Abstract

Dual plasmon-induced transparency (PIT) and plasmon-induced absorption (PIA) are simultaneously achieved in an integrated metamaterial composed of single layer of graphene. Electric field distribution and coupled mode theory (CMT) are used to demonstrate the physical mechanism of dual PIT and PIA, and the theoretical result of CMT is highly consistent with the finite-difference time-domain (FDTD) method simulation result. Further research shows that both the dual PIT and PIA phenomenon can be effectively modulated by the Fermi level, the carrier mobility of the graphene and the refractive index of the surrounding environment. It is meaningful that the absorption of the dual PIA spectrum can be abruptly increased to 93.5% when the carrier mobility of graphene is 0.8m2/Vs. In addition, the group index can be as high as 328. Thus, our work can pave new way for developing excellent slow-light and light absorption functional devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual dynamically tunable plasmon-induced transparency in H-type-graphene-based slow-light metamaterial

Enduo Gao, Zhimin Liu, Hongjian Li, Hui Xu, Zhenbin Zhang, Xiao Zhang, Xin Luo, Cuixiu Xiong, Chao Liu, Baihui Zhang, and Fengqi Zhou
J. Opt. Soc. Am. A 36(8) 1306-1311 (2019)

Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial

Baihui Zhang, Hongjian Li, Hui Xu, Mingzhuo Zhao, Cuixiu Xiong, Chao Liu, and Kuan Wu
Opt. Express 27(3) 3598-3608 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  2. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
    [Crossref] [PubMed]
  3. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [Crossref] [PubMed]
  4. C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically Induced Transparency in an All-Dielectric Metamaterial-Waveguide With Large Group Index,” IEEE P. J. 9(5), 1–8 (2017).
    [Crossref]
  5. L. Qi, Z. Xiang, L. L. Wang, B. X. Wang, G. D. Liu, and S. X. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Epl 111(2015), 34004 (2015).
  6. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  7. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of Electromagnetically Induced Transparency in a Terahertz Metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
    [Crossref]
  8. X. Luo, X. Zhai, L. Wang, and Q. Lin, “Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber,” Opt. Express 26(9), 11658–11666 (2018).
    [Crossref] [PubMed]
  9. A. Haddadpour, V. F. Nezhad, Z. Yu, and G. Veronis, “Highly compact magneto-optical switches for metal-dielectric-metal plasmonic waveguides,” Opt. Lett. 41(18), 4340–4343 (2016).
    [Crossref] [PubMed]
  10. Z. Q. Chen, H. J. Li, B. X. Li, Z. H. He, H. Xu, M. F. Zheng, and M. Z. Zhao, “Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system,” Appl. Phys. Express 9(10), 102002 (2016).
    [Crossref]
  11. Z. He, H. Li, B. Li, Z. Chen, H. Xu, and M. Zheng, “Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub,” Opt. Lett. 41(22), 5206–5209 (2016).
    [Crossref] [PubMed]
  12. S. P. Zhan, D. Kong, G. T. Cao, Z. H. He, Y. Wang, G. J. Xu, and H. J. Li, “Analogy of plasmon induced transparency in detuned U-resonators coupling to MDM plasmonic waveguide,” Solid State Commun. 174(11), 50–54 (2013).
    [Crossref]
  13. S. P. Zhan, H. J. Li, G. T. Cao, Z. H. He, B. X. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
    [Crossref]
  14. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  15. H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. Y. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D Appl. Phys. 52(2), 025104 (2019).
    [Crossref]
  16. B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
    [Crossref] [PubMed]
  17. H. Xu, C. X. Xiong, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, B. H. Zhang, and H. J. Li, “Dynamic plasmon-induced transparency modulator and excellent absorber-based terahertz planar graphene metamaterial,” J. Opt. Soc. Am. B 35(6), 1463 (2018).
    [Crossref]
  18. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 081405 (2012).
    [Crossref]
  19. J. Hafner, “Imaging Art and Facts,” ACS Nano 10(7), 6417–6419 (2016).
    [Crossref] [PubMed]
  20. H. Xu, M. Z. Zhao, Z. Q. Chen, M. F. Zheng, C. X. Xiong, B. H. Zhang, and H. J. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
    [Crossref]
  21. H. Xu, H. J. Li, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, C. X. Xiong, and B. H. Zhang, “Novel tunable terahertz graphene metamaterial with an ultrahigh group index over a broad bandwidth,” Appl. Phys. Express 11(4), 042003 (2018).
    [Crossref]
  22. H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
    [Crossref] [PubMed]
  23. T. Zhang, J. Z. Zhou, J. Dai, Y. T. Dai, X. Han, J. Q. Li, F. F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
    [Crossref]
  24. N. Rouhi, S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, “Terahertz graphene optics,” Nano Res. 5(10), 667–678 (2012).
    [Crossref]
  25. S. Balci, O. Balci, N. Kakenov, F. B. Atar, and C. Kocabas, “Dynamic tuning of plasmon resonance in the visible using graphene,” Opt. Lett. 41(6), 1241–1244 (2016).
    [Crossref] [PubMed]
  26. H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
    [Crossref]
  27. H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces,” Appl. Phys. Lett. 107(9), 091602 (2015).
    [Crossref]
  28. C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(12), 125431 (2012).
    [Crossref]
  29. Z. H. He, X. C. Ren, S. M. Bai, H. J. Li, D. M. Cao, and G. Li, “Λ-Type and V-Type plasmon-induced transparency in plasmonic waveguide systems,” Plasmonics 13(6), 2255 (2018).
    [Crossref]
  30. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
    [Crossref]
  31. K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
    [Crossref] [PubMed]
  32. X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
    [Crossref] [PubMed]
  33. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195415 (2009).
    [Crossref]

