A. Beisenova, A. Issatayeva, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, and D. Tosi, “Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers,” Biomed. Opt. Express 10(3), 1282–1296 (2019).
[Crossref]
[PubMed]
F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
[Crossref]
[PubMed]
S. L. Scholl, A. Jantzen, R. H. S. Bannerman, P. C. Gow, D. H. Smith, J. C. Gates, L. J. Boyd, P. G. R. Smith, and C. Holmes, “Thermal approach to classifying sequentially written fiber Bragg gratings,” Opt. Lett. 44(3), 703–706 (2019).
[Crossref]
[PubMed]
Y. Xu, P. Lu, S. Gao, D. Xiang, P. Lu, S. Mihailov, and X. Bao, “Optical fiber random grating-based multiparameter sensor,” Opt. Lett. 40(23), 5514–5517 (2015).
[Crossref]
[PubMed]
J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).
[Crossref]
Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
[Crossref]
[PubMed]
M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref]
[PubMed]
A. Beisenova, A. Issatayeva, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, and D. Tosi, “Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers,” Biomed. Opt. Express 10(3), 1282–1296 (2019).
[Crossref]
[PubMed]
A. Beisenova, A. Issatayeva, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, and D. Tosi, “Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers,” Biomed. Opt. Express 10(3), 1282–1296 (2019).
[Crossref]
[PubMed]
F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
[Crossref]
[PubMed]
M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref]
[PubMed]
S. L. Scholl, A. Jantzen, R. H. S. Bannerman, P. C. Gow, D. H. Smith, J. C. Gates, L. J. Boyd, P. G. R. Smith, and C. Holmes, “Thermal approach to classifying sequentially written fiber Bragg gratings,” Opt. Lett. 44(3), 703–706 (2019).
[Crossref]
[PubMed]
A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. J. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 9360 (2017).
[Crossref]
[PubMed]
A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. J. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 9360 (2017).
[Crossref]
[PubMed]
T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot -wire grid,” Opt. Express 20(8), 8240–8249 (2012).
[Crossref]
[PubMed]
J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).
[Crossref]
Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
[Crossref]
[PubMed]
A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. J. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 9360 (2017).
[Crossref]
[PubMed]
T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot -wire grid,” Opt. Express 20(8), 8240–8249 (2012).
[Crossref]
[PubMed]
M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref]
[PubMed]
W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]
M. Farries and A. Rogers, “Distributed sensing using stimulated Raman interaction in a monomode optical fibre,” in 2nd Intl Conf on Optical Fiber Sensors: OFS’84, (International Society for Optics and Photonics, 1984), 121–133.
[Crossref]
P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous multicore optical fiber grating arrays for distributed sensing applications,” J. Lightwave Technol. 35(6), 1248–1252 (2017).
[Crossref]
S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5(1), 11177 (2015).
[Crossref]
[PubMed]
M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[Crossref]
[PubMed]
M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009).
[Crossref]
[PubMed]
S. L. Scholl, A. Jantzen, R. H. S. Bannerman, P. C. Gow, D. H. Smith, J. C. Gates, L. J. Boyd, P. G. R. Smith, and C. Holmes, “Thermal approach to classifying sequentially written fiber Bragg gratings,” Opt. Lett. 44(3), 703–706 (2019).
[Crossref]
[PubMed]
S. L. Scholl, A. Jantzen, R. H. S. Bannerman, P. C. Gow, D. H. Smith, J. C. Gates, L. J. Boyd, P. G. R. Smith, and C. Holmes, “Thermal approach to classifying sequentially written fiber Bragg gratings,” Opt. Lett. 44(3), 703–706 (2019).
[Crossref]
[PubMed]
S. L. Scholl, A. Jantzen, R. H. S. Bannerman, P. C. Gow, D. H. Smith, J. C. Gates, L. J. Boyd, P. G. R. Smith, and C. Holmes, “Thermal approach to classifying sequentially written fiber Bragg gratings,” Opt. Lett. 44(3), 703–706 (2019).
[Crossref]
[PubMed]
A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. J. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 9360 (2017).
[Crossref]
[PubMed]
F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
[Crossref]
[PubMed]
A. Beisenova, A. Issatayeva, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, and D. Tosi, “Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers,” Biomed. Opt. Express 10(3), 1282–1296 (2019).
