Abstract

A data analysis algorithm for OFDR-based distributed acoustic sensing (DAS) is proposed, which achieves high acoustic bandwidths of tens of kilohertz with sharp spatial resolutions in the order of centimeters. The non-idealities of the setup as well as the phase noise affecting the measurement are analyzed and a method to compensate them is experimentally demonstrated. The performance of the sensor is evaluated by extensive experimental tests, showing the viability of the proposed technique to achieve high frequency and high spatial resolution distributed acoustic sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic optical frequency domain reflectometry

Dror Arbel and Avishay Eyal
Opt. Express 22(8) 8823-8830 (2014)

Sinusoidal frequency scan OFDR with fast processing algorithm for distributed acoustic sensing

Lihi Shiloh and Avishay Eyal
Opt. Express 25(16) 19205-19215 (2017)

Use of distributed acoustic sensing for Doppler tracking of moving sources

Nina Shpalensky, Lihi Shiloh, Haniel Gabai, and Avishay Eyal
Opt. Express 26(13) 17690-17696 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Schenato, M. Camporese, S. Bersan, S. Cola, A. Pasuto, A. Galtarossa, P. Salandin, and P. Simonini, “Distributed optical fibre sensing for early detection of shallow landslides triggering,” Sci. Rep. 7(1), 14686 (2017).
    [Crossref] [PubMed]
  2. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Light. Technol. 23(6), 2081–2087 (2005).
    [Crossref]
  3. M. Gonzalez-Herraez, J. Pastor-Graells, A. Garcia-Ruiz, M. R. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive reflectometry: hearing behind the walls with high fidelity,” Proc. SPIE 10323, 1032302 (2017)
    [Crossref]
  4. A. Chiuchiolo, L. Palmieri, M. Consales, M. Giordano, A. Borriello, H. Bajas, A. Galtarossa, M. Bajko, and A. Cusano, “Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors,” Opt. Lett. 40(19), 4424 (2015).
    [Crossref] [PubMed]
  5. X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  6. L. Palmieri and L. Schenato, “Distributed Optical Fiber Sensing Based on Rayleigh Scattering,” The Open Optics Journal 7(1), 104–127 (2013).
    [Crossref]
  7. S. V. Shatalin, V. N. Treschikov, and A. J. Rogers, “Interferometric optical time-domain reflectometry for distributed optical-fiber sensing,” Appl. Opt. 37(24), 5600–5604 (1998).
    [Crossref]
  8. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
    [Crossref]
  9. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt. 37(10), 1735–1740 (1998).
    [Crossref]
  10. R. Rathod, R. D. Pechstedt, D. A. Jackson, and D. J. Webb, “Distributed temperature-change sensor based on Rayleigh backscattering in an optical fiber,” Opt. Lett. 19(8), 593–595 (1994).
    [Crossref] [PubMed]
  11. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [Crossref] [PubMed]
  12. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” J. Light. Technol. 28(32), 3243–3249 (2010).
  13. A. K. Sang, “Distributed Vibration Sensing using Rayleigh Backscatter in Optical Fibers” Ph.D Thesis, Virginia Polytechnic Institute and State University (2011).
  14. D. P. Zhou, Z. Qin, W. Li, L. Chen, and X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20(12), 13138 (2012).
    [Crossref] [PubMed]
  15. H. Gabai and A. Eyal, “On the sensitivity of distributed acoustic sensing,” Opt. Lett. 41(24), 5648–5651 (2016).
    [Crossref] [PubMed]
  16. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
    [Crossref] [PubMed]
  17. L. Shiloh and A. Eyal, “Sinusoidal frequency scan OFDR with fast processing algorithm for distributed acoustic sensing,” Opt. Express 25(16), 19205 (2017).
    [Crossref] [PubMed]
  18. M. A. Soto, J. A. Ramirez, and L. Thevenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
    [Crossref] [PubMed]
  19. D. Chen, Q. Liu, X. Fan, and Z. He, “Distributed Fiber-Optic Acoustic Sensor With Enhanced Response Bandwidth and High Signal-to-Noise Ratio,” J. Light. Technol. 35(10), 2037–2043 (2017).
    [Crossref]
  20. J. S. Sirkis and H. W. Haslach, “Interferometric stain measurement by arbitrarily configured surface-mounted, optical fibers,” J. Light. Technol. 8(10), 1497–1503 (1990).
    [Crossref]
  21. S. T. Kreger, J. W. Klein, N. A. A. Rahim, and J. J. Bos, “Distributed Rayleigh scatter dynamic strain sensing above the scan rate with optical frequency domain reflectometry,” Proc. SPIE 9480, 948006 (2015)
    [Crossref]
  22. P. Healey, “Statistics of Rayleigh backscatter from a single-mode optical fibre,” Electron. Lett. 21(6), 226–228 (1985).
    [Crossref]
  23. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High Resolution Distributed Strain or Temperature Measurements in Single- and Multi-Mode Fiber Using Swept-Wavelength Interferometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