2019 (2)

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. Y. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D Appl. Phys. 52(2), 025104 (2019).
[Crossref]

B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref] [PubMed]

2018 (6)

H. Xu, C. X. Xiong, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, B. H. Zhang, and H. J. Li, “Dynamic plasmon-induced transparency modulator and excellent absorber-based terahertz planar graphene metamaterial,” J. Opt. Soc. Am. B 35(6), 1463 (2018).
[Crossref]

X. Luo, X. Zhai, L. Wang, and Q. Lin, “Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber,” Opt. Express 26(9), 11658–11666 (2018).
[Crossref] [PubMed]

H. Xu, M. Z. Zhao, Z. Q. Chen, M. F. Zheng, C. X. Xiong, B. H. Zhang, and H. J. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

H. Xu, H. J. Li, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, C. X. Xiong, and B. H. Zhang, “Novel tunable terahertz graphene metamaterial with an ultrahigh group index over a broad bandwidth,” Appl. Phys. Express 11(4), 042003 (2018).
[Crossref]

T. Zhang, J. Z. Zhou, J. Dai, Y. T. Dai, X. Han, J. Q. Li, F. F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Z. H. He, X. C. Ren, S. M. Bai, H. J. Li, D. M. Cao, and G. Li, “Λ-Type and V-Type plasmon-induced transparency in plasmonic waveguide systems,” Plasmonics 13(6), 2255 (2018).
[Crossref]

2017 (3)

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref] [PubMed]

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically Induced Transparency in an All-Dielectric Metamaterial-Waveguide With Large Group Index,” IEEE P. J. 9(5), 1–8 (2017).
[Crossref]

2016 (6)

2015 (2)

H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces,” Appl. Phys. Lett. 107(9), 091602 (2015).
[Crossref]

L. Qi, Z. Xiang, L. L. Wang, B. X. Wang, G. D. Liu, and S. X. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Epl 111(2015), 34004 (2015).

2014 (1)

S. P. Zhan, H. J. Li, G. T. Cao, Z. H. He, B. X. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

2013 (3)

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref] [PubMed]

S. P. Zhan, D. Kong, G. T. Cao, Z. H. He, Y. Wang, G. J. Xu, and H. J. Li, “Analogy of plasmon induced transparency in detuned U-resonators coupling to MDM plasmonic waveguide,” Solid State Commun. 174(11), 50–54 (2013).
[Crossref]

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

2012 (3)

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(12), 125431 (2012).
[Crossref]

N. Rouhi, S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, “Terahertz graphene optics,” Nano Res. 5(10), 667–678 (2012).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 081405 (2012).
[Crossref]

2011 (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2009 (2)

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of Electromagnetically Induced Transparency in a Terahertz Metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195415 (2009).
[Crossref]

2008 (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

1991 (2)

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Altug, H.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Atar, F. B.

Bai, S. M.

Z. H. He, X. C. Ren, S. M. Bai, H. J. Li, D. M. Cao, and G. Li, “Λ-Type and V-Type plasmon-induced transparency in plasmonic waveguide systems,” Plasmonics 13(6), 2255 (2018).
[Crossref]

Balci, O.

Balci, S.

Bettiol, A. A.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of Electromagnetically Induced Transparency in a Terahertz Metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Boller, K.-J.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Boyd, R. W.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Brown, E.

N. Rouhi, S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, “Terahertz graphene optics,” Nano Res. 5(10), 667–678 (2012).
[Crossref]

Burke, P.