[Crossref]
[PubMed]
S. L. Scholl, A. Jantzen, R. H. S. Bannerman, P. C. Gow, D. H. Smith, J. C. Gates, L. J. Boyd, P. G. R. Smith, and C. Holmes, “Thermal approach to classifying sequentially written fiber Bragg gratings,” Opt. Lett. 44(3), 703–706 (2019).
[Crossref]
[PubMed]
A. Beisenova, A. Issatayeva, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, and D. Tosi, “Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers,” Biomed. Opt. Express 10(3), 1282–1296 (2019).
[Crossref]
[PubMed]
F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
[Crossref]
[PubMed]
F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
[Crossref]
[PubMed]
S. Loranger, V. Lambin-Iezzi, and R. Kashyap, “Reproducible ultra-long FBGs in phase corrected non-uniform fibers,” Optica 4(9), 1143 (2017).
[Crossref]
S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5(1), 11177 (2015).
[Crossref]
[PubMed]
M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[Crossref]
[PubMed]
M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009).
[Crossref]
[PubMed]
P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous multicore optical fiber grating arrays for distributed sensing applications,” J. Lightwave Technol. 35(6), 1248–1252 (2017).
[Crossref]
A. Beisenova, A. Issatayeva, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, and D. Tosi, “Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers,” Biomed. Opt. Express 10(3), 1282–1296 (2019).
[Crossref]
[PubMed]
P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous multicore optical fiber grating arrays for distributed sensing applications,” J. Lightwave Technol. 35(6), 1248–1252 (2017).
[Crossref]
S. Loranger, V. Lambin-Iezzi, and R. Kashyap, “Reproducible ultra-long FBGs in phase corrected non-uniform fibers,” Optica 4(9), 1143 (2017).
[Crossref]
S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5(1), 11177 (2015).
[Crossref]
[PubMed]
F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
[Crossref]
[PubMed]
M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[Crossref]
[PubMed]
M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref]
[PubMed]
A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. J. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 9360 (2017).
[Crossref]
[PubMed]
A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. J. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 9360 (2017).
[Crossref]
[PubMed]
A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. J. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 9360 (2017).
[Crossref]
[PubMed]
J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).
[Crossref]
S. Loranger, V. Lambin-Iezzi, and R. Kashyap, “Reproducible ultra-long FBGs in phase corrected non-uniform fibers,” Optica 4(9), 1143 (2017).
[Crossref]
F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
[Crossref]
[PubMed]
S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5(1), 11177 (2015).
[Crossref]
[PubMed]
M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[Crossref]
[PubMed]
J. Liu, P. Lu, S. J. Mihailov, M. Wang, and J. Yao, “Real-time random grating sensor array for quasi-distributed sensing based on wavelength-to-time mapping and time-division multiplexing,” Opt. Lett. 44(2), 379–382 (2019).
[Crossref]
[PubMed]
Y. Xu, P. Lu, S. Gao, D. Xiang, P. Lu, S. Mihailov, and X. Bao, “Optical fiber random grating-based multiparameter sensor,” Opt. Lett. 40(23), 5514–5517 (2015).
[Crossref]
[PubMed]
Y. Xu, P. Lu, S. Gao, D. Xiang, P. Lu, S. Mihailov, and X. Bao, “Optical fiber random grating-based multiparameter sensor,” Opt. Lett. 40(23), 5514–5517 (2015).
[Crossref]
[PubMed]
J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).
[Crossref]
F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
[Crossref]
[PubMed]
A. Beisenova, A. Issatayeva, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, and D. Tosi, “Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers,” Biomed. Opt. Express 10(3), 1282–1296 (2019).
[Crossref]
[PubMed]
P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous multicore optical fiber grating arrays for distributed sensing applications,” J. Lightwave Technol. 35(6), 1248–1252 (2017).
[Crossref]
M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref]
[PubMed]
A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. J. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 9360 (2017).
[Crossref]
[PubMed]
P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous multicore optical fiber grating arrays for distributed sensing applications,” J. Lightwave Technol. 35(6), 1248–1252 (2017).
[Crossref]
F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
[Crossref]
[PubMed]
A. Rogers, “Distributed optical-fibre sensors,” J. Phys. D Appl. Phys. 19(12), 2237–2255 (1986).
[Crossref]
M. Farries and A. Rogers, “Distributed sensing using stimulated Raman interaction in a monomode optical fibre,” in 2nd Intl Conf on Optical Fiber Sensors: OFS’84, (International Society for Optics and Photonics, 1984), 121–133.
