. Chem. Int. Ed. Engl. 48(49), 9281–9284 (2009).
[Crossref] [PubMed]

Bang, J.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R. M. Ma, and T. Li, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Phys. Rev. Lett. 121(3), 033603 (2018).
[Crossref] [PubMed]

Beugnot, J.-C.

R. T. Mallea, A. Bolopion, J.-C. Beugnot, P. Lambert, and M. Gauthier, “Laser-induced thermocapillary convective flows: a new approach for non-contact actuation at microscale at the fluid/gas interface,” IEEE/ASME Trans. Mechatron. 22(2), 693–704 (2017).
[Crossref]

Bolopion, A.

R. T. Mallea, A. Bolopion, J.-C. Beugnot, P. Lambert, and M. Gauthier, “Laser-induced thermocapillary convective flows: a new approach for non-contact actuation at microscale at the fluid/gas interface,” IEEE/ASME Trans. Mechatron. 22(2), 693–704 (2017).
[Crossref]

Castagna, R.

D. E. Lucchetta, F. Simoni, L. Nucara, and R. Castagna, “Controlled-motion of floating macro-objects induced by light,” AIP Adv. 5(7), 77147 (2015).
[Crossref]

Chen, Y.

A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, and D. Baigl, “Photomanipulation of a droplet by the chromocapillary effect,” Angew. Chem. Int. Ed. Engl. 48(49), 9281–9284 (2009).
[Crossref] [PubMed]

De Angelis, F.

C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis, and R. Di Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6(1), 7855–7860 (2015).
[Crossref] [PubMed]

Deng, Y.-H.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R. M. Ma, and T. Li, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Phys. Rev. Lett. 121(3), 033603 (2018).
[Crossref] [PubMed]

Di Leonardo, R.

C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis, and R. Di Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6(1), 7855–7860 (2015).
[Crossref] [PubMed]

Diguet, A.

A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, and D. Baigl, “Photomanipulation of a droplet by the chromocapillary effect,” Angew. Chem. Int. Ed. Engl. 48(49), 9281–9284 (2009).
[Crossref] [PubMed]

Dipalo, M.

C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis, and R. Di Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6(1), 7855–7860 (2015).
[Crossref] [PubMed]

Emile, J.

Emile, O.

Fréchet, J. M. J.

D. Okawa, S. J. Pastine, A. Zettl, and J. M. J. Fréchet, “Surface tension mediated conversion of light to work,” J. Am. Chem. Soc. 131(15), 5396–5398 (2009).
[Crossref] [PubMed]

Gauthier, M.

R. T. Mallea, A. Bolopion, J.-C. Beugnot, P. Lambert, and M. Gauthier, “Laser-induced thermocapillary convective flows: a new approach for non-contact actuation at microscale at the fluid/gas interface,” IEEE/ASME Trans. Mechatron. 22(2), 693–704 (2017).
[Crossref]

Goel, A.

A. Goel and V. Vogel, “Harnessing biological motors to engineer systems for nanoscale transport and assembly,” Nat. Nanotechnol. 3(8), 465–475 (2008).
[Crossref] [PubMed]

Guillermic, R.-M.

A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, and D. Baigl, “Photomanipulation of a droplet by the chromocapillary effect,” Angew. Chem. Int. Ed. Engl. 48(49), 9281–9284 (2009).
[Crossref] [PubMed]

Han, Q.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R. M. Ma, and T. Li, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Phys. Rev. Lett. 121(3), 033603 (2018).
[Crossref] [PubMed]

Hoang, T. M.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R. M. Ma, and T. Li, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Phys. Rev. Lett. 121(3), 033603 (2018).
[Crossref] [PubMed]

Lambert, P.

R. T. Mallea, A. Bolopion, J.-C. Beugnot, P. Lambert, and M. Gauthier, “Laser-induced thermocapillary convective flows: a new approach for non-contact actuation at microscale at the fluid/gas interface,” IEEE/ASME Trans. Mechatron. 22(2), 693–704 (2017).
[Crossref]

Lauga, E.