N. Rouhi, S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, “Terahertz graphene optics,” Nano Res. 5(10), 667–678 (2012).
[Crossref]

Cao, D. M.

Z. H. He, X. C. Ren, S. M. Bai, H. J. Li, D. M. Cao, and G. Li, “Λ-Type and V-Type plasmon-induced transparency in plasmonic waveguide systems,” Plasmonics 13(6), 2255 (2018).
[Crossref]

Cao, G. T.

S. P. Zhan, H. J. Li, G. T. Cao, Z. H. He, B. X. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

S. P. Zhan, D. Kong, G. T. Cao, Z. H. He, Y. Wang, G. J. Xu, and H. J. Li, “Analogy of plasmon induced transparency in detuned U-resonators coupling to MDM plasmonic waveguide,” Solid State Commun. 174(11), 50–54 (2013).
[Crossref]

Capdevila, S.

N. Rouhi, S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, “Terahertz graphene optics,” Nano Res. 5(10), 667–678 (2012).
[Crossref]

Chen, S. Q.

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Chen, Z.

Chen, Z. Q.

H. Xu, C. X. Xiong, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, B. H. Zhang, and H. J. Li, “Dynamic plasmon-induced transparency modulator and excellent absorber-based terahertz planar graphene metamaterial,” J. Opt. Soc. Am. B 35(6), 1463 (2018).
[Crossref]

H. Xu, M. Z. Zhao, Z. Q. Chen, M. F. Zheng, C. X. Xiong, B. H. Zhang, and H. J. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

H. Xu, H. J. Li, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, C. X. Xiong, and B. H. Zhang, “Novel tunable terahertz graphene metamaterial with an ultrahigh group index over a broad bandwidth,” Appl. Phys. Express 11(4), 042003 (2018).
[Crossref]

Z. Q. Chen, H. J. Li, B. X. Li, Z. H. He, H. Xu, M. F. Zheng, and M. Z. Zhao, “Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system,” Appl. Phys. Express 9(10), 102002 (2016).
[Crossref]

Cheng, H.

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Chiam, S.-Y.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of Electromagnetically Induced Transparency in a Terahertz Metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Chu, H. S.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(12), 125431 (2012).
[Crossref]

Dai, J.

T. Zhang, J. Z. Zhou, J. Dai, Y. T. Dai, X. Han, J. Q. Li, F. F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Dai, Y. T.

T. Zhang, J. Z. Zhou, J. Dai, Y. T. Dai, X. Han, J. Q. Li, F. F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Deng, X.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Duan, X. Y.

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Gan, C. H.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(12), 125431 (2012).
[Crossref]

Gao, P.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 081405 (2012).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Guinea, F.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 081405 (2012).
[Crossref]

Haddadpour, A.

Hafner, J.

J. Hafner, “Imaging Art and Facts,” ACS Nano 10(7), 6417–6419 (2016).
[Crossref] [PubMed]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref] [PubMed]

Han, B.

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically Induced Transparency in an All-Dielectric Metamaterial-Waveguide With Large Group Index,” IEEE P. J. 9(5), 1–8 (2017).
[Crossref]

Han, X.

T. Zhang, J. Z. Zhou, J. Dai, Y. T. Dai, X. Han, J. Q. Li, F. F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Harris, S. E.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Haus, H. A.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

He, X.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

He, Z.

He, Z. H.

Z. H. He, X. C. Ren, S. M. Bai, H. J. Li, D. M. Cao, and G. Li, “Λ-Type and V-Type plasmon-induced transparency in plasmonic waveguide systems,” Plasmonics 13(6), 2255 (2018).
[Crossref]

Z. Q. Chen, H. J. Li, B. X. Li, Z. H. He, H. Xu, M. F. Zheng, and M. Z. Zhao, “Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system,” Appl. Phys. Express 9(10), 102002 (2016).
[Crossref]

S. P. Zhan, H. J. Li, G. T. Cao, Z. H. He, B. X. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

S. P. Zhan, D. Kong, G. T. Cao, Z. H. He, Y. Wang, G. J. Xu, and H. J. Li, “Analogy of plasmon induced transparency in detuned U-resonators coupling to MDM plasmonic waveguide,” Solid State Commun. 174(11), 50–54 (2013).
[Crossref]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref] [PubMed]

Hong, Z.

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically Induced Transparency in an All-Dielectric Metamaterial-Waveguide With Large Group Index,” IEEE P. J. 9(5), 1–8 (2017).
[Crossref]

Huang, W.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref] [PubMed]

Imamoglu, A.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Jain, D.