[Crossref]
M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref]
[PubMed]
A. Beisenova, A. Issatayeva, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, and D. Tosi, “Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers,” Biomed. Opt. Express 10(3), 1282–1296 (2019).
[Crossref]
[PubMed]
A. Beisenova, A. Issatayeva, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, and D. Tosi, “Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers,” Biomed. Opt. Express 10(3), 1282–1296 (2019).
[Crossref]
[PubMed]
S. L. Scholl, A. Jantzen, R. H. S. Bannerman, P. C. Gow, D. H. Smith, J. C. Gates, L. J. Boyd, P. G. R. Smith, and C. Holmes, “Thermal approach to classifying sequentially written fiber Bragg gratings,” Opt. Lett. 44(3), 703–706 (2019).
[Crossref]
[PubMed]
M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref]
[PubMed]
P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous multicore optical fiber grating arrays for distributed sensing applications,” J. Lightwave Technol. 35(6), 1248–1252 (2017).
[Crossref]
S. L. Scholl, A. Jantzen, R. H. S. Bannerman, P. C. Gow, D. H. Smith, J. C. Gates, L. J. Boyd, P. G. R. Smith, and C. Holmes, “Thermal approach to classifying sequentially written fiber Bragg gratings,” Opt. Lett. 44(3), 703–706 (2019).
[Crossref]
[PubMed]
S. L. Scholl, A. Jantzen, R. H. S. Bannerman, P. C. Gow, D. H. Smith, J. C. Gates, L. J. Boyd, P. G. R. Smith, and C. Holmes, “Thermal approach to classifying sequentially written fiber Bragg gratings,” Opt. Lett. 44(3), 703–706 (2019).
[Crossref]
[PubMed]
J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).
[Crossref]
M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Optimizing Image Denoising for Long-Range Brillouin Distributed Fiber Sensing,” J. Lightwave Technol. 36(4), 1168–1177 (2018).
[Crossref]
M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref]
[PubMed]
A. Beisenova, A. Issatayeva, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, and D. Tosi, “Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers,” Biomed. Opt. Express 10(3), 1282–1296 (2019).
[Crossref]
[PubMed]
P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous multicore optical fiber grating arrays for distributed sensing applications,” J. Lightwave Technol. 35(6), 1248–1252 (2017).
[Crossref]
A. Beisenova, A. Issatayeva, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, and D. Tosi, “Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers,” Biomed. Opt. Express 10(3), 1282–1296 (2019).
[Crossref]
[PubMed]
W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]
P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous multicore optical fiber grating arrays for distributed sensing applications,” J. Lightwave Technol. 35(6), 1248–1252 (2017).
[Crossref]
P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous multicore optical fiber grating arrays for distributed sensing applications,” J. Lightwave Technol. 35(6), 1248–1252 (2017).
[Crossref]
Y. Xu, P. Lu, S. Gao, D. Xiang, P. Lu, S. Mihailov, and X. Bao, “Optical fiber random grating-based multiparameter sensor,” Opt. Lett. 40(23), 5514–5517 (2015).
[Crossref]
[PubMed]
J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).
[Crossref]
A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. J. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 9360 (2017).
[Crossref]
[PubMed]
W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]
F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
[Crossref]
[PubMed]
A. Beisenova, A. Issatayeva, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, and D. Tosi, “Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers,” Biomed. Opt. Express 10(3), 1282–1296 (2019).
[Crossref]
[PubMed]
J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).
[Crossref]
P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous multicore optical fiber grating arrays for distributed sensing applications,” J. Lightwave Technol. 35(6), 1248–1252 (2017).
[Crossref]
M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Optimizing Image Denoising for Long-Range Brillouin Distributed Fiber Sensing,” J. Lightwave Technol. 36(4), 1168–1177 (2018).
[Crossref]
J. M. López-Higuera, L. R. Cobo, A. Q. Incera, and A. Cobo, “Fiber optic sensors in structural health monitoring,” J. Lightwave Technol. 29(4), 587–608 (2011).
[Crossref]
A. Rogers, “Distributed optical-fibre sensors,” J. Phys. D Appl. Phys. 19(12), 2237–2255 (1986).
[Crossref]
Y. London, Y. Antman, R. Cohen, N. Kimelfeld, N. Levanon, and A. Zadok, “High-resolution long-range distributed Brillouin analysis using dual-layer phase and amplitude coding,” Opt. Express 22(22), 27144–27158 (2014).
