Abstract

Distortion-free transmission of THz-bandwidth pulses over centimeter-scale distances is desirable for future THz system-on-chip (TSoC) applications. In this work we achieve this by utilizing a coplanar strip (CPS) transmission line fabricated on a thin (1 µm) silicon nitride membrane. To generate and detect the THz-bandwidth pulses we use a well-known lift-off technique to construct thousands of small (20 µm × 40 µm) thin-film LTG-GaAs photoconductive devices from a small (approx. 4 mm × 4 mm) substrate. The devices are then bonded to the CPS transmission line on the thin silicon nitride membrane, DC biased and optically pumped by a sub-picosecond laser. We demonstrate the generation and detection of a pulses containing frequencies up to 1.5 THz after propagating for 10 mm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical tuning of ultra-thin, silicon-based flexible metamaterial membranes in the terahertz regime

Michael A. Hoeh, Jens Neu, Klemens Schmitt, and Marco Rahm
Opt. Mater. Express 5(2) 408-415 (2015)

Femtosecond response of a free-standing LT-GaAs photoconductive switch

Xuemei Zheng, Ying Xu, Roman Sobolewski, Roman Adam, Martin Mikulics, Michael Siegel, and Peter Kordoš
Appl. Opt. 42(9) 1726-1731 (2003)

References

  • View by:
  • |
  • |
  • |

  1. D. Auston, Picosecond Photoconductors: Physical Properties and Applications (Academic, 1984).
  2. L. Samoska, “An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime,” IEEE Trans. Terahertz Sci. Technol. 1, 9–24 (2011).
    [Crossref]
  3. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
    [Crossref]
  4. T. Nagatsuma, G. Ducournau, and C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
    [Crossref]
  5. P. Siegel, R. Smith, M. Graidis, and S. Martin, “2.5-THz GaAs monolithic membrane-diode mixer,” IEEE Trans. Microw. Theory Tech. 47, 596–604 (1999).
    [Crossref]
  6. H. M. Cheema and A. Shamim, “The last barrier: on-chip antennas,” IEEE Microw. Mag. 14, 79–91 (2013).
    [Crossref]
  7. M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
    [Crossref]
  8. H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guid. Wave Lett. 4, 89–91 (1994).
    [Crossref]
  9. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Express 26, 846–848 (2001).
  10. K. Wang and D. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
    [Crossref] [PubMed]
  11. T. Jeon, J. Zhang, and D. Grischkowsky, “THz sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
    [Crossref]
  12. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
    [Crossref]
  13. R. Smith, A. Jooshesh, J. Zhang, and T. Darcie, “Photoconductive generation and detection of THz-bandwidth pulses using near-field coupling to a free-space metallic slit waveguide,” Opt. Express 25, 26492 (2017).
    [Crossref] [PubMed]
  14. S. Yanagi, M. Onuma, J. Kitagawa, and Y. Kadoya, “Propagation of terahertz pulses on coplanar strip-lines on low permittivity substrates and a spectroscopy application,” Appl. Phys. Express 1, 012009 (2008).
    [Crossref]
  15. L. Desplanque, J. F. Lampin, and F. Mollot, “Generation and detection of terahertz pulses using post-process bonding of low-temperature-grown GaAs and AlGaAs,” Appl. Phys. Lett. 84, 2049–2051 (2004).
    [Crossref]
  16. D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122–1135 (2000).
    [Crossref]
  17. R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt.  17, 125802 (2015).
    [Crossref]
  18. G. Cataldo, J. A. Beall, H.-M. Cho, B. McAndrew, M. D. Niemack, and E. J. Wollack, “Infrared dielectric properties of low-stress silicon nitride,” Opt. Express 37, 4200 (2012).
  19. Norcada Inc., https://www.norcada.com/ .
  20. I. Gregory, C. Baker, W. Tribe, I. Bradley, M. Evans, E. Linfield, A. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
    [Crossref]
  21. E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
    [Crossref]
  22. ANSYS HFSS V19.1, https://www.ansys.com/products/electronics/ansys-hfss .
  23. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

2017 (1)

2016 (1)

T. Nagatsuma, G. Ducournau, and C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

2015 (1)

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt.  17, 125802 (2015).
[Crossref]

2013 (2)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

H. M. Cheema and A. Shamim, “The last barrier: on-chip antennas,” IEEE Microw. Mag. 14, 79–91 (2013).
[Crossref]

2012 (1)

G. Cataldo, J. A. Beall, H.-M. Cho, B. McAndrew, M. D. Niemack, and E. J. Wollack, “Infrared dielectric properties of low-stress silicon nitride,” Opt. Express 37, 4200 (2012).