N. Rouhi, S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, “Terahertz graphene optics,” Nano Res. 5(10), 667–678 (2012).
[Crossref]

Jing, X.

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically Induced Transparency in an All-Dielectric Metamaterial-Waveguide With Large Group Index,” IEEE P. J. 9(5), 1–8 (2017).
[Crossref]

Jofre, L.

N. Rouhi, S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, “Terahertz graphene optics,” Nano Res. 5(10), 667–678 (2012).
[Crossref]

Kakenov, N.

Kocabas, C.

Kong, D.

S. P. Zhan, D. Kong, G. T. Cao, Z. H. He, Y. Wang, G. J. Xu, and H. J. Li, “Analogy of plasmon induced transparency in detuned U-resonators coupling to MDM plasmonic waveguide,” Solid State Commun. 174(11), 50–54 (2013).
[Crossref]

Lang, T.

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically Induced Transparency in an All-Dielectric Metamaterial-Waveguide With Large Group Index,” IEEE P. J. 9(5), 1–8 (2017).
[Crossref]

Lederer, F.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of Electromagnetically Induced Transparency in a Terahertz Metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Li, B.

Li, B. X.

Z. Q. Chen, H. J. Li, B. X. Li, Z. H. He, H. Xu, M. F. Zheng, and M. Z. Zhao, “Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system,” Appl. Phys. Express 9(10), 102002 (2016).
[Crossref]

S. P. Zhan, H. J. Li, G. T. Cao, Z. H. He, B. X. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

Li, E. P.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(12), 125431 (2012).
[Crossref]

Li, G.

Z. H. He, X. C. Ren, S. M. Bai, H. J. Li, D. M. Cao, and G. Li, “Λ-Type and V-Type plasmon-induced transparency in plasmonic waveguide systems,” Plasmonics 13(6), 2255 (2018).
[Crossref]

Li, H.

Li, H. J.

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. Y. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D Appl. Phys. 52(2), 025104 (2019).
[Crossref]

H. Xu, C. X. Xiong, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, B. H. Zhang, and H. J. Li, “Dynamic plasmon-induced transparency modulator and excellent absorber-based terahertz planar graphene metamaterial,” J. Opt. Soc. Am. B 35(6), 1463 (2018).
[Crossref]

H. Xu, M. Z. Zhao, Z. Q. Chen, M. F. Zheng, C. X. Xiong, B. H. Zhang, and H. J. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

H. Xu, H. J. Li, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, C. X. Xiong, and B. H. Zhang, “Novel tunable terahertz graphene metamaterial with an ultrahigh group index over a broad bandwidth,” Appl. Phys. Express 11(4), 042003 (2018).
[Crossref]

Z. H. He, X. C. Ren, S. M. Bai, H. J. Li, D. M. Cao, and G. Li, “Λ-Type and V-Type plasmon-induced transparency in plasmonic waveguide systems,” Plasmonics 13(6), 2255 (2018).
[Crossref]

Z. Q. Chen, H. J. Li, B. X. Li, Z. H. He, H. Xu, M. F. Zheng, and M. Z. Zhao, “Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system,” Appl. Phys. Express 9(10), 102002 (2016).
[Crossref]

S. P. Zhan, H. J. Li, G. T. Cao, Z. H. He, B. X. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

S. P. Zhan, D. Kong, G. T. Cao, Z. H. He, Y. Wang, G. J. Xu, and H. J. Li, “Analogy of plasmon induced transparency in detuned U-resonators coupling to MDM plasmonic waveguide,” Solid State Commun. 174(11), 50–54 (2013).
[Crossref]

Li, I. L.

H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces,” Appl. Phys. Lett. 107(9), 091602 (2015).
[Crossref]

Li, J. Q.

T. Zhang, J. Z. Zhou, J. Dai, Y. T. Dai, X. Han, J. Q. Li, F. F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Li, X.

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically Induced Transparency in an All-Dielectric Metamaterial-Waveguide With Large Group Index,” IEEE P. J. 9(5), 1–8 (2017).
[Crossref]

Liang, H.

H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces,” Appl. Phys. Lett. 107(9), 091602 (2015).
[Crossref]

Lin, Q.

Liu, C.

Liu, G. D.

L. Qi, Z. Xiang, L. L. Wang, B. X. Wang, G. D. Liu, and S. X. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Epl 111(2015), 34004 (2015).

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Luo, X.

Martin-Moreno, L.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 081405 (2012).
[Crossref]

Nezhad, V. F.

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 081405 (2012).
[Crossref]

Oulton, R. F.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195415 (2009).
[Crossref]

Peng, Y. Y.

