Abstract

A tunable dual-wavelength laser (DWL) based on Nd:YVO4/Nd:GdVO4 combined crystal is presented. The frequency separation tuning characteristics of the DWL are investigated experimentally. In the experiments, the DWL with tunable frequency separation is obtained with fixed pumping power and controlled heat sink temperature (Tc) of the combined crystal. The frequency separations are measured at 351.11-316.15 GHz by varying Tc from 5.0 °C to 40.0 °C, with a slope of −0.95 GHz/°C. When Tc is kept at 32.3 °C, a 435-mW power-balanced DWL signal is achieved with frequency separation at 324.29 GHz. By analyzing the experimental results from the perspective of thermal-induced emission cross section (ECS) spectra evolution of the combined crystal, it is found the frequency separation tuning of the DWL is caused by the different ECS spectral wavelength shifting rates of the Nd:YVO4 and Nd:GdVO4 crystals with Tc varying. The analysis results are in good agreement with the experimental results.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal

Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen
Opt. Mater. Express 5(10) 2136-2141 (2015)

Microchip dual-frequency laser with well-balanced intensity utilizing temperature control

Miao Hu, Yu Zhang, Mian Wei, Ran Zeng, Qiliang Li, Yang Lu, and Yizhen Wei
Opt. Express 24(20) 23383-23389 (2016)

1164.4  nm and 1174.7  nm dual-wavelength Nd : GdVO4/Cr4+ : YAG/YVO4 passively Q-switched Raman microchip laser

Xiaojie Wang, Xiaolei Wang, Zhifen Zheng, Xihao Qiao, and Jun Dong
Appl. Opt. 57(12) 3198-3204 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
    [Crossref] [PubMed]
  2. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
    [Crossref]
  3. A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
    [Crossref]
  4. A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
    [Crossref] [PubMed]
  5. Y. Qiao, S. Zheng, H. Chi, X. Jin, and X. Zhang, “Electro-optically tunable microwave source based on composite-cavity microchip laser,” Opt. Express 20(27), 29090–29095 (2012).
    [Crossref] [PubMed]
  6. G. Pillet, L. Morvan, L. Ménager, A. Garcia, S. Babiel, and A. Stöhr, “Dual-frequency laser phase locked at 100 GHz,” J. Lightwave Technol. 32(20), 3824–3830 (2014).
    [Crossref]
  7. A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photonics Technol. Lett. 21(7), 480–482 (2009).
    [Crossref]
  8. P. Zhao, S. Ragam, Y. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
    [Crossref]
  9. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
    [Crossref] [PubMed]
  10. Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
    [Crossref] [PubMed]
  11. A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
  12. Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” Opt. Mater. Express 5(10), 2136–2141 (2015).
    [Crossref]
  13. S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
    [Crossref]
  14. C. H. Cheng, C. W. Lee, T. W. Lin, and F. Y. Lin, “Dual-frequency laser Doppler velocimeter for speckle noise reduction and coherence enhancement,” Opt. Express 20(18), 20255–20265 (2012).
    [Crossref] [PubMed]
  15. Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
    [Crossref]
  16. J. Chen, H. Zhu, W. Xia, D. Guo, H. Hao, and M. Wang, “Self-mixing birefringent dual-frequency laser Doppler velocimeter,” Opt. Express 25(2), 560–572 (2017).
    [Crossref] [PubMed]
  17. T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
    [Crossref] [PubMed]
  18. K. Negishi, H. Akita, and Y. Matsunaga, “Prospective study of removing solar lentigines in Asians using a novel dual-wavelength and dual-pulse width picosecond laser,” Lasers Surg. Med. 50(8), 851–858 (2018).
    [Crossref] [PubMed]
  19. E. F. Bernstein, K. T. Schomacker, L. D. Basilavecchio, J. M. Plugis, and J. D. Bhawalkar, “Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter,” Lasers Surg. Med. 49(9), 796–802 (2017).
    [Crossref] [PubMed]
  20. H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
    [Crossref]
  21. M. Hu, D. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85GHz interval,” Laser Phys. Lett. 10(1), 015801 (2012).
    [Crossref]
  22. Y. J. Huang, H. H. Cho, K. W. Su, and Y. F. Chen, “Dual-Wavelength Intracavity OPO With a Diffusion-Bonded Nd:YVO4/Nd:GdVO4 Crystal,” IEEE Photonics Technol. Lett. 28(10), 1123–1126 (2016).
    [Crossref]
  23. H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, “Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd:YVO4/Nd:GdVO4 Crystals,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600605 (2018).
    [Crossref]
  24. X. Délen, F. Balembois, and P. F Georges, “Temperature dependence of the emission cross section of Nd:YVO4 around 1064 nm and consequence on laser operation,” J. Opt. Soc. Am. B 28(5), 972–976 (2011).
    [Crossref]
  25. M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
    [Crossref]