2017 (4)

L. Schenato, M. Camporese, S. Bersan, S. Cola, A. Pasuto, A. Galtarossa, P. Salandin, and P. Simonini, “Distributed optical fibre sensing for early detection of shallow landslides triggering,” Sci. Rep. 7(1), 14686 (2017).
[Crossref] [PubMed]

M. Gonzalez-Herraez, J. Pastor-Graells, A. Garcia-Ruiz, M. R. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive reflectometry: hearing behind the walls with high fidelity,” Proc. SPIE 10323, 1032302 (2017)
[Crossref]

D. Chen, Q. Liu, X. Fan, and Z. He, “Distributed Fiber-Optic Acoustic Sensor With Enhanced Response Bandwidth and High Signal-to-Noise Ratio,” J. Light. Technol. 35(10), 2037–2043 (2017).
[Crossref]

L. Shiloh and A. Eyal, “Sinusoidal frequency scan OFDR with fast processing algorithm for distributed acoustic sensing,” Opt. Express 25(16), 19205 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (2)

S. T. Kreger, J. W. Klein, N. A. A. Rahim, and J. J. Bos, “Distributed Rayleigh scatter dynamic strain sensing above the scan rate with optical frequency domain reflectometry,” Proc. SPIE 9480, 948006 (2015)
[Crossref]

A. Chiuchiolo, L. Palmieri, M. Consales, M. Giordano, A. Borriello, H. Bajas, A. Galtarossa, M. Bajko, and A. Cusano, “Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors,” Opt. Lett. 40(19), 4424 (2015).
[Crossref] [PubMed]

2013 (1)

L. Palmieri and L. Schenato, “Distributed Optical Fiber Sensing Based on Rayleigh Scattering,” The Open Optics Journal 7(1), 104–127 (2013).
[Crossref]

2012 (2)

2010 (1)

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” J. Light. Technol. 28(32), 3243–3249 (2010).

2005 (2)

1998 (2)

1994 (1)

1990 (1)

J. S. Sirkis and H. W. Haslach, “Interferometric stain measurement by arbitrarily configured surface-mounted, optical fibers,” J. Light. Technol. 8(10), 1497–1503 (1990).
[Crossref]

1985 (1)

P. Healey, “Statistics of Rayleigh backscatter from a single-mode optical fibre,” Electron. Lett. 21(6), 226–228 (1985).
[Crossref]

1981 (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Bajas, H.

Bajko, M.

Bao, X.

X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

D. P. Zhou, Z. Qin, W. Li, L. Chen, and X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20(12), 13138 (2012).
[Crossref] [PubMed]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” J. Light. Technol. 28(32), 3243–3249 (2010).

Bersan, S.

L. Schenato, M. Camporese, S. Bersan, S. Cola, A. Pasuto, A. Galtarossa, P. Salandin, and P. Simonini, “Distributed optical fibre sensing for early detection of shallow landslides triggering,” Sci. Rep. 7(1), 14686 (2017).
[Crossref] [PubMed]

Borriello, A.

Bos, J. J.