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. Y. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D Appl. Phys. 52(2), 025104 (2019).
[Crossref]

Qi, L.

L. Qi, Z. Xiang, L. L. Wang, B. X. Wang, G. D. Liu, and S. X. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Epl 111(2015), 34004 (2015).

Ren, X. C.

Z. H. He, X. C. Ren, S. M. Bai, H. J. Li, D. M. Cao, and G. Li, “Λ-Type and V-Type plasmon-induced transparency in plasmonic waveguide systems,” Plasmonics 13(6), 2255 (2018).
[Crossref]

Rockstuhl, C.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of Electromagnetically Induced Transparency in a Terahertz Metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Rouhi, N.

N. Rouhi, S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, “Terahertz graphene optics,” Nano Res. 5(10), 667–678 (2012).
[Crossref]

Ruan, S.

H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces,” Appl. Phys. Lett. 107(9), 091602 (2015).
[Crossref]

Schulz, S. A.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Shen, L.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Shi, W.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Singh, R.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of Electromagnetically Induced Transparency in a Terahertz Metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Su, H.

H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces,” Appl. Phys. Lett. 107(9), 091602 (2015).
[Crossref]

Sui, C.

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically Induced Transparency in an All-Dielectric Metamaterial-Waveguide With Large Group Index,” IEEE P. J. 9(5), 1–8 (2017).
[Crossref]

Tian, J. G.

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Tsakmakidis, K. L.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Upham, J.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Vakakis, A. F.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Veronis, G.

Wang, B. X.

L. Qi, Z. Xiang, L. L. Wang, B. X. Wang, G. D. Liu, and S. X. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Epl 111(2015), 34004 (2015).

Wang, L.

Wang, L. L.

L. Qi, Z. Xiang, L. L. Wang, B. X. Wang, G. D. Liu, and S. X. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Epl 111(2015), 34004 (2015).

Wang, Y.

S. P. Zhan, D. Kong, G. T. Cao, Z. H. He, Y. Wang, G. J. Xu, and H. J. Li, “Analogy of plasmon induced transparency in detuned U-resonators coupling to MDM plasmonic waveguide,” Solid State Commun. 174(11), 50–54 (2013).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wang, Y. Y.

N. Rouhi, S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, “Terahertz graphene optics,” Nano Res. 5(10), 667–678 (2012).
[Crossref]

Wu, K.

Xia, S. X.

L. Qi, Z. Xiang, L. L. Wang, B. X. Wang, G. D. Liu, and S. X. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Epl 111(2015), 34004 (2015).

Xiang, Z.

L. Qi, Z. Xiang, L. L. Wang, B. X. Wang, G. D. Liu, and S. X. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Epl 111(2015), 34004 (2015).

Xie, B. Y.

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Xiong, C.

Xiong, C. X.

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. Y. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D Appl. Phys. 52(2), 025104 (2019).
[Crossref]

H. Xu, C. X. Xiong, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, B. H. Zhang, and H. J. Li, “Dynamic plasmon-induced transparency modulator and excellent absorber-based terahertz planar graphene metamaterial,” J. Opt. Soc. Am. B 35(6), 1463 (2018).
[Crossref]

H. Xu, M. Z. Zhao, Z. Q. Chen, M. F. Zheng, C. X. Xiong, B. H. Zhang, and H. J. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

H. Xu, H. J. Li, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, C. X. Xiong, and B. H. Zhang, “Novel tunable terahertz graphene metamaterial with an ultrahigh group index over a broad bandwidth,” Appl. Phys. Express 11(4), 042003 (2018).
[Crossref]

Xu, G. J.

S. P. Zhan, D. Kong, G. T. Cao, Z. H. He, Y. Wang, G. J. Xu, and H. J. Li, “Analogy of plasmon induced transparency in detuned U-resonators coupling to MDM plasmonic waveguide,” Solid State Commun. 174(11), 50–54 (2013).
[Crossref]

Xu, H.

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. Y. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D Appl. Phys. 52(2), 025104 (2019).
[Crossref]

B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref] [PubMed]

H. Xu, C. X. Xiong, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, B. H. Zhang, and H. J. Li, “Dynamic plasmon-induced transparency modulator and excellent absorber-based terahertz planar graphene metamaterial,” J. Opt. Soc. Am. B 35(6), 1463 (2018).
[Crossref]

H. Xu, H. J. Li, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, C. X. Xiong, and B. H. Zhang, “Novel tunable terahertz graphene metamaterial with an ultrahigh group index over a broad bandwidth,” Appl. Phys. Express 11(4), 042003 (2018).
[Crossref]

H. Xu, M. Z. Zhao, Z. Q. Chen, M. F. Zheng, C. X. Xiong, B. H. Zhang, and H. J. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref] [PubMed]

Z. He, H. Li, B. Li, Z. Chen, H. Xu, and M. Zheng, “Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub,” Opt. Lett. 41(22), 5206–5209 (2016).
[Crossref] [PubMed]

Z. Q. Chen, H. J. Li, B. X. Li, Z. H. He, H. Xu, M. F. Zheng, and M. Z. Zhao, “Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system,” Appl. Phys. Express 9(10), 102002 (2016).
[Crossref]

Xu, K.