2018 (3)

T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref] [PubMed]

K. Negishi, H. Akita, and Y. Matsunaga, “Prospective study of removing solar lentigines in Asians using a novel dual-wavelength and dual-pulse width picosecond laser,” Lasers Surg. Med. 50(8), 851–858 (2018).
[Crossref] [PubMed]

H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, “Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd:YVO4/Nd:GdVO4 Crystals,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600605 (2018).
[Crossref]

2017 (3)

M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]

E. F. Bernstein, K. T. Schomacker, L. D. Basilavecchio, J. M. Plugis, and J. D. Bhawalkar, “Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter,” Lasers Surg. Med. 49(9), 796–802 (2017).
[Crossref] [PubMed]

J. Chen, H. Zhu, W. Xia, D. Guo, H. Hao, and M. Wang, “Self-mixing birefringent dual-frequency laser Doppler velocimeter,” Opt. Express 25(2), 560–572 (2017).
[Crossref] [PubMed]

2016 (2)

Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]

Y. J. Huang, H. H. Cho, K. W. Su, and Y. F. Chen, “Dual-Wavelength Intracavity OPO With a Diffusion-Bonded Nd:YVO4/Nd:GdVO4 Crystal,” IEEE Photonics Technol. Lett. 28(10), 1123–1126 (2016).
[Crossref]

2015 (1)

2014 (4)

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
[Crossref] [PubMed]

G. Pillet, L. Morvan, L. Ménager, A. Garcia, S. Babiel, and A. Stöhr, “Dual-frequency laser phase locked at 100 GHz,” J. Lightwave Technol. 32(20), 3824–3830 (2014).
[Crossref]

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

2012 (4)

2011 (4)

2010 (1)

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

2009 (1)

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photonics Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

2008 (1)

2006 (1)

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]

Akalin, T.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

Akita, H.

K. Negishi, H. Akita, and Y. Matsunaga, “Prospective study of removing solar lentigines in Asians using a novel dual-wavelength and dual-pulse width picosecond laser,” Lasers Surg. Med. 50(8), 851–858 (2018).
[Crossref] [PubMed]

Alouini, M.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
[Crossref] [PubMed]

A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[Crossref] [PubMed]

An, D.

M. Hu, D. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85GHz interval,” Laser Phys. Lett. 10(1), 015801 (2012).
[Crossref]

Babiel, S.

Bacquet, D.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

Balembois, F.

Basilavecchio, L. D.

E. F. Bernstein, K. T. Schomacker, L. D. Basilavecchio, J. M. Plugis, and J. D. Bhawalkar, “Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter,” Lasers Surg. Med. 49(9), 796–802 (2017).
[Crossref] [PubMed]

Beck, A.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

Bernstein, E. F.

E. F. Bernstein, K. T. Schomacker, L. D. Basilavecchio, J. M. Plugis, and J. D. Bhawalkar, “Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter,” Lasers Surg. Med. 49(9), 796–802 (2017).
[Crossref] [PubMed]

Bhawalkar, J. D.

E. F. Bernstein, K. T. Schomacker, L. D. Basilavecchio, J. M. Plugis, and J. D. Bhawalkar, “Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter,” Lasers Surg. Med. 49(9), 796–802 (2017).
[Crossref] [PubMed]

Bi, M.

M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]

Bondu, F.

G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
[Crossref] [PubMed]

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Bretenaker, F.

Brunel, M.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[Crossref] [PubMed]

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]

Cai, M.

M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]

Chang, F. L.

H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, “Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd:YVO4/Nd:GdVO4 Crystals,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600605 (2018).
[Crossref]

Changming, C.

Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]

Chazelas, J.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]

Chen, D.

T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref] [PubMed]

Chen, J.

Chen, S.

M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]

Chen, Y. F.