S. T. Kreger, J. W. Klein, N. A. A. Rahim, and J. J. Bos, “Distributed Rayleigh scatter dynamic strain sensing above the scan rate with optical frequency domain reflectometry,” Proc. SPIE 9480, 948006 (2015)
[Crossref]

Camporese, M.

L. Schenato, M. Camporese, S. Bersan, S. Cola, A. Pasuto, A. Galtarossa, P. Salandin, and P. Simonini, “Distributed optical fibre sensing for early detection of shallow landslides triggering,” Sci. Rep. 7(1), 14686 (2017).
[Crossref] [PubMed]

Chen, D.

D. Chen, Q. Liu, X. Fan, and Z. He, “Distributed Fiber-Optic Acoustic Sensor With Enhanced Response Bandwidth and High Signal-to-Noise Ratio,” J. Light. Technol. 35(10), 2037–2043 (2017).
[Crossref]

Chen, L.

X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

D. P. Zhou, Z. Qin, W. Li, L. Chen, and X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20(12), 13138 (2012).
[Crossref] [PubMed]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” J. Light. Technol. 28(32), 3243–3249 (2010).

Chiuchiolo, A.

Choi, K. N.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Light. Technol. 23(6), 2081–2087 (2005).
[Crossref]

Cola, S.

L. Schenato, M. Camporese, S. Bersan, S. Cola, A. Pasuto, A. Galtarossa, P. Salandin, and P. Simonini, “Distributed optical fibre sensing for early detection of shallow landslides triggering,” Sci. Rep. 7(1), 14686 (2017).
[Crossref] [PubMed]

Consales, M.

Cusano, A.

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Eyal, A.

Fan, X.

D. Chen, Q. Liu, X. Fan, and Z. He, “Distributed Fiber-Optic Acoustic Sensor With Enhanced Response Bandwidth and High Signal-to-Noise Ratio,” J. Light. Technol. 35(10), 2037–2043 (2017).
[Crossref]

Fernandez-Ruiz, M. R. R.

M. Gonzalez-Herraez, J. Pastor-Graells, A. Garcia-Ruiz, M. R. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive reflectometry: hearing behind the walls with high fidelity,” Proc. SPIE 10323, 1032302 (2017)
[Crossref]

Froggatt, M.

Froggatt, M. E.

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[Crossref] [PubMed]

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High Resolution Distributed Strain or Temperature Measurements in Single- and Multi-Mode Fiber Using Swept-Wavelength Interferometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

Gabai, H.

Galtarossa, A.

L. Schenato, M. Camporese, S. Bersan, S. Cola, A. Pasuto, A. Galtarossa, P. Salandin, and P. Simonini, “Distributed optical fibre sensing for early detection of shallow landslides triggering,” Sci. Rep. 7(1), 14686 (2017).
[Crossref] [PubMed]

A. Chiuchiolo, L. Palmieri, M. Consales, M. Giordano, A. Borriello, H. Bajas, A. Galtarossa, M. Bajko, and A. Cusano, “Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors,” Opt. Lett. 40(19), 4424 (2015).
[Crossref] [PubMed]

Garcia-Ruiz, A.

M. Gonzalez-Herraez, J. Pastor-Graells, A. Garcia-Ruiz, M. R. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive reflectometry: hearing behind the walls with high fidelity,” Proc. SPIE 10323, 1032302 (2017)
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

Gifford, D. K.

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[Crossref] [PubMed]

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High Resolution Distributed Strain or Temperature Measurements in Single- and Multi-Mode Fiber Using Swept-Wavelength Interferometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

Giordano, M.

Gonzalez-Herraez, M.

M. Gonzalez-Herraez, J. Pastor-Graells, A. Garcia-Ruiz, M. R. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive reflectometry: hearing behind the walls with high fidelity,” Proc. SPIE 10323, 1032302 (2017)
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

Haslach, H. W.

J. S. Sirkis and H. W. Haslach, “Interferometric stain measurement by arbitrarily configured surface-mounted, optical fibers,” J. Light. Technol. 8(10), 1497–1503 (1990).
[Crossref]

He, Z.