2011 (1)

L. Samoska, “An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime,” IEEE Trans. Terahertz Sci. Technol. 1, 9–24 (2011).
[Crossref]

2008 (1)

S. Yanagi, M. Onuma, J. Kitagawa, and Y. Kadoya, “Propagation of terahertz pulses on coplanar strip-lines on low permittivity substrates and a spectroscopy application,” Appl. Phys. Express 1, 012009 (2008).
[Crossref]

2007 (1)

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

2005 (2)

T. Jeon, J. Zhang, and D. Grischkowsky, “THz sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[Crossref]

I. Gregory, C. Baker, W. Tribe, I. Bradley, M. Evans, E. Linfield, A. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[Crossref]

2004 (2)

K. Wang and D. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[Crossref] [PubMed]

L. Desplanque, J. F. Lampin, and F. Mollot, “Generation and detection of terahertz pulses using post-process bonding of low-temperature-grown GaAs and AlGaAs,” Appl. Phys. Lett. 84, 2049–2051 (2004).
[Crossref]

2001 (1)

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Express 26, 846–848 (2001).

2000 (1)

D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122–1135 (2000).
[Crossref]

1999 (1)

P. Siegel, R. Smith, M. Graidis, and S. Martin, “2.5-THz GaAs monolithic membrane-diode mixer,” IEEE Trans. Microw. Theory Tech. 47, 596–604 (1999).
[Crossref]

1994 (1)

H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guid. Wave Lett. 4, 89–91 (1994).
[Crossref]

1990 (1)

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

1986 (1)

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Auston, D.

D. Auston, Picosecond Photoconductors: Physical Properties and Applications (Academic, 1984).

Baker, C.

I. Gregory, C. Baker, W. Tribe, I. Bradley, M. Evans, E. Linfield, A. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[Crossref]

Beall, J. A.

G. Cataldo, J. A. Beall, H.-M. Cho, B. McAndrew, M. D. Niemack, and E. J. Wollack, “Infrared dielectric properties of low-stress silicon nitride,” Opt. Express 37, 4200 (2012).

Bikorimana, S.

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt.  17, 125802 (2015).
[Crossref]

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Bradley, I.

I. Gregory, C. Baker, W. Tribe, I. Bradley, M. Evans, E. Linfield, A. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[Crossref]

Cataldo, G.

G. Cataldo, J. A. Beall, H.-M. Cho, B. McAndrew, M. D. Niemack, and E. J. Wollack, “Infrared dielectric properties of low-stress silicon nitride,” Opt. Express 37, 4200 (2012).

Cheema, H. M.

H. M. Cheema and A. Shamim, “The last barrier: on-chip antennas,” IEEE Microw. Mag. 14, 79–91 (2013).
[Crossref]

Chen, T. C.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Cheng, H.

H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guid. Wave Lett. 4, 89–91 (1994).
[Crossref]

Chi, C.-C.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Cho, H.-M.

G. Cataldo, J. A. Beall, H.-M. Cho, B. McAndrew, M. D. Niemack, and E. J. Wollack, “Infrared dielectric properties of low-stress silicon nitride,” Opt. Express 37, 4200 (2012).

Darcie, T.

Davies, A.

I. Gregory, C. Baker, W. Tribe, I. Bradley, M. Evans, E. Linfield, A. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[Crossref]

Desplanque, L.

L. Desplanque, J. F. Lampin, and F. Mollot, “Generation and detection of terahertz pulses using post-process bonding of low-temperature-grown GaAs and AlGaAs,” Appl. Phys. Lett. 84, 2049–2051 (2004).
[Crossref]

Dorsinville, R.

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt.  17, 125802 (2015).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

Duling, I. N.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Evans, M.

I. Gregory, C. Baker, W. Tribe, I. Bradley, M. Evans, E. Linfield, A. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[Crossref]

Florez, L. T.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Gmitter, T. J.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Graidis, M.

P. Siegel, R. Smith, M. Graidis, and S. Martin, “2.5-THz GaAs monolithic membrane-diode mixer,” IEEE Trans. Microw. Theory Tech. 47, 596–604 (1999).
[Crossref]

Gregory, I.

I. Gregory, C. Baker, W. Tribe, I. Bradley, M. Evans, E. Linfield, A. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[Crossref]

Grischkowsky, D.

T. Jeon, J. Zhang, and D. Grischkowsky, “THz sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[Crossref]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Express 26, 846–848 (2001).

D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122–1135 (2000).
[Crossref]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Halas, N. J.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Halbout, J.-M.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Harbison, J. P.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Hwang, D. M.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Jeon, T.

T. Jeon, J. Zhang, and D. Grischkowsky, “THz sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[Crossref]

Jooshesh, A.

Kadoya, Y.

S. Yanagi, M. Onuma, J. Kitagawa, and Y. Kadoya, “Propagation of terahertz pulses on coplanar strip-lines on low permittivity substrates and a spectroscopy application,” Appl. Phys. Express 1, 012009 (2008).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Kash, J. A.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Katehi, L.