T. Zhang, J. Z. Zhou, J. Dai, Y. T. Dai, X. Han, J. Q. Li, F. F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Yang, H.

S. P. Zhan, H. J. Li, G. T. Cao, Z. H. He, B. X. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

Yin, F. F.

T. Zhang, J. Z. Zhou, J. Dai, Y. T. Dai, X. Han, J. Q. Li, F. F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Yu, P.

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Yu, Z.

Zand, K.

N. Rouhi, S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, “Terahertz graphene optics,” Nano Res. 5(10), 667–678 (2012).
[Crossref]

Zentgraf, T.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195415 (2009).
[Crossref]

Zhai, X.

Zhan, S. P.

S. P. Zhan, H. J. Li, G. T. Cao, Z. H. He, B. X. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

S. P. Zhan, D. Kong, G. T. Cao, Z. H. He, Y. Wang, G. J. Xu, and H. J. Li, “Analogy of plasmon induced transparency in detuned U-resonators coupling to MDM plasmonic waveguide,” Solid State Commun. 174(11), 50–54 (2013).
[Crossref]

Zhang, B.

Zhang, B. H.

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. Y. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D Appl. Phys. 52(2), 025104 (2019).
[Crossref]

H. Xu, C. X. Xiong, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, B. H. Zhang, and H. J. Li, “Dynamic plasmon-induced transparency modulator and excellent absorber-based terahertz planar graphene metamaterial,” J. Opt. Soc. Am. B 35(6), 1463 (2018).
[Crossref]

H. Xu, M. Z. Zhao, Z. Q. Chen, M. F. Zheng, C. X. Xiong, B. H. Zhang, and H. J. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

H. Xu, H. J. Li, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, C. X. Xiong, and B. H. Zhang, “Novel tunable terahertz graphene metamaterial with an ultrahigh group index over a broad bandwidth,” Appl. Phys. Express 11(4), 042003 (2018).
[Crossref]

Zhang, M.

H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces,” Appl. Phys. Lett. 107(9), 091602 (2015).
[Crossref]

Zhang, S.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195415 (2009).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, T.

T. Zhang, J. Z. Zhou, J. Dai, Y. T. Dai, X. Han, J. Q. Li, F. F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Zhang, W.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of Electromagnetically Induced Transparency in a Terahertz Metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Zhang, X.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195415 (2009).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhao, M.

Zhao, M. Z.

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. Y. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D Appl. Phys. 52(2), 025104 (2019).
[Crossref]

H. Xu, C. X. Xiong, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, B. H. Zhang, and H. J. Li, “Dynamic plasmon-induced transparency modulator and excellent absorber-based terahertz planar graphene metamaterial,” J. Opt. Soc. Am. B 35(6), 1463 (2018).
[Crossref]

H. Xu, H. J. Li, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, C. X. Xiong, and B. H. Zhang, “Novel tunable terahertz graphene metamaterial with an ultrahigh group index over a broad bandwidth,” Appl. Phys. Express 11(4), 042003 (2018).
[Crossref]

H. Xu, M. Z. Zhao, Z. Q. Chen, M. F. Zheng, C. X. Xiong, B. H. Zhang, and H. J. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

Z. Q. Chen, H. J. Li, B. X. Li, Z. H. He, H. Xu, M. F. Zheng, and M. Z. Zhao, “Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system,” Appl. Phys. Express 9(10), 102002 (2016).
[Crossref]

Zheng, M.

Zheng, M. F.

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. Y. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D Appl. Phys. 52(2), 025104 (2019).
[Crossref]

H. Xu, M. Z. Zhao, Z. Q. Chen, M. F. Zheng, C. X. Xiong, B. H. Zhang, and H. J. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

H. Xu, H. J. Li, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, C. X. Xiong, and B. H. Zhang, “Novel tunable terahertz graphene metamaterial with an ultrahigh group index over a broad bandwidth,” Appl. Phys. Express 11(4), 042003 (2018).
[Crossref]

H. Xu, C. X. Xiong, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, B. H. Zhang, and H. J. Li, “Dynamic plasmon-induced transparency modulator and excellent absorber-based terahertz planar graphene metamaterial,” J. Opt. Soc. Am. B 35(6), 1463 (2018).
[Crossref]

Z. Q. Chen, H. J. Li, B. X. Li, Z. H. He, H. Xu, M. F. Zheng, and M. Z. Zhao, “Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system,” Appl. Phys. Express 9(10), 102002 (2016).
[Crossref]

Zheng, X.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Zhou, J. Z.