D. Chen, Q. Liu, X. Fan, and Z. He, “Distributed Fiber-Optic Acoustic Sensor With Enhanced Response Bandwidth and High Signal-to-Noise Ratio,” J. Light. Technol. 35(10), 2037–2043 (2017).
[Crossref]

Healey, P.

P. Healey, “Statistics of Rayleigh backscatter from a single-mode optical fibre,” Electron. Lett. 21(6), 226–228 (1985).
[Crossref]

Jackson, D. A.

Juarez, J. C.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Light. Technol. 23(6), 2081–2087 (2005).
[Crossref]

Klein, J. W.

S. T. Kreger, J. W. Klein, N. A. A. Rahim, and J. J. Bos, “Distributed Rayleigh scatter dynamic strain sensing above the scan rate with optical frequency domain reflectometry,” Proc. SPIE 9480, 948006 (2015)
[Crossref]

Kreger, S. T.

S. T. Kreger, J. W. Klein, N. A. A. Rahim, and J. J. Bos, “Distributed Rayleigh scatter dynamic strain sensing above the scan rate with optical frequency domain reflectometry,” Proc. SPIE 9480, 948006 (2015)
[Crossref]

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High Resolution Distributed Strain or Temperature Measurements in Single- and Multi-Mode Fiber Using Swept-Wavelength Interferometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

Li, W.

Liu, Q.

D. Chen, Q. Liu, X. Fan, and Z. He, “Distributed Fiber-Optic Acoustic Sensor With Enhanced Response Bandwidth and High Signal-to-Noise Ratio,” J. Light. Technol. 35(10), 2037–2043 (2017).
[Crossref]

Lu, Y.

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” J. Light. Technol. 28(32), 3243–3249 (2010).

Maier, E. W.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Light. Technol. 23(6), 2081–2087 (2005).
[Crossref]

Martin-Lopez, S.

M. Gonzalez-Herraez, J. Pastor-Graells, A. Garcia-Ruiz, M. R. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive reflectometry: hearing behind the walls with high fidelity,” Proc. SPIE 10323, 1032302 (2017)
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

Martins, H. F.

M. Gonzalez-Herraez, J. Pastor-Graells, A. Garcia-Ruiz, M. R. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive reflectometry: hearing behind the walls with high fidelity,” Proc. SPIE 10323, 1032302 (2017)
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

Moore, J.

Palmieri, L.

Pastor-Graells, J.

M. Gonzalez-Herraez, J. Pastor-Graells, A. Garcia-Ruiz, M. R. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive reflectometry: hearing behind the walls with high fidelity,” Proc. SPIE 10323, 1032302 (2017)
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

Pasuto, A.

L. Schenato, M. Camporese, S. Bersan, S. Cola, A. Pasuto, A. Galtarossa, P. Salandin, and P. Simonini, “Distributed optical fibre sensing for early detection of shallow landslides triggering,” Sci. Rep. 7(1), 14686 (2017).
[Crossref] [PubMed]

Pechstedt, R. D.

Qin, Z.

Rahim, N. A. A.

S. T. Kreger, J. W. Klein, N. A. A. Rahim, and J. J. Bos, “Distributed Rayleigh scatter dynamic strain sensing above the scan rate with optical frequency domain reflectometry,” Proc. SPIE 9480, 948006 (2015)
[Crossref]

Ramirez, J. A.

M. A. Soto, J. A. Ramirez, and L. Thevenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Rathod, R.

Rogers, A. J.

Salandin, P.

L. Schenato, M. Camporese, S. Bersan, S. Cola, A. Pasuto, A. Galtarossa, P. Salandin, and P. Simonini, “Distributed optical fibre sensing for early detection of shallow landslides triggering,” Sci. Rep. 7(1), 14686 (2017).
[Crossref] [PubMed]

Sang, A. K.

A. K. Sang, “Distributed Vibration Sensing using Rayleigh Backscatter in Optical Fibers” Ph.D Thesis, Virginia Polytechnic Institute and State University (2011).