E. Lauga and T. R. Powers, “The hydrodynamics of swimming microorganisms,” Rep. Prog. Phys. 72(9), 096601 (2009).
[Crossref]

Li, T.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R. M. Ma, and T. Li, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Phys. Rev. Lett. 121(3), 033603 (2018).
[Crossref] [PubMed]

Lucchetta, D. E.

D. E. Lucchetta, F. Simoni, L. Nucara, and R. Castagna, “Controlled-motion of floating macro-objects induced by light,” AIP Adv. 5(7), 77147 (2015).
[Crossref]

Ma, R. M.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R. M. Ma, and T. Li, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Phys. Rev. Lett. 121(3), 033603 (2018).
[Crossref] [PubMed]

Maggi, C.

C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis, and R. Di Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6(1), 7855–7860 (2015).
[Crossref] [PubMed]

Magome, N.

A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, and D. Baigl, “Photomanipulation of a droplet by the chromocapillary effect,” Angew. Chem. Int. Ed. Engl. 48(49), 9281–9284 (2009).
[Crossref] [PubMed]

Mallea, R. T.

R. T. Mallea, A. Bolopion, J.-C. Beugnot, P. Lambert, and M. Gauthier, “Laser-induced thermocapillary convective flows: a new approach for non-contact actuation at microscale at the fluid/gas interface,” IEEE/ASME Trans. Mechatron. 22(2), 693–704 (2017).
[Crossref]

Marangoni, C.

C. Marangoni, “Sul principio della viscosità superficiale dei liquidi stabili,” Nuovo Cimento Ser 2(5/6), 239–273 (1872).

Nucara, L.

D. E. Lucchetta, F. Simoni, L. Nucara, and R. Castagna, “Controlled-motion of floating macro-objects induced by light,” AIP Adv. 5(7), 77147 (2015).
[Crossref]

Okawa, D.

D. Okawa, S. J. Pastine, A. Zettl, and J. M. J. Fréchet, “Surface tension mediated conversion of light to work,” J. Am. Chem. Soc. 131(15), 5396–5398 (2009).
[Crossref] [PubMed]

Pastine, S. J.

D. Okawa, S. J. Pastine, A. Zettl, and J. M. J. Fréchet, “Surface tension mediated conversion of light to work,” J. Am. Chem. Soc. 131(15), 5396–5398 (2009).
[Crossref] [PubMed]

Powers, T. R.

E. Lauga and T. R. Powers, “The hydrodynamics of swimming microorganisms,” Rep. Prog. Phys. 72(9), 096601 (2009).
[Crossref]

Saglimbeni, F.

C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis, and R. Di Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6(1), 7855–7860 (2015).
[Crossref] [PubMed]

Saint-Jalmes, A.

A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, and D. Baigl, “Photomanipulation of a droplet by the chromocapillary effect,” Angew. Chem. Int. Ed. Engl. 48(49), 9281–9284 (2009).
[Crossref] [PubMed]

Scriven, L. E.

L. E. Scriven and C. V. Sternling, “The Marangoni effects,” Nature 187(4733), 186–188 (1960).
[Crossref]

Simoni, F.

D. E. Lucchetta, F. Simoni, L. Nucara, and R. Castagna, “Controlled-motion of floating macro-objects induced by light,” AIP Adv. 5(7), 77147 (2015).
[Crossref]

Sternling, C. V.

L. E. Scriven and C. V. Sternling, “The Marangoni effects,” Nature 187(4733), 186–188 (1960).
[Crossref]

Vogel, V.

A. Goel and V. Vogel, “Harnessing biological motors to engineer systems for nanoscale transport and assembly,” Nat. Nanotechnol. 3(8), 465–475 (2008).
[Crossref] [PubMed]

Xu, Z.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R. M. Ma, and T. Li, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Phys. Rev. Lett. 121(3), 033603 (2018).
[Crossref] [PubMed]

Yoshikawa, K.