T. Zhang, J. Z. Zhou, J. Dai, Y. T. Dai, X. Han, J. Q. Li, F. F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Zhou, Y.

T. Zhang, J. Z. Zhou, J. Dai, Y. T. Dai, X. Han, J. Q. Li, F. F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

ACS Nano (1)

J. Hafner, “Imaging Art and Facts,” ACS Nano 10(7), 6417–6419 (2016).
[Crossref] [PubMed]

Appl. Phys. Express (2)

Z. Q. Chen, H. J. Li, B. X. Li, Z. H. He, H. Xu, M. F. Zheng, and M. Z. Zhao, “Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system,” Appl. Phys. Express 9(10), 102002 (2016).
[Crossref]

H. Xu, H. J. Li, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, C. X. Xiong, and B. H. Zhang, “Novel tunable terahertz graphene metamaterial with an ultrahigh group index over a broad bandwidth,” Appl. Phys. Express 11(4), 042003 (2018).
[Crossref]

Appl. Phys. Lett. (2)

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces,” Appl. Phys. Lett. 107(9), 091602 (2015).
[Crossref]

Epl (1)

L. Qi, Z. Xiang, L. L. Wang, B. X. Wang, G. D. Liu, and S. X. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Epl 111(2015), 34004 (2015).

IEEE P. J. (1)

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically Induced Transparency in an All-Dielectric Metamaterial-Waveguide With Large Group Index,” IEEE P. J. 9(5), 1–8 (2017).
[Crossref]

J. Appl. Phys. (1)

H. Xu, M. Z. Zhao, Z. Q. Chen, M. F. Zheng, C. X. Xiong, B. H. Zhang, and H. J. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (3)

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. Y. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D Appl. Phys. 52(2), 025104 (2019).
[Crossref]

S. P. Zhan, H. J. Li, G. T. Cao, Z. H. He, B. X. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

T. Zhang, J. Z. Zhou, J. Dai, Y. T. Dai, X. Han, J. Q. Li, F. F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Nano Res. (1)

N. Rouhi, S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, “Terahertz graphene optics,” Nano Res. 5(10), 667–678 (2012).
[Crossref]

Nanoscale (1)

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B Condens. Matter Mater. Phys. (4)

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of Electromagnetically Induced Transparency in a Terahertz Metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Matter Mater. Phys. 80(19), 195415 (2009).
[Crossref]

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(12), 125431 (2012).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 081405 (2012).
[Crossref]

Phys. Rev. Lett. (4)

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Plasmonics (1)

Z. H. He, X. C. Ren, S. M. Bai, H. J. Li, D. M. Cao, and G. Li, “Λ-Type and V-Type plasmon-induced transparency in plasmonic waveguide systems,” Plasmonics 13(6), 2255 (2018).
[Crossref]

Proc. IEEE (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Science (2)

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Solid State Commun. (1)