Schenato, L.

L. Schenato, M. Camporese, S. Bersan, S. Cola, A. Pasuto, A. Galtarossa, P. Salandin, and P. Simonini, “Distributed optical fibre sensing for early detection of shallow landslides triggering,” Sci. Rep. 7(1), 14686 (2017).
[Crossref] [PubMed]

L. Palmieri and L. Schenato, “Distributed Optical Fiber Sensing Based on Rayleigh Scattering,” The Open Optics Journal 7(1), 104–127 (2013).
[Crossref]

Shatalin, S. V.

Shiloh, L.

Simonini, P.

L. Schenato, M. Camporese, S. Bersan, S. Cola, A. Pasuto, A. Galtarossa, P. Salandin, and P. Simonini, “Distributed optical fibre sensing for early detection of shallow landslides triggering,” Sci. Rep. 7(1), 14686 (2017).
[Crossref] [PubMed]

Sirkis, J. S.

J. S. Sirkis and H. W. Haslach, “Interferometric stain measurement by arbitrarily configured surface-mounted, optical fibers,” J. Light. Technol. 8(10), 1497–1503 (1990).
[Crossref]

Soller, B. J.

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[Crossref] [PubMed]

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High Resolution Distributed Strain or Temperature Measurements in Single- and Multi-Mode Fiber Using Swept-Wavelength Interferometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

Soto, M. A.

M. A. Soto, J. A. Ramirez, and L. Thevenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Taylor, H. F.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Light. Technol. 23(6), 2081–2087 (2005).
[Crossref]

Thevenaz, L.

M. A. Soto, J. A. Ramirez, and L. Thevenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Treschikov, V. N.

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Webb, D. J.

Wolfe, M. S.

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[Crossref] [PubMed]

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High Resolution Distributed Strain or Temperature Measurements in Single- and Multi-Mode Fiber Using Swept-Wavelength Interferometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

Zhou, D. P.

Zhu, T.

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” J. Light. Technol. 28(32), 3243–3249 (2010).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Electron. Lett. (1)

P. Healey, “Statistics of Rayleigh backscatter from a single-mode optical fibre,” Electron. Lett. 21(6), 226–228 (1985).
[Crossref]

J. Light. Technol. (4)

D. Chen, Q. Liu, X. Fan, and Z. He, “Distributed Fiber-Optic Acoustic Sensor With Enhanced Response Bandwidth and High Signal-to-Noise Ratio,” J. Light. Technol. 35(10), 2037–2043 (2017).
[Crossref]

J. S. Sirkis and H. W. Haslach, “Interferometric stain measurement by arbitrarily configured surface-mounted, optical fibers,” J. Light. Technol. 8(10), 1497–1503 (1990).
[Crossref]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” J. Light. Technol. 28(32), 3243–3249 (2010).

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Light. Technol. 23(6), 2081–2087 (2005).
[Crossref]

Nat. Commun. (1)

M. A. Soto, J. A. Ramirez, and L. Thevenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (2)

S. T. Kreger, J. W. Klein, N. A. A. Rahim, and J. J. Bos, “Distributed Rayleigh scatter dynamic strain sensing above the scan rate with optical frequency domain reflectometry,” Proc. SPIE 9480, 948006 (2015)
[Crossref]

M. Gonzalez-Herraez, J. Pastor-Graells, A. Garcia-Ruiz, M. R. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive reflectometry: hearing behind the walls with high fidelity,” Proc. SPIE 10323, 1032302 (2017)
[Crossref]

Sci. Rep. (1)

L. Schenato, M. Camporese, S. Bersan, S. Cola, A. Pasuto, A. Galtarossa, P. Salandin, and P. Simonini, “Distributed optical fibre sensing for early detection of shallow landslides triggering,” Sci. Rep. 7(1), 14686 (2017).
[Crossref] [PubMed]

Sensors (1)

X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

The Open Optics Journal (1)

L. Palmieri and L. Schenato, “Distributed Optical Fiber Sensing Based on Rayleigh Scattering,” The Open Optics Journal 7(1), 104–127 (2013).
[Crossref]

Other (2)

A. K. Sang, “Distributed Vibration Sensing using Rayleigh Backscatter in Optical Fibers” Ph.D Thesis, Virginia Polytechnic Institute and State University (2011).