[Crossref]
[PubMed]
T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot -wire grid,” Opt. Express 20(8), 8240–8249 (2012).
[Crossref]
[PubMed]
M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009).
[Crossref]
[PubMed]
N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express 17(2), 395–404 (2009).
[Crossref]
[PubMed]
M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[Crossref]
[PubMed]
A. Mafi, “Anderson localization in a partially random Bragg grating and a conserved area theorem,” Opt. Lett. 40(15), 3603–3606 (2015).
[Crossref]
[PubMed]
Y. Xu, P. Lu, S. Gao, D. Xiang, P. Lu, S. Mihailov, and X. Bao, “Optical fiber random grating-based multiparameter sensor,” Opt. Lett. 40(23), 5514–5517 (2015).
[Crossref]
[PubMed]
J. Liu, P. Lu, S. J. Mihailov, M. Wang, and J. Yao, “Real-time random grating sensor array for quasi-distributed sensing based on wavelength-to-time mapping and time-division multiplexing,” Opt. Lett. 44(2), 379–382 (2019).
[Crossref]
[PubMed]
A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution,” Opt. Lett. 42(2), 290–293 (2017).
[Crossref]
[PubMed]
M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref]
[PubMed]
Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
[Crossref]
[PubMed]
S. L. Scholl, A. Jantzen, R. H. S. Bannerman, P. C. Gow, D. H. Smith, J. C. Gates, L. J. Boyd, P. G. R. Smith, and C. Holmes, “Thermal approach to classifying sequentially written fiber Bragg gratings,” Opt. Lett. 44(3), 703–706 (2019).
[Crossref]
[PubMed]
A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. J. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 9360 (2017).
[Crossref]
[PubMed]
S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5(1), 11177 (2015).
[Crossref]
[PubMed]
L. Thévenaz, S. Chin, J. Sancho, and S. Sales, “Novel technique for distributed fibre sensing based on faint long gratings (FLOGs),” in 23rd International Conference on Optical Fibre Sensors, (International Society for Optics and Photonics, 2014), 91576W.
S. T. Kreger, A. K. Sang, D. K. Gifford, and M. E. Froggatt, “Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter,” in Fiber Optic Sensors and Applications VI, (International Society for Optics and Photonics, 2009), 73160A.
S. Rizzolo, A. Boukenter, J. Perisse, G. Bouwmans, H. El Hamzaoui, L. Bigot, Y. Ouerdane, M. Cannas, M. Bouazaoui, and J.-R. Macé, “Radiation response of OFDR distributed sensors based on microstructured pure silica optical fibers,” in Radiation and Its Effects on Components and Systems (RADECS),201515th European Conference on, (IEEE, 2015), 1–3.
[Crossref]
M. Farries and A. Rogers, “Distributed sensing using stimulated Raman interaction in a monomode optical fibre,” in 2nd Intl Conf on Optical Fiber Sensors: OFS’84, (International Society for Optics and Photonics, 1984), 121–133.
[Crossref]
Luna, “Optical Backscatter Reflectometer 4600 - User Guide”, retrieved http://lunainc.com/wp-content/uploads/2014/05/OBR-4600-UG6_SW3.10.1.pdf .
J. F. C. Kingman, Poisson Processes (Clarendon Press, 1992).
S. M. Ross, STOCHASTIC PROCESSES, 2ND ED (Wiley India Pvt. Limited, 2008).
R. Kashyap, Fiber Bragg Gratings (Academic press, 2009).
W. Bai, H. Yu, D. Jiang, and M. Yang, “All fiber grating (AFG): a new platform for fiber optic sensing technologies,” in 24th International Conference on Optical Fibre Sensors, (International Society for Optics and Photonics, 2015), 96342A.
D. K. Gifford, M. E. Froggatt, and S. T. Kreger, “High precision, high sensitivity distributed displacement and temperature measurements using OFDR-based phase tracking,” in 21st International Conference on Optical Fiber Sensors, (International Society for Optics and Photonics, 2011), 77533I.
[Crossref]
K. J. Peters, R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” in Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring 2007, (2007).
P. S. Westbrook, K. S. Feder, R. M. Ortiz, T. Kremp, E. M. Monberg, H. Wu, D. A. Simoff, and S. Shenk, “Kilometer length, low loss enhanced back scattering fiber for distributed sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS), (IEEE, 2017), 1–5.