A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, and D. Baigl, “Photomanipulation of a droplet by the chromocapillary effect,” Angew. Chem. Int. Ed. Engl. 48(49), 9281–9284 (2009).
[Crossref] [PubMed]

Zettl, A.

D. Okawa, S. J. Pastine, A. Zettl, and J. M. J. Fréchet, “Surface tension mediated conversion of light to work,” J. Am. Chem. Soc. 131(15), 5396–5398 (2009).
[Crossref] [PubMed]

AIP Adv. (1)

D. E. Lucchetta, F. Simoni, L. Nucara, and R. Castagna, “Controlled-motion of floating macro-objects induced by light,” AIP Adv. 5(7), 77147 (2015).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, and D. Baigl, “Photomanipulation of a droplet by the chromocapillary effect,” Angew. Chem. Int. Ed. Engl. 48(49), 9281–9284 (2009).
[Crossref] [PubMed]

IEEE/ASME Trans. Mechatron. (1)

R. T. Mallea, A. Bolopion, J.-C. Beugnot, P. Lambert, and M. Gauthier, “Laser-induced thermocapillary convective flows: a new approach for non-contact actuation at microscale at the fluid/gas interface,” IEEE/ASME Trans. Mechatron. 22(2), 693–704 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

D. Okawa, S. J. Pastine, A. Zettl, and J. M. J. Fréchet, “Surface tension mediated conversion of light to work,” J. Am. Chem. Soc. 131(15), 5396–5398 (2009).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis, and R. Di Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6(1), 7855–7860 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Goel and V. Vogel, “Harnessing biological motors to engineer systems for nanoscale transport and assembly,” Nat. Nanotechnol. 3(8), 465–475 (2008).
[Crossref] [PubMed]

Nature (1)

L. E. Scriven and C. V. Sternling, “The Marangoni effects,” Nature 187(4733), 186–188 (1960).
[Crossref]

Nuovo Cimento Ser (1)

C. Marangoni, “Sul principio della viscosità superficiale dei liquidi stabili,” Nuovo Cimento Ser 2(5/6), 239–273 (1872).

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R. M. Ma, and T. Li, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Phys. Rev. Lett. 121(3), 033603 (2018).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

E. Lauga and T. R. Powers, “The hydrodynamics of swimming microorganisms,” Rep. Prog. Phys. 72(9), 096601 (2009).
[Crossref]

Other (1)

E. Hendarto, and Y. B. Gianchandani “Thermocapillary actuation of millimeter-scale rotary structures,” J. Microelectromech. Syst. 23, 2 494–499 (2014).

Supplementary Material (2)

NameDescription
» Visualization 1       Off center irradiationand and continuous motion of a macroscopic symmetric object
» Visualization 2       light driven step by step motion of a macroscopic floating object

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup to detect star rotations. Due to the presence of a vertical pillar the half-painted star can only rotate around its vertical axis. Each blade measures 4.5 mm.
Fig. 2
Fig. 2 The dynamics of rotation: the star first rotates clockwise and tends to return to its starting position after the light was switched off.
Fig. 3
Fig. 3 Star revolutions as a function of the used light intensities. Irradiation was stopped once the star stopped its motion. Open triangles: 40mW/cm2; filled triangles: 80 mW/cm2; open circles: 170 mW/cm2; filled circles: 340 mW/cm2; open squares: 440 mW/cm2.
Fig. 4
Fig. 4 Rotational speed as function of the light intensity. Measurements are taken once the star rotational velocity reached its maximum value. The red line shows the data linear regression.
Fig. 5
Fig. 5 Off center irradiation and continuous motion of our four blades star (See Visualization 1). The center of the laser spot is 3mm away from the star’s center.
Fig. 6
Fig. 6 Step motion obtained by switching ON (a) and OFF (b) the irradiation. A ̴ 0.5s irradiation corresponds to ̴ 15 degrees of rotation at I = 440mW/cm2 (See Visualization 2).
Fig. 7
Fig. 7 Step motion obtained by switching ON and OFF the irradiation. There is an activation/relaxation time of about 0.2 s in each cycle (See Visualization 2).

Metrics