S. P. Zhan, D. Kong, G. T. Cao, Z. H. He, Y. Wang, G. J. Xu, and H. J. Li, “Analogy of plasmon induced transparency in detuned U-resonators coupling to MDM plasmonic waveguide,” Solid State Commun. 174(11), 50–54 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic diagram of slow-light and light absorption integrated periodic metamaterials. Patterned periodic single-layer planar graphene is sandwiched in dielectric silicon, and the thickness of the upper medium and the lower substrate are 0.1μm and 0.25μm, respectively. (b) Top view of structural unit in metamaterial, and geometric parameters:l1 = 3.2µm, l2 = 0.5µm, l3 = 0.3µm, l4 = 1.5µm, l5 = 0.5µm, l6 = 0.5µm, L = 4µm.
Fig. 2
Fig. 2 (a-b) Transmission and absorption spectra of slow-light and absorption integrated metamaterials, and Fermi level is set as 1.0eV. (c-f) Four metamaterial arrays, wherein graphene in (c) with the whole structure, four blocks graphene in (d) are monopole antenna, graphene ribbons in (e) are quadrupole antenna, and the two graphene ribbons in (f) are octapole antenna.
Fig. 3
Fig. 3 (a) The electric field distribution of the quadrupole antenna at f1 = 2.354THz. (b) The electric field distribution of the octupole antenna at f2 = 4.038THz. (c-e) Electric field distribution of dip1 (f3 = 2.093THz), dip2 (f4 = 3.105THz), dip3 (f5 = 4.188THz) for different resonance frequencies in the whole structure. These field distributions are all in the y direction.
Fig. 4
Fig. 4 (a) Schematic diagram of a Λ-shaped PIT. (b) Schematic diagram of coupled mode theory.
Fig. 5
Fig. 5 (a-d) and (e-i) are transmission and absorption spectra of FDTD numerical simulation and CMT theoretical calculation at different Fermi levels, respectively.
Fig. 6
Fig. 6 (a) Resonance dips and peaks versus frequency in transmission and absorption spectra. (b) Diagram of loss quality factor and frequency at different Fermi levels. (c-d) Quality factors of transmission dips and absorption peaks at different Fermi levels. (e-f) Evolution of transmission and absorbance among different Fermi levels and frequencies.
Fig. 7
Fig. 7 (a-b) Evolution of dual PIT and PIA, and Fermi level is 1.0eV.
Fig. 8
Fig. 8 (a-b) Evolution of dual PIT and PIA in different media environments. (c-d) Evolution of dual PIT and PIA at different carrier mobility. Here, Fermi level is 1.0eV.
Fig. 9
Fig. 9 (a-d) Group index and phase shifts of the proposed metamaterials at different Fermi levels.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

σ g = i e 2 E f π(ω+i τ 1 ) ,
( γ 1 i μ 12 i μ 13 i μ 21 γ 2 i μ 23 i μ 31 i μ 32 γ 3 )( a b c )=( γ o1 1/2 0 0 0 γ o2 1/2 0 0 0 γ o3 1/2 )( A + in + A in B + in + B in C + in + C in ),
B + in = A + out e i φ 1 , A in = B out e i φ 1 ,
C + in = B + out e i φ 2 , B in = C out e i φ 2 ,
A + out = A + in γ o1 1/2 a, A out = A in γ o1 1/2 a,
B + out = B + in γ o2 1/2 b, B out = B in γ o2 1/2 b,
C + out = C + in γ o3 1/2 c, C out = C in γ o3 1/2 c,
t= C + out A + in =1 γ o1 1/2 D 1 γ o2 1/2 D 2 γ o3 1/2 D 3 ,
r= ( γ o1 ) 1/2 D 1 ( γ o2 ) 1/2 D 2 ( γ o3 ) 1/2 D 3 ,
D 1 = ( γ 2 γ 3 γ 23 γ 32 ) γ o1 1/2 +( γ 12 γ 3 + γ 13 γ 32 ) γ o2 1/2 +( γ 12 γ 23 + γ 13 γ 2 ) γ o3 1/2 γ 1 γ 23 γ 32 γ 1 γ 2 γ 3 + γ 12 γ 21 γ 3 + γ 12 γ 23 γ 31 + γ 13 γ 21 γ 32 + γ 13 γ 2 γ 31 ,
D 2 = ( γ 21 γ 33 + γ 23 γ 31 ) γ o1 1/2 +( γ 1 γ 3 γ 13 γ 31 ) γ o2 1/2 +( γ 1 γ 23 + γ 13 γ 21 ) γ o3 1/2 γ 1 γ 23 γ 32 γ 1 γ 2 γ 3 + γ 12 γ 21 γ 3 + γ 12 γ 23 γ 31 + γ 13 γ 21 γ 32 + γ 13 γ 2 γ 31 ,
D 3 = ( γ 21 γ 32 + γ 2 γ 31 ) γ o1 1/2 +( γ 1 γ 32 + γ 12 γ 31 ) γ o2 1/2 +( γ 1 γ 2 γ 12 γ 21 ) γ o3 1/2 γ 1 γ 23 γ 32 γ 1 γ 2 γ 3 + γ 12 γ 21 γ 3 + γ 12 γ 23 γ 31 + γ 13 γ 21 γ 32 + γ 13 γ 2 γ 31 ,
γ 12 =i μ 12 + ( γ o1 γ o2 ) 1/2 , γ 13 =i μ 13 + ( γ o1 γ o3 ) 1/2 , γ 21 =i μ 21 + ( γ o1 γ o2 ) 1/2 ,
γ 23 =i μ 23 + ( γ o2 γ o3 ) 1/2 , γ 31 =i μ 31 + ( γ o1 γ o3 ) 1/2 , γ 32 =i μ 32 + ( γ o2 γ o3 ) 1/2 ,

Metrics