A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
K. Negishi, H. Akita, and Y. Matsunaga, “Prospective study of removing solar lentigines in Asians using a novel dual-wavelength and dual-pulse width picosecond laser,” Lasers Surg. Med. 50(8), 851–858 (2018).
[Crossref]
[PubMed]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
[Crossref]
[PubMed]
A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[Crossref]
[PubMed]
M. Hu, D. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85GHz interval,” Laser Phys. Lett. 10(1), 015801 (2012).
[Crossref]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
E. F. Bernstein, K. T. Schomacker, L. D. Basilavecchio, J. M. Plugis, and J. D. Bhawalkar, “Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter,” Lasers Surg. Med. 49(9), 796–802 (2017).
[Crossref]
[PubMed]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
E. F. Bernstein, K. T. Schomacker, L. D. Basilavecchio, J. M. Plugis, and J. D. Bhawalkar, “Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter,” Lasers Surg. Med. 49(9), 796–802 (2017).
[Crossref]
[PubMed]
E. F. Bernstein, K. T. Schomacker, L. D. Basilavecchio, J. M. Plugis, and J. D. Bhawalkar, “Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter,” Lasers Surg. Med. 49(9), 796–802 (2017).
[Crossref]
[PubMed]
M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]
G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
[Crossref]
[PubMed]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]
G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[Crossref]
[PubMed]
A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]
G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]
M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]
H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, “Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd:YVO4/Nd:GdVO4 Crystals,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600605 (2018).
[Crossref]
Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]
S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]
T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref]
[PubMed]
M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]
H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, “Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd:YVO4/Nd:GdVO4 Crystals,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600605 (2018).
[Crossref]
Y. J. Huang, H. H. Cho, K. W. Su, and Y. F. Chen, “Dual-Wavelength Intracavity OPO With a Diffusion-Bonded Nd:YVO4/Nd:GdVO4 Crystal,” IEEE Photonics Technol. Lett. 28(10), 1123–1126 (2016).
[Crossref]
Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” Opt. Mater. Express 5(10), 2136–2141 (2015).
[Crossref]
Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
[Crossref]
[PubMed]
Y. J. Huang, H. H. Cho, K. W. Su, and Y. F. Chen, “Dual-Wavelength Intracavity OPO With a Diffusion-Bonded Nd:YVO4/Nd:GdVO4 Crystal,” IEEE Photonics Technol. Lett. 28(10), 1123–1126 (2016).
[Crossref]
Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” Opt. Mater. Express 5(10), 2136–2141 (2015).
[Crossref]
M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]
G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
[Crossref]
[PubMed]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photonics Technol. Lett. 21(7), 480–482 (2009).
[Crossref]
Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]
P. Zhao, S. Ragam, Y. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]
G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]
S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]
G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
[Crossref]
[PubMed]
A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[Crossref]
[PubMed]
A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]
M. Hu, D. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85GHz interval,” Laser Phys. Lett. 10(1), 015801 (2012).
[Crossref]
Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]
Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]
M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]
M. Hu, D. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85GHz interval,” Laser Phys. Lett. 10(1), 015801 (2012).
[Crossref]
M. Hu, D. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85GHz interval,” Laser Phys. Lett. 10(1), 015801 (2012).
[Crossref]
H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, “Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd:YVO4/Nd:GdVO4 Crystals,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600605 (2018).
[Crossref]
Y. J. Huang, H. H. Cho, K. W. Su, and Y. F. Chen, “Dual-Wavelength Intracavity OPO With a Diffusion-Bonded Nd:YVO4/Nd:GdVO4 Crystal,” IEEE Photonics Technol. Lett. 28(10), 1123–1126 (2016).
[Crossref]
Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” Opt. Mater. Express 5(10), 2136–2141 (2015).
[Crossref]
Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
[Crossref]
[PubMed]
G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]
S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]
Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]
H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]
M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]
H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, “Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd:YVO4/Nd:GdVO4 Crystals,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600605 (2018).
[Crossref]
Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” Opt. Mater. Express 5(10), 2136–2141 (2015).
[Crossref]
T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref]
[PubMed]
H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
[Crossref]
[PubMed]
A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[Crossref]
[PubMed]
M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]
T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref]
[PubMed]
K. Negishi, H. Akita, and Y. Matsunaga, “Prospective study of removing solar lentigines in Asians using a novel dual-wavelength and dual-pulse width picosecond laser,” Lasers Surg. Med. 50(8), 851–858 (2018).
[Crossref]
[PubMed]
A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photonics Technol. Lett. 21(7), 480–482 (2009).
[Crossref]
A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]
S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]
G. Pillet, L. Morvan, L. Ménager, A. Garcia, S. Babiel, and A. Stöhr, “Dual-frequency laser phase locked at 100 GHz,” J. Lightwave Technol. 32(20), 3824–3830 (2014).
[Crossref]
G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]
K. Negishi, H. Akita, and Y. Matsunaga, “Prospective study of removing solar lentigines in Asians using a novel dual-wavelength and dual-pulse width picosecond laser,” Lasers Surg. Med. 50(8), 851–858 (2018).
[Crossref]
[PubMed]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
G. Pillet, L. Morvan, L. Ménager, A. Garcia, S. Babiel, and A. Stöhr, “Dual-frequency laser phase locked at 100 GHz,” J. Lightwave Technol. 32(20), 3824–3830 (2014).
[Crossref]
G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]
E. F. Bernstein, K. T. Schomacker, L. D. Basilavecchio, J. M. Plugis, and J. D. Bhawalkar, “Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter,” Lasers Surg. Med. 49(9), 796–802 (2017).
[Crossref]
[PubMed]
P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref]
[PubMed]
P. Zhao, S. Ragam, Y. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[Crossref]
[PubMed]
A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]
E. F. Bernstein, K. T. Schomacker, L. D. Basilavecchio, J. M. Plugis, and J. D. Bhawalkar, “Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter,” Lasers Surg. Med. 49(9), 796–802 (2017).
[Crossref]
[PubMed]
Y. J. Huang, H. H. Cho, K. W. Su, and Y. F. Chen, “Dual-Wavelength Intracavity OPO With a Diffusion-Bonded Nd:YVO4/Nd:GdVO4 Crystal,” IEEE Photonics Technol. Lett. 28(10), 1123–1126 (2016).
[Crossref]
Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” Opt. Mater. Express 5(10), 2136–2141 (2015).
[Crossref]
Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]
H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, “Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd:YVO4/Nd:GdVO4 Crystals,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600605 (2018).
[Crossref]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[Crossref]
[PubMed]
A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]
G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]
H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]
T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref]
[PubMed]
H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]
M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]
T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref]
[PubMed]
H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]
T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref]
[PubMed]
A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]
M. Hu, D. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85GHz interval,” Laser Phys. Lett. 10(1), 015801 (2012).
[Crossref]
P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref]
[PubMed]
P. Zhao, S. Ragam, Y. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]
Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]
M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]
P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref]
[PubMed]
P. Zhao, S. Ragam, Y. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]