H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guid. Wave Lett. 4, 89–91 (1994).
[Crossref]

Ketchen, M. B.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Kitagawa, J.

S. Yanagi, M. Onuma, J. Kitagawa, and Y. Kadoya, “Propagation of terahertz pulses on coplanar strip-lines on low permittivity substrates and a spectroscopy application,” Appl. Phys. Express 1, 012009 (2008).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Kurz, H.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

Lampin, J. F.

L. Desplanque, J. F. Lampin, and F. Mollot, “Generation and detection of terahertz pulses using post-process bonding of low-temperature-grown GaAs and AlGaAs,” Appl. Phys. Lett. 84, 2049–2051 (2004).
[Crossref]

Lee, Y.-S.

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Li, G. P.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Linfield, E.

I. Gregory, C. Baker, W. Tribe, I. Bradley, M. Evans, E. Linfield, A. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Martin, S.

P. Siegel, R. Smith, M. Graidis, and S. Martin, “2.5-THz GaAs monolithic membrane-diode mixer,” IEEE Trans. Microw. Theory Tech. 47, 596–604 (1999).
[Crossref]

McAndrew, B.

G. Cataldo, J. A. Beall, H.-M. Cho, B. McAndrew, M. D. Niemack, and E. J. Wollack, “Infrared dielectric properties of low-stress silicon nitride,” Opt. Express 37, 4200 (2012).

Mendis, R.

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Express 26, 846–848 (2001).

Missous, M.

I. Gregory, C. Baker, W. Tribe, I. Bradley, M. Evans, E. Linfield, A. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[Crossref]

Mittleman, D.

K. Wang and D. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[Crossref] [PubMed]

Mollot, F.

L. Desplanque, J. F. Lampin, and F. Mollot, “Generation and detection of terahertz pulses using post-process bonding of low-temperature-grown GaAs and AlGaAs,” Appl. Phys. Lett. 84, 2049–2051 (2004).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

Nagel, M.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

Niemack, M. D.

G. Cataldo, J. A. Beall, H.-M. Cho, B. McAndrew, M. D. Niemack, and E. J. Wollack, “Infrared dielectric properties of low-stress silicon nitride,” Opt. Express 37, 4200 (2012).

Onuma, M.

S. Yanagi, M. Onuma, J. Kitagawa, and Y. Kadoya, “Propagation of terahertz pulses on coplanar strip-lines on low permittivity substrates and a spectroscopy application,” Appl. Phys. Express 1, 012009 (2008).
[Crossref]

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Renaud, C.

T. Nagatsuma, G. Ducournau, and C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

Ríos, R. D. V.

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt.  17, 125802 (2015).
[Crossref]

Samoska, L.

L. Samoska, “An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime,” IEEE Trans. Terahertz Sci. Technol. 1, 9–24 (2011).
[Crossref]

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Seo, S.-W.

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt.  17, 125802 (2015).
[Crossref]

Shamim, A.

H. M. Cheema and A. Shamim, “The last barrier: on-chip antennas,” IEEE Microw. Mag. 14, 79–91 (2013).
[Crossref]

Siegel, P.

P. Siegel, R. Smith, M. Graidis, and S. Martin, “2.5-THz GaAs monolithic membrane-diode mixer,” IEEE Trans. Microw. Theory Tech. 47, 596–604 (1999).
[Crossref]

Smith, R.

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Tribe, W.

I. Gregory, C. Baker, W. Tribe, I. Bradley, M. Evans, E. Linfield, A. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[Crossref]

Ummy, M. A.

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt.  17, 125802 (2015).
[Crossref]

Wächter, M.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

Wang, K.

K. Wang and D. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[Crossref] [PubMed]

Weller, T.

H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guid. Wave Lett. 4, 89–91 (1994).
[Crossref]

Whitaker, J.

H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guid. Wave Lett. 4, 89–91 (1994).
[Crossref]

Wollack, E. J.

G. Cataldo, J. A. Beall, H.-M. Cho, B. McAndrew, M. D. Niemack, and E. J. Wollack, “Infrared dielectric properties of low-stress silicon nitride,” Opt. Express 37, 4200 (2012).

Yablonovitch, E.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Yanagi, S.

S. Yanagi, M. Onuma, J. Kitagawa, and Y. Kadoya, “Propagation of terahertz pulses on coplanar strip-lines on low permittivity substrates and a spectroscopy application,” Appl. Phys. Express 1, 012009 (2008).
[Crossref]

Zhang, J.