H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, “Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd:YVO4/Nd:GdVO4 Crystals,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600605 (2018).
[Crossref]

Y. J. Huang, H. H. Cho, K. W. Su, and Y. F. Chen, “Dual-Wavelength Intracavity OPO With a Diffusion-Bonded Nd:YVO4/Nd:GdVO4 Crystal,” IEEE Photonics Technol. Lett. 28(10), 1123–1126 (2016).
[Crossref]

Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” Opt. Mater. Express 5(10), 2136–2141 (2015).
[Crossref]

Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
[Crossref] [PubMed]

Cheng, C. H.

Chi, H.

Cho, C. Y.

Cho, H. H.

Y. J. Huang, H. H. Cho, K. W. Su, and Y. F. Chen, “Dual-Wavelength Intracavity OPO With a Diffusion-Bonded Nd:YVO4/Nd:GdVO4 Crystal,” IEEE Photonics Technol. Lett. 28(10), 1123–1126 (2016).
[Crossref]

Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” Opt. Mater. Express 5(10), 2136–2141 (2015).
[Crossref]

Dai, R.

M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]

Danion, G.

G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
[Crossref] [PubMed]

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

Dawes, J. M.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photonics Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

Dehua, Z.

Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]

Délen, X.

Ding, Y.

P. Zhao, S. Ragam, Y. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Ding, Y. J.

Dolfi, D.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]

Ducournau, G.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

Formont, S.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]

Frein, L.

Garcia, A.

Ge, J.

M. Hu, D. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85GHz interval,” Laser Phys. Lett. 10(1), 015801 (2012).
[Crossref]

Georges, P. F

Guo, D.

Haiyang, Z.

Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]

Hamel, C.

Hao, H.

Hongzhi, Y.

Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]

Hu, M.

M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]

M. Hu, D. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85GHz interval,” Laser Phys. Lett. 10(1), 015801 (2012).
[Crossref]

Huang, Q.

M. Hu, D. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85GHz interval,” Laser Phys. Lett. 10(1), 015801 (2012).
[Crossref]

Huang, T. L.

H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, “Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd:YVO4/Nd:GdVO4 Crystals,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600605 (2018).
[Crossref]

Huang, Y. J.

Huang, Y. P.

Huignard, J. P.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]

Jiawei, L.

Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]

Jin, X.

Kaminskii, A. A.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

Lampin, L. J. F.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

Le Floch, A.

Lee, C. W.

Li, Q.

M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]

Liang, H. C.

H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, “Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd:YVO4/Nd:GdVO4 Crystals,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600605 (2018).
[Crossref]

Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” Opt. Mater. Express 5(10), 2136–2141 (2015).
[Crossref]

Lin, F. Y.

Lin, T. W.

Lin, X.

T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref] [PubMed]

Liu, J.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

Loas, G.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
[Crossref] [PubMed]

A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[Crossref] [PubMed]

Lu, Y.

M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]

Ma, G.

T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref] [PubMed]

Matsunaga, Y.

K. Negishi, H. Akita, and Y. Matsunaga, “Prospective study of removing solar lentigines in Asians using a novel dual-wavelength and dual-pulse width picosecond laser,” Lasers Surg. Med. 50(8), 851–858 (2018).
[Crossref] [PubMed]

McKay, A.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photonics Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

Ménager, L.

Merlet, T.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Monsterleet, A.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]

Morvan, L.

Negishi, K.

K. Negishi, H. Akita, and Y. Matsunaga, “Prospective study of removing solar lentigines in Asians using a novel dual-wavelength and dual-pulse width picosecond laser,” Lasers Surg. Med. 50(8), 851–858 (2018).
[Crossref] [PubMed]

Pavanello, F.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

Peytavit, E.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

Pillet, G.

Plugis, J. M.

E. F. Bernstein, K. T. Schomacker, L. D. Basilavecchio, J. M. Plugis, and J. D. Bhawalkar, “Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter,” Lasers Surg. Med. 49(9), 796–802 (2017).
[Crossref] [PubMed]

Qiao, Y.

Ragam, S.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Rolland, A.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[Crossref] [PubMed]

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Schomacker, K. T.

E. F. Bernstein, K. T. Schomacker, L. D. Basilavecchio, J. M. Plugis, and J. D. Bhawalkar, “Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter,” Lasers Surg. Med. 49(9), 796–802 (2017).
[Crossref] [PubMed]

Stöhr, A.

Su, K. W.

Y. J. Huang, H. H. Cho, K. W. Su, and Y. F. Chen, “Dual-Wavelength Intracavity OPO With a Diffusion-Bonded Nd:YVO4/Nd:GdVO4 Crystal,” IEEE Photonics Technol. Lett. 28(10), 1123–1126 (2016).
[Crossref]

Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” Opt. Mater. Express 5(10), 2136–2141 (2015).
[Crossref]

Suhui, Y.

Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]

Sung, C. L.

H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, “Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd:YVO4/Nd:GdVO4 Crystals,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600605 (2018).
[Crossref]

Szriftgiser, P.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

Tonda-Goldstein, S.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]

Tzeng, Y. S.

Vallet, M.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[Crossref] [PubMed]

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[Crossref]

Wang, J.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

Wang, M.

Wang, T.

T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref] [PubMed]

Wang, Z.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

Wei, Y.

M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]

Xia, W.

Yang, J.

T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref] [PubMed]

Yu, H.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

Yu, W.

T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref] [PubMed]

Zaknoune, M.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

Zhang, H.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

M. Hu, D. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85GHz interval,” Laser Phys. Lett. 10(1), 015801 (2012).
[Crossref]

Zhang, X.

Zhao, P.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Zheng, S.

Zheng, Z.

Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]

Zhou, X.

M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]

Zhu, H.

Zotova, I. B.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Appl. Phys. Lett. (1)

P. Zhao, S. Ragam, Y. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Chin. J. Lasers (1)

M. Cai, M. Hu, R. Dai, S. Chen, Q. Li, X. Zhou, Y. Wei, Y. Lu, and M. Bi, “Experimental Study of Emission Cross Section Spectra and Microchip Laser Spectra of Nd:GdVO4 and Nd:YVO4 Crystal,” Chin. J. Lasers 44(11), 1101004 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, “Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd:YVO4/Nd:GdVO4 Crystals,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600605 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Y. J. Huang, H. H. Cho, K. W. Su, and Y. F. Chen, “Dual-Wavelength Intracavity OPO With a Diffusion-Bonded Nd:YVO4/Nd:GdVO4 Crystal,” IEEE Photonics Technol. Lett. 28(10), 1123–1126 (2016).
[Crossref]

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photonics Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, L. J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).

J. Eur. Acad. Dermatol. Venereol. (1)

T. Wang, D. Chen, J. Yang, G. Ma, W. Yu, and X. Lin, “Safety and efficacy of dual-wavelength laser (1064 + 595 nm) for treatment of non-treated port-wine stains,” J. Eur. Acad. Dermatol. Venereol. 32(2), 260–264 (2018).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

Laser Phys. Lett. (1)

M. Hu, D. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85GHz interval,” Laser Phys. Lett. 10(1), 015801 (2012).
[Crossref]

Lasers Surg. Med. (2)

K. Negishi, H. Akita, and Y. Matsunaga, “Prospective study of removing solar lentigines in Asians using a novel dual-wavelength and dual-pulse width picosecond laser,” Lasers Surg. Med. 50(8), 851–858 (2018).
[Crossref] [PubMed]

E. F. Bernstein, K. T. Schomacker, L. D. Basilavecchio, J. M. Plugis, and J. D. Bhawalkar, “Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter,” Lasers Surg. Med. 49(9), 796–802 (2017).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Laser Technol. (1)

Z. Zheng, C. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Y. Hongzhi, and L. Jiawei, “Phase noise reduction by using dual-frequency laser in coherent detection,” Opt. Laser Technol. 80(10), 169–175 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of the DWL setup; (b) Nd:YVO4/Nd:GdVO4 combined crystal structure; (c) Temperature controlling system of the combined crystal.
Fig. 2
Fig. 2 Normalized ECS spectra of the Nd:YVO4 and Nd:GdVO4 crystals with Tc at 15 °C.
Fig. 3
Fig. 3 (a) The DWL spectra with Tc ranging from 5 °C to 70 °C; (b) The wavelengths and frequency separations of the DWL with Tc ranging from 5 °C to 40 °C.
Fig. 4
Fig. 4 (a) The ECS spectra of the combine crystal with Tc at 10 °C, 45 °C and 80 °C; (b) The wavelengths and normalized peak values of the ECS spectra with Tc from 5 °C to 95 °C.
Fig. 5
Fig. 5 (a) The wavelengths of the ECS spectra and DWL spectra versus Tc; (b) The frequency separations of the ECS spectra and DWL spectra versus Tc.
Fig. 6
Fig. 6 (a) The normalized peak value of DWL spectral with Tc from 5 °C to 95 °C; (b) The power ratio Rp versus Tc.
Fig. 7
Fig. 7 The DWL spectra with Tc at 30 °C, 32.3 °C and 35 °C.

Metrics