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High Resolution Distributed Strain or Temperature Measurements in Single- and Multi-Mode Fiber Using Swept-Wavelength Interferometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Noise degree of correlation.
Fig. 2
Fig. 2 (a) Perturbation spectrum before resampling. (b) Undesired sampling period variations. (c) Perturbation spectrum after resampling.
Fig. 3
Fig. 3 (a) Interrogation unit of the sensor. (b) Fiber loops to realize multiple identical localized perturbations.
Fig. 4
Fig. 4 Spectrum measured for a localized high-frequency sinusoidal perturbation at 41 kHz.
Fig. 5
Fig. 5 Spectra of the phase measured when three different frequencies (2.5, 5 and 12.5 kHz) are applied simultaneously in five different positions along the fiber. Only the portions of the spectra around the main frequencies are shown for clarity. (a) Measurement taken in the forward direction. (b) Measurement taken in the reverse direction.
Fig. 6
Fig. 6 (a) SNR as function of the acoustic SDR for different values of ΔL; (b) SNR as function of the acoustic SDR for different values of Lw.
Fig. 7
Fig. 7 Spectrum measured for a 12.3 meters long high-frequency sinusoidal perturbation at 50 kHz.

Tables (1)

Tables Icon

Table 1 Comparison between the Nominal and Measured Values of the Modulation Constant of the Fiber Stretcher.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

s o u t ( t ) = n a n exp  ( j ϕ n ) s i n ( t τ n ) ,
s i n ( t ) = s 0 rect ( t T ) exp  ( j π σ t 2 ) ,
i 0 ( t ) s o u t ( t ) s i n ( t ) | s 0 | 2 rect ( t T ) n a n exp  ( j ϕ n ) exp  ( j 2 π σ τ n t ) ,
i 0 ( t ) = K b ( t ; 0 , L ) = K ( b ( t ; 0 , z 0 ) + b ( t ; z 0 , L ) ) ,
β ˜ 0 ( z , t ) = { β 0 + Δ β 0 ( t ) z n I β 0 z n I .
ϕ ˜ n ( z , t ) = 2 0 z n β ˜ 0 ( z , t ) d z = { ϕ n z n z 1 ϕ n + Δ ϕ ( n , t ) z n I ϕ n + Δ ϕ ( t ) z n > z 2 ,
i 1 ( t ) = K [ b ( t ; 0 , z 1 ) + b ˜ ( t ; z 1 , z 2 ) + exp  ( j Δ ϕ ( t ) ) b ( t ; z 2 , L ) ] ,
b ˜ ( t ; z 1 , z 2 ) = K n I a n exp  ( j ( ϕ n + Δ ϕ ( n , t ) ) ) exp  ( j 2 π σ τ n t ) .
exp  ( j Δ ϕ ( t ) ) = w ( t ) * i 1 ( t ) w ( t ) * i 0 ( t ) .
ϕ ˜ n ( z , t ) = { ϕ n z n z s , 1 ϕ n + Δ ϕ 1 ( t ) z s , 1 < z n < z s , 2 ...   ϕ n + k Δ ϕ k ( t ) z s , k < z n < z s , k + 1 ...  
i 2 ( t ) K [ b ( t ; 0 , z s , 1 ) + exp  ( j Δ 1 ϕ ( t ) ) b ( t ; z s , 1 , z s , 2 )   + + + exp  ( j k Δ ϕ k ( t ) ) b ( t ; z s , k , z s , k + 1 ) + ]
exp  ( j k Δ ϕ k ( t ) ) = w ( t ; f c ( z ) ) * i 2 ( t ) w ( t ; f c ( z ) ) * i 0 ( t ) .
Δ γ ( f d ) V d = Δ ϕ ( t ) 2

Metrics