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Appl. Phys. Express (1)

S. Yanagi, M. Onuma, J. Kitagawa, and Y. Kadoya, “Propagation of terahertz pulses on coplanar strip-lines on low permittivity substrates and a spectroscopy application,” Appl. Phys. Express 1, 012009 (2008).
[Crossref]

Appl. Phys. Lett. (5)

L. Desplanque, J. F. Lampin, and F. Mollot, “Generation and detection of terahertz pulses using post-process bonding of low-temperature-grown GaAs and AlGaAs,” Appl. Phys. Lett. 84, 2049–2051 (2004).
[Crossref]

T. Jeon, J. Zhang, and D. Grischkowsky, “THz sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

IEEE J. Quantum Electron. (1)

I. Gregory, C. Baker, W. Tribe, I. Bradley, M. Evans, E. Linfield, A. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122–1135 (2000).
[Crossref]

IEEE Microw. Guid. Wave Lett. (1)

H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guid. Wave Lett. 4, 89–91 (1994).
[Crossref]

IEEE Microw. Mag. (1)

H. M. Cheema and A. Shamim, “The last barrier: on-chip antennas,” IEEE Microw. Mag. 14, 79–91 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. Siegel, R. Smith, M. Graidis, and S. Martin, “2.5-THz GaAs monolithic membrane-diode mixer,” IEEE Trans. Microw. Theory Tech. 47, 596–604 (1999).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

L. Samoska, “An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime,” IEEE Trans. Terahertz Sci. Technol. 1, 9–24 (2011).
[Crossref]

J. Opt (1)

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt.  17, 125802 (2015).
[Crossref]

Nat. Photonics (2)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wirelesssub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

Nature (1)

K. Wang and D. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[Crossref] [PubMed]

Opt. Express (3)

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Express 26, 846–848 (2001).

G. Cataldo, J. A. Beall, H.-M. Cho, B. McAndrew, M. D. Niemack, and E. J. Wollack, “Infrared dielectric properties of low-stress silicon nitride,” Opt. Express 37, 4200 (2012).

R. Smith, A. Jooshesh, J. Zhang, and T. Darcie, “Photoconductive generation and detection of THz-bandwidth pulses using near-field coupling to a free-space metallic slit waveguide,” Opt. Express 25, 26492 (2017).
[Crossref] [PubMed]

Other (4)

ANSYS HFSS V19.1, https://www.ansys.com/products/electronics/ansys-hfss .

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Norcada Inc., https://www.norcada.com/ .

D. Auston, Picosecond Photoconductors: Physical Properties and Applications (Academic, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Illustration of the THz platform. a) Overall structure on membrane. b) Rendering of transmitter LTG-GaAs connection. c) Rendering of receiver LTG-GaAs connection. d) Microscope image of receiver LTG-GaAs connection. e) Cross-section of CPS transmission line.
Fig. 2
Fig. 2 Frequency-domain simulations results for a CPS transmission line on a 1 µm silicon nitride membrane with S = W = 10 µm, 20 µm, 30 µm, 40 µm, and 50 µm. a) The attenuation coefficient. b) The phase constant.
Fig. 3
Fig. 3 Time-domain simulation results for Gaussian pulses plotted 950 µm from the source for S = W = 10 µm, 20 µm, 30 µm, 40 µm, and 50 µm. These pulses are plotted 950 µm away from the source to ensure any ringing has sufficiently decayed.
Fig. 4
Fig. 4 Input and calculated output pulses via Fourier Transform (using simulated γ(ω)) for S = W = 10 µm.
Fig. 5
Fig. 5 Experimental setup for testing the transmission line. For the FIB-bonded experiment the optical power delivered to the transmitter and receiver is 6.2 mW and 7.4 mW, respectively. For the VDW-bonded experiment the optical power delivered to the transmitter and receiver is 1.6 mW and 2.0 mW, respectively.
Fig. 6
Fig. 6 Illustration of the LTG-GaAs bonding techniques. Note that the gold contact pads are both 12.5 µm × 10 µm and are separated by 5 µm, the feature resolution has a radius of curvature of 2.5 µm. a) Van der Waals bonding with FIB deposited tungsten. b) Van der Waals bonding without tungsten.
Fig. 7
Fig. 7 Experimental result plotting the received THz-bandwidth pulse.
Fig. 8
Fig. 8 Simulated attenuation coefficient for a number of S/W ratios at different frequencies.
Fig. 9
Fig. 9 Detected pulse on glass cover-slip using the VDW-bonding method.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V ˜ ( z , ω ) = V ˜ ( 0 , ω ) exp ( γ z ) ,
V ( z , t ) = 1 2 π V ˜ ( z , ω ) exp ( i ω t ) d ω ,
V ( t ) σ ( t ) exp ( τ p 2 4 τ c 2 t τ c ) erfc ( τ p 2 τ c t τ p ) exp ( τ p 2 4 τ c s 2 t τ c s ) erfc ( τ p 2 τ c s t τ p ) ,

Metrics